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predictive engines based on 
pharmacokinetics modelling for 
tacrolimus personalized dosage in 
paediatric renal transplant patients
Manuel prado-Velasco  1 ✉, Alberto Borobia2 & Antonio carcas-Sansuan  2

the development of predictive engines based on pharmacokinetic-physiological mathematical models 
for personalised dosage recommendations is an immature field. Nevertheless, these models are 
extensively applied during the design of new drugs. This study presents new advances in this subject, 
through a stable population of patients who underwent kidney transplantation and were prescribed 
tacrolimus. We developed 2 new population pharmacokinetic models based on a compartmental 
approach, with one following the physiologically based pharmacokinetic approach and both including 
circadian modulation of absorption and clearance variables. One of the major findings was an improved 
predictive capability for both models thanks to the consideration of circadian rhythms, both in 
estimating the population and in Bayesian individual customisation. This outcome confirms a plausible 
mechanism suggested by other authors to explain circadian patterns of tacrolimus concentrations. 
We also discovered significant intrapatient variability in tacrolimus levels a week after the conversion 
from a fast-release (prograf) to a sustained-release formulation (Advagraf) using adaptive optimisation 
techniques, despite high adherence and controlled conditions. We calculated the intrapatient variability 
through parametric intrapatient variations, which provides a method for quantifying the mechanisms 
involved. We present a first application for the analysis of bioavailability changes in formulation 
conversion. The 2 pharmacokinetic models have demonstrated their capability as predictive engines 
for personalised dosage recommendations, although the physiologically based pharmacokinetic model 
showed better predictive behaviour.

The immunosuppressant tacrolimus (TAC or FK506) is a calcineurin inhibitor (CNI) employed to reduce the risk 
of acute rejection and allograft loss of many types of solid organs. The clinical application of TAC has increased in 
recent decades, unlike other CNIs such as cyclosporine A, due to the lesser efficacy of the latter1–3. TAC is highly 
lipophilic and barely water soluble, which explains the high variability of its pharmacokinetic properties when 
orally administered4.

TAC is metabolised in liver microsomes mainly by CYP3A4 and CYP3A5 (in humans), to form a major 
metabolite with negligible pharmacological activity4. A second metabolite with equipotent activity to4 is scarcely 
produced.

The first commercial oral formulation of TAC was a fast-release hard gelatine capsule (Prograf), with a rec-
ommended 12 hours between administrations. The bioavailability of Prograf is approximately 20% in adults5; 
however, this is largely affected by numerous factors, including food intake. Advagraf, a prolonged-release formu-
lation, was subsequently developed to facilitate treatment adherence with the once-daily administration of TAC 
(usually in the morning).

Selecting the optimal TAC dosage for patients who have undergone kidney transplantation (or other 
solid-organ transplantation) is difficult due to the narrow therapeutic index and large interpatient variability of 
TAC, the latter of which is associated with oral absorption variability, as well as the influence of CYP3A 
(cytochrome P450, family 3, subfamily A) and P-glycoprotein (PgP) enzyme activity and their polymorphisms1. 
TAC pharmacokinetics and toxicity are complex issues, and the need for individualised therapeutic drug 
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monitoring (TDM) is well known1. Target TAC exposure recommendations maintain the trough blood TAC 
concentration (C0) as an alternative to blood TAC area under the curve (AUC), and various AUC ranges have 
been suggested as a function of the C0 target and formulation (twice daily for Prograf; once daily for Advagraf). 
The recommended C0 target for paediatric kidney transplant recipients at more than 2 months after transplanta-
tion is between 5 and 10 ng/ml, and the corresponding target AUC24 (AUC of blood TAC concentration during 
the last 24 h) is 180–350 ng/ml · h6.

The new TDM TAC consensus report includes for the first time the monitoring of intrapatient variabil-
ity (IPV) exposure as a biomarker to predict treatment outcomes in kidney transplantation, although further 
research is required to validate the thresholds and the timing for measurements6. TAC IPV is defined as the TAC 
blood concentrations fluctuations within a subject over a period of time for which the TAC dose is constant7. 
Several mathematical formulations can be applied to compute the TAC IPV, in which the TAC blood concentra-
tions are corrected for the drug dosage, D, when D is not stable7,8. Borra et al. found that a high TAC IPV was a 
risk factor for poor long-term outcomes in kidney transplantation8. Subsequent studies have confirmed the prev-
alence of large TAC IPV in the clinical setting and its influence on graft failure for long-term kidney transplant 
recipients7,9,10. The main factors that cause a high TAC IPV are considered to be the analytical assay, food, diar-
rhoea, drug-drug interactions (DDIs), genetic factors, nonadherence and the use of generic TAC formulations7.

Several pharmacokinetic TAC models have been developed to more accurately define dosages for target expo-
sure, in line with the model-informed precision dosing (MIPD) approach11. The models include compartmental 
and noncompartmental approaches, as well as a physiological basis. We use the term “physiologically based phar-
macokinetics” (PBPK) to refer both to individual and population-oriented models and employ the term PK to 
refer to the nonphysiological pharmacokinetic models.

The PK models for predicting TAC (Prograf formulation) concentrations in patients (with applications for 
dose adjustment) include a 1-compartment system with an intravenous (IV) drug administration model for pae-
diatric haematopoietic stem cell transplant recipients12; several 2-compartment system models with first-order 
oral absorption for adult kidney transplant recipients13, adult liver transplant recipients14 and paediatric kidney 
transplant recipients15; and a 2-compartment system with absorption governed by a 3-compartment absorption 
and transit (CAT) subsystem for adult kidney transplant recipients16. Fewer studies with PK models have evaluated 
TAC concentration predictions with Advagraf, although the results from Benkali et al.17 for adult kidney trans-
plant recipients showed that extended-release TAC can be assessed using a chain of transit regions for absorption. 
Outcomes from these cited studies have confirmed that PK models offer a suitable approach to achieve personal-
ised TAC dosages, although the authors did not consider the patients’ temporal progression and real-time MIPD.

The PBPK approach has demonstrated better predictive capability than nonphysiologically based PK 
approaches18 and is therefore recommended when developing drug and clinical prescriptions for special popula-
tions, such as for paediatric patients19. PBPK models therefore seem more suitable than PK models for managing 
real-time MIPD11. However, most of the few studies about TAC distribution based on PBPK modelling are not 
designed for MIPD, but for other issues. These ones include the quantification of DDI mechanisms20 and the 
analysis of the sensitivity of TAC exposure to covariates21. This explains why those models had significant errors 
in TAC concentrations predictions, regardless of the use of an extensive whole-body approach20 or a simplified 
approach (reduced number of tissues)21. In addition, most of the published PBPK models were not designed to 
assess the patients’ progression.

To the best of our knowledge, there are no PK/PBPK models for TAC distribution that describe the modula-
tion of TAC absorption and metabolism due to the circadian activity of CYP3A5 and PgP enzymes, despite the 
fact that the chronopharmacokinetics of TAC affect TAC exposure22 and is one of the causes of IPV7. Various 
human studies have shown that the maximum blood concentration (Cmax) and AUC (of blood concentration) 
after the morning dose are higher than the values after the evening dose23, although there are questions regarding 
the mechanisms involved.

Real-time MIPD in TAC prescription provides a customised TAC dosage (output), calculated as a function 
of previous TAC measurements and other clinical and physiological data (inputs), which presents a real-time 
optimisation problem that requires a mathematical model able to predict the dynamics of TAC concentration 
(and other variables) in the desired tissues. The suitability of real-time MIPD is associated with the predictive 
capability of the mathematical model, which in turn requires the use of adaptive techniques to correct intrapatient 
variability24. A well-known application of real-time MIPD is glycaemic control through insulin therapy, particu-
larly in intensive care units25. However, the use of real-time MIPD in TAC requires further research.

The goal of this study is to develop 2 TAC models based on the PK and PBPK methodologies and to evaluate 
and compare the models as predictive engines for real-time MIPD. The PK model is based on the model created 
by Andreu et al.16, whereas the new PBPK model uses the model created by Gerard et al. as a reference21. The 
specific objectives of this study are (i) to explore the goodness of fit and predictive capability of both models for 
twice-daily Prograf administration after the inclusion of the chronopharmacokinetics of TAC, testing the TAC 
circadian mechanistic proposal of Baraldo et al.23 and the improvement in predictive accuracy of PBPK versus 
PK models18; (ii) to evaluate the capability of several models’ adaptive techniques based on prior parameter dis-
tribution to analyse the conversion from Prograf to Advagraf formulation and to calculate intrapatient variability 
through the parametric mechanisms involved; and (iii) to analyse the change in absolute bioavailability during 
formulation conversion according to the models’ predictions.

Methods
The study was performed in 2 phases. During the first phase, we developed, fitted and evaluated population PK 
and PBPK TAC models using a retrospective stable paediatric population with kidney transplants who were 
administered Prograf twice daily (Prograf data). During the second phase, we examined the new models’ capa-
bility to attend the patients’ progression and evaluated several personalised optimisation strategies to adapt the 
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models to the same paediatric patient group, after transitioning from the Prograf to the Advagraf formulation 
(Advagraf data). We employed adaptive techniques (such as Bayesian estimation)26 based on the models’ param-
eter distributions obtained during the first phase to adjust the models to the patients’ progression. This strategy 
explains why our design uses population PK models instead of individually based models, which are limited to 
more typical adaptive techniques from the adaptive control theory24 applied in pharmacological controls.

The population PK and PBPK mathematical models and adaptive techniques are presented in the next 3 sub-
sections, and the computational procedures for the study’s 2 phases are presented in the last subsection (Model 
Analysis). A glossary with the names of the variables, definitions and units is presented for each mathematical 
model. Additional details and data regarding the models can be found in the First Supplementary Document.

The mathematical models were implemented on multilevel object-oriented PhysPK biosimulation software. 
An evaluation of the accuracy and underlying methodology of PhysPK with respect to NONMEM software was 
recently published27. The model fitting, covariate analysis, statistics and optimisation procedures described in 
the next sections are also implemented in PhysPK. We successfully compared the PhysPK population-fitting 
techniques against NONMEM28. Further details regarding these computational procedures appear in the First 
Supplementary Document.

Pharmacokinetic model development. A 2-compartment structural model with a 3-compartment 
absorption and transit (CAT3) subsystem was the basis of the PK model for TAC distribution. The CAT3 subsys-
tem is based on the model for oral drug absorption defined in the study by Lawrence et al.29, in which the small 
intestine is addressed as a series of 3 segments, and absorption in the stomach and colon is ignored30.

Similar PK models with more compartments were tested without improvement in either TAC prediction or 
IPV. The model’s mathematical equations are detailed in the First Supplementary Document, while Table 1 shows 
the model variables. TAC elimination was assumed to be linear and given by the central clearance Cl. TAC transit 
in CAT3 is assumed to be linear, with a mean transit time in the stomach, small intestine and colon equal to MTT . 
The transit rate constant is =k MTT1/t .

The systemic clearance Cl and absorption constant Ka were modulated with a circadian profile according to the 
suggestions from the Baraldo and Furlanut study23, based on experimental and clinical studies. Chronomodulated 
parameters were calculated using Eq. (1).

= ⋅ −

= ⋅ −

Cl t Cl f t t
K t K f t t

( ) ( )
( ) ( ), (1)

chr w chr

achr a w chr

in which f t( )w  is a 24-h periodic waveform function (Fig. 1). As shown in Fig. 1, the chronomodulated clearance 
(Clchr) is kept equal to Cl during the diurnal phase of the cycle (0 − t1) and reduced with the factor ≤r 1chr  during 
the nocturnal phase ( −t t2 3). Diurnal-nocturnal ( −t t )1 2  and nocturnal-diurnal ( −t t3 4) phases are completed 
in 2 h with a constant slope ramp. The value =time 0 is defined as the reference time for the first TAC measure-
ment in the clinical study (Methods section). The diurnal phase could therefore start at a different time. This is 
modelled with the waveform function −f t t( )w chr , in which the diurnal phase starts at =t tchr . The reduction 
factor rchr and the diurnal starting time reference tchr are variable population parameters. The defined circadian 
profile is the simplest function that supports the circadian behaviour of TAC Cl according to current knowledge. 
Kachr was defined with the same function fw.

The absolute drug bioavailability (F) was calculated using Eq. (2):

∫ ∫⋅ ⋅ = ⋅F t D t t Cl t C t t( ) ( ) d ( ) ( ) d (2)
t

f
t

chr c
0 0

in which Df  is the drug mass flow rate. The TAC dosage (D) was determined with Eq. (3).

Variable Units Description

Cl L/h Systemic clearance

Cld L/h Distribution clearance

Vi L Volume of compartment i†

Ci ng/ml Concentration at compartment i†

Ka ml/h Absorption constant

MTT h Mean transit time

rchr pu Chrono modulation factor

tchr h Chrono modulation temporal phase

D mg Dose

kt 1/h Transit rate constant

Vcat j, L Fluid volume of zone j into CAT‡

kta 1/h Absorption rate constant

Table 1. Definition of the Variables employed in the TAC PK model. †i takes values c (central) or p (peripheral). 
‡j takes values s (stomach), si (small intestine), and c (colon).
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∫= ⋅D D td (3)
FDT

f
0

Equations (2) and (3) were calculated during the simulation to provide F t( ) bioavailability.

Physiologically based pharmacokinetic model development. The PBPK TAC model comprises gas-
tric, liver, kidney and primary blood tissues, together with fat tissue and other tissue. The input variables, such as 
body weight (BW), sex, age, haematocrit and CYP3A4/5 activity, were considered using mechanistic mathemati-
cal equations, which are described in this section. The flow diagram is shown in Fig. 2.

All tissues are nonhomogeneous for TAC, with tissue-plasma partition coefficients associated with the lipo-
philic character of this drug. The partition coefficients were calculated using the Poulin and Theil method, based 
on the solubility of drugs in neutral lipids, phospholipids and water31. Physiological lipid and water fractions in 
tissues were taken from published databases31–33.

Figure 1. 24-h periodic waveform f t( )w  (pu) with = = =t t t10, 12, 221 2 3  and =t 24 h4 .

Figure 2. Flow diagram for TAC PBPK model with 4 flow-limited tissues (fat, kidneys, liver and others) and 
2 membrane-limited tissues (gut and blood). The blood compartment is defined through the red blood cell-
plasma component. The gastric system is comprised of a gut lumen where the TAC form is liberated following a 
zero-order kinetic with sink condition, a one-order absorption membrane and gut tissue perfused with blood.
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The model’s mathematical equations follow usual PBPK assumptions. However, they are written in detail in 
the First Supplementary Document. Table 2 shows the variables used in the model.

TAC plasma binding is defined as the unbound plasma fraction fup, which was 0.01234, despite some variabil-
ity. This value is commonly used in other modelling studies21,35. An exploratory Monte Carlo simulation was 
performed to confirm the model’s robustness. Details are presented in the First Supplementary Document.

TAC demonstrated extensive binding to red blood cells, with a maximum binding capacity Bmax of 418 ± 258 
μg/L and dissociation constant (Kd) of . ± .3 8 4 7 μg/l for adult liver transplant recipients36. Due to the importance 
of TAC binding to red blood cells, its variability with different populations (e.g., healthy individuals have approx-
imately double the value of Bmax

36) and the lack of data for paediatric renal transplant recipients, these parameters 
have been set as population variables to be fitted.

We assumed that TAC elimination is due only to liver metabolism and that renal excretion is negligible2,21. We 
calculated the total intrinsic hepatic clearance as ⋅Cl Vih l  (ml/h), with Vl  the liver volume (ml).

Liberation is governed by the zero-order rate liberation constant ( LibT1/ ) in which LibT  is the TAC form lib-
eration time (min). Gut absorption is defined by the one-order absorption rate constant Kabs (1/h), with a value 
of 4.5 1/h36.

The one-order elimination rate constant Kelib (1/h) describes the TAC form that cannot be absorbed from the 
gut lumen, which is related to LibT  through Eq. (4), which states that elimination increases with LibT . The rela-
tionship is based on the assumption that higher LibT induces the transit of a larger portion of unabsorbed TAC 
through the intestine.

= = ⋅K LibT K LibT LibT( ) ( 100)
100 (4)elib elib

Model parametric fitting in the exploration phase provided better TAC predictions for Kelib defined by Eq. (4) 
than with the constant Kelib and other polynomial −K LibTelib  relationships. We assumed that LibT  depends 
mainly on the release time of the TAC formulation, which is shown in the additional model data section of 
the First Supplementary Document.

Intrinsic hepatic clearance (Clih) and the gut absorption rate constant (Kabs) were modulated with a circadian 
profile similar to that employed in the PK model. The chronomodulated values Cl t( )ihchr  and K t( )abschr  are defined 
by Eq. (1), replacing Cl and Ka with Clih and Kabs, respectively. The bioavailability F was computed using Eq. (2), 
replacing ⋅Cl t C( )chr c with ⋅ ⋅V Cl t C( )l ihchr b.

Adaptive techniques. We fitted models to our study patients using a maximising population likelihood 
approach followed by customisation for each patient (Bayesian optimisation26). We then employed adaptive tech-
niques to adjust the models’ parameters to deviations associated with patient temporal intravariations and to 
modifications in the external context or therapies (such as changes in drug formulations). The adaptive tech-
niques evaluated in this study are as follows:

Variable Units Description

Vi ml Volume of tissue i†

Ci ng/ml i tissue concentration†

Cvi ng/ml Venous i tissue concentration†

Cut ng/ml Unbound t tissue concentration‡

Cbt ng/ml Bound t tissue concentration‡

Rt pu Tissue (t) - plasma partition ratio‡

Qi ml/min Venous blood perfusion flow rate in i tissue†

fup pu Unbound plasma fraction

fut pu Unbound tissue fraction‡

Bmax μ g/L Maximum binding capacity in red blood cells

Kd μ g/L Dissociation constant in red blood cells

Clih 1/h Intrinsic hepatic clearance per liver volume

Kabs 1/h Absorption rate constant

LibT min TAC liberation time

Kelib 1/h Elimination rate constant in liberation region

rchr pu Chrono modulation factor

tchr h Chrono modulation temporal phase

D mg Dose

Table 2. Variables employed in the TAC PBPK model. †i takes values l (liver), k (kidney), g (gut tissue), f (fat), o 
(others), b (blood). ‡t takes the same values as i, except b.
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 1. Adaptive Bayesian optimisation.
 2. Adaptive weighted least squares (WLS) optimisation.

The clinical protocol is described below. Both techniques benefit from the fact that the target patient belongs 
to a known prior population, which explains why central (mean) parameters remained constant during the cus-
tomised adaptation phase.

The adaptive Bayesian technique follows the same equations of the well-known Bayesian method26, with the 
exception of boundary conditions. If η is the interpatient variation of the population variable φ (see Model analy-
sis Section) to be computed, this variable is restricted to fulfilling one of the two following boundary conditions 
(Eq. (5)):

η η η η η

η

− ⋅ ≤ Δ ≤ ⋅

− ≤ Δ ≤

W W
B B

min( , ) min( , )
, (5)

b m b m0 0

in which η0 is the value of η at the previous model state (time t0), Δη η η= − 0 is the increment of η in the read-
justment and ηm is the minimal η value that defines the weighted boundary. Wb is the boundary Weight and B is 
the absolute Boundary. Both equations limit the variation of η with respect to the previous state to a weighted 
value of η0 or to an absolute boundary B. Selection of a B-based or W-based boundary is based on the knowledge 
concerning the associated population variable φ.

The adaptive WSE optimisation minimises the objective function Fwse given by Eq. (6):

∑= − F W C t C t(ln( ( )) ln( ( ))) ,
(6)t

b k b kwse
2

k

in which W  is the weight applied to the squared difference between blood model tacrolimus concentration C t( )b k  
and blood measured tacrolimus concentration C t( )b k , and = …t k n, 1, 2,k  are the sample times.

As opposed to the adaptive Bayesian technique, which can only be applied to adjust parameters pertaining 
to the prior population set, adaptive WLS optimisation can also be used to adjust other models’ variables that 
were considered constant in the initial design, which helps extend the model’s scope. Adjusted variables and their 
boundary equations are fully detailed in the Adaptive Modelling Techniques section in the First Supplementary 
Document.

Clinical study. The clinical study was designed as a single-centre, open-label TAC treatment conversion from 
a Prograf to Advagraf formulation (1:1, mg:mg), which included stable paediatric kidney transplant recipients. It 
was conducted at La Paz University Hospital (referral hospital for paediatric kidney transplantation in Madrid, 
Spain). The study protocol was approved by the Ethics Committee of La Paz University Hospital and the Spanish 
Agency for Medicines and Health Products. The study was registered under European Clinical Trial Register 
EudraCT 2009-017600-89. All methods were performed in accordance with required guidelines and regula-
tions. Written informed consent was obtained prior to the patients’ enrolment from their parents or guardians, 
who controlled the patient’s drug administration and food intake according to the instructions provided. A full 
detailed description of the clinical study design, including the results of the evaluation of the relative bioavailabil-
ity of Prograf and Advagraf formulations, has been published37. Data collected during the pharmacokinetic phase 
of the study (2 weeks), which is described in the following paragraphs, support the development of the present 
research with the aim of reaching the 3 specific objectives stated in the Introduction Section.

Patients with a stable renal transplant and younger than 18 years of age were recruited according to the inclu-
sion criteria. The study size was defined as 21 patients, although only 18 patients were needed to achieve statisti-
cally significant steady-state AUC24 (AUC of blood TAC concentration during the last 24 h) target differences of 
5% with a power of 80%37. The inclusion criteria included a variation in TAC dosage and concentrations lower 
than 20% during the last 30 days prior to the start of the study, without administering drugs that might affect the 
TAC PK in the last 15 days. None of the patients dropped out during the pharmacokinetic study period, and none 
of the patients experienced adverse events during the 2 weeks of the PK study. None of the concomitant treat-
ments were modified during the study.

The mean time from transplant was . ± .5 39 3 25 years, and nearly all patients were white (17). The remaining 
patients were Hispanic (1), Asian (2) and Arabian (1). The sex distribution was 57% male/43% female. The other 
anthropometric data (expressed as mean ± SD, range) were age (12.9 ± 4.17 years, 4–17), body weight (42.85 ± 
15.42 kg, 15.1–63.8) and height (143.4 ± 18.16 cm, 105–168).

The patients were administered a controlled Prograf regimen the week prior to their first admission to La Paz 
University Hospital (day 1). The patients remained on Prograf during day 1, which was first administered between 
8:00 AM and 9:00 AM and then re-administered 12 h later. The drug was administered with 200 ml of water, and 
the patients ate breakfast, lunch and dinner 11:00 AM, 1:00 PM and 7:00 PM. During the hospital stay, blood TAC 
was measured just before the morning TAC administration ( =t 0) and consecutively 0.5, 1, 1.5, 2, 3, 4, 6, 8, 12, 
12.5, 13, 14, 15, 16, 18, 20 and 24 h later (a total of 18 measurements). Blood samples (2 ml) were collected in ali-
quot duplicate Ethylene Diamine Tetraacetic Acid (EDTA) tubes and analysed with an enzyme immunoassay 
(Dimension, Siemens Healthcare Diagnostics, Frimley, Camberley, UK), with 2 ng/ml as the lower quantification 
limit and 30 ng/ml as the upper limit. Measurements above the upper limit were diluted to obtain concentrations 
in the valid range.

Prograf was replaced with Advagraf on the following morning (day 2) with a new controlled protocol. 
Once-daily Advagraf doses were based on 1:1 total dose equivalence. Patient data acquired during the Prograf 
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phase of the study (day 1) were used to fit and evaluate the new population PK and PBPK TAC models. The 
patients were re-admitted to La Paz University Hospital on day 8, repeating the food intake and blood sampling 
procedures of the first monitoring day, with the following sampling times: 0, 0.5, 1, 1.5, 2, 2.5, 3, 4, 6, 8, 12, 15 and 
24 h (13 measurements). The blood TAC measurement ( =t 0) of this second series was performed just before 
administering Advagraf. The sample was the trough blood TAC concentration (C0) at the beginning of the hos-
pital re-admission day. The model’s parameters were readjusted to reduce blood TAC concentration prediction 
errors during day 8. The adaptive optimisation techniques for the model readjustment are presented in the 
Adaptive techniques Section. The TAC measurements and data used for the analysis are included in the Second 
Supplementary File.

Models analysis. Population model structure. The population parameters with interindividual variability 
in the PK model were Cl, Ka, MTT , rchr  and tchr  (variable parameters). The population PK parameters without 
interindividual variability were Vc, Vp and Cld (nonvariable parameters). This set of parameters agrees with those 
selected by Andreu et al.16, except for new circadian parameters. Another nonvariable parameter was the coeffi-
cient of the final accepted covariate model, which is presented below.

All population parameters in the PBPK model have interindividual variability and included Clih, Bmax, and Kd. 
The variables rchr and tchr were added for circadian modulation as in the PK model.

The interindividual error model for variable population parameters was exponential, assuming log-normal 
distribution for error (η), with a mean value θ, as shown in Eq. (7) for the Cl parameter.

θ= ⋅ ηCl e (7)Cl Cl

We then defined the normal distribution for the η vector (dimension equal to the number of variable popula-
tion parameters) using the zero mean and covariance matrix Ω. We employed the log-transformed whole blood 
TAC concentration (ln Cc in PK and ln Cb in PBPK) as the model output to be fitted. We tested the proportional 
and additive residual error to establish the model that best fits the clinical data.

Interoccasion variability (IOV) reflects random IPV that may be transferred to the residual variability term 
if it is not considered38. However, the term IOV is associated with occasions defined by dosing periods, number 
of samples, or administration instants, which must be anticipated to be properly implemented. This is not the 
case of a model that may be applied as a customized knowledge engine in a real-time MIPD for different clinical 
environments and changing drug administration scheduling. Therefore, we decided not to implement IOV in the 
models structure.

Covariates analysis. The variables BW, body mass index, body surface area (BSA, calculated from BW and height 
using the Du Bois formula), sex, age, height and haemoglobin concentration were tested as potential covariates 
with an influence on PK model parameters, using a forward stepwise approach39. The PBPK model included 
available covariates by means of equations describing mechanistic models, as described in the previous section.

We analysed the correlations during the initial exploration, and the correlation models were linear or expo-
nential for continuous covariates. The linear model correlation is as follows:

θ θ θ= ⋅ + ⋅ −ˆ x x(1 ( )) (8)i i c r

whereas the exponential model is as follows:

θ θ= ⋅










θ

ˆ x
x

,
(9)

i i
r

c

in which θ̂i is the mean population variable without covariate influence, θc is the correlation coefficient, x is the 
covariate and xr is the reference value for this covariate. The last value was taken as the median value. The value of 
θc was estimated during the fitting population process. Categorical covariates such as sex were analysed assigning 
discrete values to each categorical level of the covariate.

The best correlation models were selected to be evaluated during the forward stepwise approach. We accepted 
a covariate-population variable relationship if the reduction in the minimum value of the objective function 
(MVOF) was somewhat less than 3.84 (significance level of 5% according to χ2 distribution for 1 degree of free-
dom in the nested model). In addition, an approximate reduction of 10% in intraindividual variability (coefficient 
of variation [CV]) was required in the associated population parameter for minimum clinical significance.

Population model fitting techniques and evaluation. We performed the population model fitting with the blood 
TAC concentrations measured during the first monitoring day in the hospital (Prograf administration), executed 
in 2 steps. During the first step, we also performed an initial exploration of the models to ensure their robustness 
and reliability.

We estimated the population parameters as a second step by maximising the likelihood function associated 
with the hierarchical models, using first-order conditional estimation methods (FOCE and FOCE-I)40,41. The 
absolute simulation time at the first hospital admission was set at 48 h. Additional details can be found in the 
Model analysis – Population fitting section in the First Supplementary Document.

The initial evaluation of the models’ behaviour was based on individual residual errors, conditional weighted 
residual, ε-shrinkage, η-shrinkage42 and relative standard errors (RSEs) of estimated parameters.
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We also performed a noncompartmental analysis (NCA) based on TAC blood concentration measurements 
to compute the NCA AUC24 (log-trapezoidal method), differences model AUC24 minus the NCA AUC24 (ΔAUC) 
and the root mean square error (RMSE)43 of the blood TAC concentrations minus the model TAC concentrations 
(log transformed) RMSEc.

We performed goodness of model predictions by plotting the predictive simulated TAC concentrations against 
the measured blood TAC concentrations, showing the accuracy and characteristic dynamics of the computed 
TAC concentrations. We performed the prediction-corrected visual predictive check (pcVPC)44 with 500 simu-
lated replicas of the patients’ data set to confirm the proper adjustment of the data to the population distribution. 
Observed values and their 5%, 50% and 95% percentiles were presented against the 95% confidence/predic-
tion interval corresponding to the same model-predicted percentiles. The pcVPC graphics were obtained with R 
scripting from Ron Keizer45, using the replicas file computed using PhysPK software. Stratification with respect to 
the normalised dose was applied in the case of the pcVPC plot. Finally, the conditional weighted residual versus 
time after dose plot was presented as a diagnostic instrument to detect potential model misspecification46.

We performed 600 Monte Carlo simulations with estimated population parameters for each TAC model and 
3 TAC dose levels (0.025, 0.042, and 0.05 mg/kg, which refer to 1.5, 2.5 and 3.0 mg normalised for 60 kg of body 
weight) to calculate the mean AUC24 associated with each dose. Simulations were performed 36 h and the final 
24 h were used, with the aim of ensuring a customised near steady-state for the patients. Covariates and input 
variables, such as BW, body mass index, sex, age and height, varied according to our paediatric population’s meas-
urements. The bioavailability F (mean ± SD) and the time that the TAC concentration exceeded a gross value of 
20 ng/ml as maximum tolerated concentration47 were also added to the calculated exposures.

Adaptive procedures evaluation. We adapted the models during the second phase (Advagraf data) to correct the 
prediction errors after the initial fitting with Prograf (day 1). Deviations in the model TAC concentrations could 
be induced by conversion to Advagraf (day 2) and intrapatient variability during the week. New TAC measure-
ments were taken on day 8 (second monitoring day). The model was adapted using the following procedures 
(additional details can be seen in the Adapting Evaluation section of the First Supplementary Document):

 (i) Procedure 1: The model was first adapted (stage 1) to correct the prediction error of the blood TAC 
concentrations (C0) measured just before the morning administration of Advagraf on day 8. We employed 
the WLS adaptive technique using one model parameter (LibT  for PBPK and MTT  for PK). The parameter 
adjustment occurred at the instant of TAC formulation conversion (beginning of day 2). We performed a 
second parametric adaptation (stage 2) to maximise the prediction accuracy of the other TAC measure-
ments during day 8. The parametric change occurred at the beginning of day 8. We applied adaptive 
Bayesian and WLS techniques in this second stage.

 (ii) Procedure 2. We adapted the models to correct the prediction errors in the blood TAC concentrations, 
using all day 8 measurements simultaneously. The parametric adjustment occurred at the beginning of day 
2. We applied adaptive Bayesian and WLS techniques.

The first adaptation of procedure 1 sought to adjust the model parameter that had a greater effect on the drug 
release rate. After the adjustment had been successfully applied and the first TAC measurement on day 8 had been 
accurately predicted, the need for a second model adaptation was evaluated to analyse whether there was signifi-
cant intraindividual parameter variation. The Bayesian technique cannot be applied in procedure 1 - stage 1 
because LibT  and MTT  are not in the set of the models’ population parameters, as defined in the Model analysis 
subsection (additional details appear in the First Supplementary Document, Adaptive modelling techniques).

We employed a log-trapezoidal integration method to calculate the reference AUC24 (NCA) on day 8, which 
was then compared with the AUC24 from the models. The accuracy of the TAC model predictions was quantified 
by means of the RMSEc

43. We compared the results of these 2 procedures, along with the procedures’ effect on the 
models’ suitability as predictive engines for dosage recommendations.

Results
The following two subsections present the results for the first phase of the study (Prograf data). The last subsection 
(Adaptive Models) shows the results for the second phase (Advagraf data).

Fitting and evaluation of PK model (Prograf data). Our initial examination of the model confirmed its 
structural stability, robustness and ability to provide initial estimates of the parameters to be fitted. More details 
of the analysis appear in the Results section of the First Supplementary Document.

We applied the FOCE technique without covariates to the additive and proportional residual error PK models. 
The additive residual model obtained fewer RSEs for all mean parameters (θi). The two models had similar Ω 
variance estimates, except for ωKa

2 , whose additive value was one-third of the proportional value. The two models 
also had a similar accuracy for the TAC estimations. We therefore selected the additive residual error PK model.

The MVOF obtained with the PK reduced model (without covariates) was −885.13. We applied the covariate 
forward stepwise approach. The inclusion of the BSA − Cld covariate regression exponential model reduced the 
MVOF to −888.08, whereas the MVOF was virtually unchanged when the Chb − Vp covariate regression model 
was added. In addition, the BSA covariate reduced interindividual variance (IIV) by an average of 70% (CV). 
Given that the reduction in MVOF (2.95) was near 3.84 (statistic significance level of 5%), we decided to accept 
BSA as one of the model’s covariate. The value of the estimated exponent θc for exponential correlation (Eq. (9)) 
was 1.17.
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The mean estimated parameter values θi and associated interindividual variances, together with their RSEs, for 
the PK TAC model are presented in Table 3.

CV was approximated as ωi
2  for small η variance (ωi

2), resulting in CV values of 31% for Cl, 57% for Ka and 
22% for MTT . A first fitting diagnostic was based on shrinkage metric indices42. The shrinkage value related to 
residual error was ε-shrinkage = 0.014 ± 0.349, and the η-shrinkage parameters were 0.18, −0.08 and 0.17 for Cl, 
Ka, MTT , respectively, and 0.66 for rchr. Values near zero confirm the goodness of fit.

Other relevant values obtained during the Bayesian estimation were = . ± .F 18 8 9 7%, = . ± .AUC 200 3 40 724  
ng / m l  ·  h  ( m o d e l - b a s e d ) ,  = . ± .AUC 201 48 39 2724  ng / m l  ·  h  ( NC A  l o g - t r ap e z oi d a l ) ,  an d 
Δ = − . ± .AUC 1 22 4 67 ng/ml · h. The accuracy of TAC concentration (log-transformed) referred to the whole 
set of samples was = . ± .RMSE 0 074 0 032c . These metric values support the goodness of fit of the PK TAC 
model.

Plots of model TAC concentration against TAC measurements for several randomly selected patients and a 
table that shows a comparison against parameters obtained by the model created by Andreu et al.16 are presented 
in the First Supplementary Document. Parameters have similar and reasonable values, with the exception of the 
peripheral volume Vp, which is 39.1 l in our model against 526.03 l in the Andreu et al. model. This issue is 
addressed in the Discussion section. The two models had similar interindividual dispersion, despite the fact that 
our PK model was fitted for paediatric patients and includes diurnal and nocturnal TAC distribution. Therefore, 
our PK model demonstrates greater predictive capability.

Figure 3 shows the pcVPC based on 500 replicas according to the obtained parametric population. TAC con-
centrations have been normalised with D/BSA mg/m2, according to the wide range of TAC dosages for this pae-
diatric population. As shown, the observation percentiles agree with the predicted CIs obtained from PK model 
simulations. The results for the IIVs agree with those of other studies16, despite the studies not requiring TAC 
predictions during 2 sequential 12-h Prograf administrations.

Additional studies, showing the fulfilment of a normal distribution assumption and the results of a Monte 
Carlo simulation with 600 runs for the PK model with 3 TAC normalised doses can be found in the First 
Supplementary Document (PK results). According to the Monte Carlo study, a dose of 0.042 mg/kg achieves an 
AUC24 exposure of 271.4 ± 196.7 ng/ml · h. The high dispersion of AUC24 emphasises the need to use MIPD to 
customise the TAC dose.

Fitting and evaluation of PBPK model (Prograf data). Our initial exploration of the PBPK model 
confirmed its structural stability and robustness, which also provided the initial estimates for the parameters to 
be fitted. More details of the analysis can be found in the Results section of the First Supplementary Document.

The accuracy of the TAC concentrations was similar with the residual and proportional error, as well as IIV esti-
mates; we therefore selected the additive residual error. Table 4 presents the mean estimated parameter values θi and 
their interindividual variances (along with their RSEs) calculated for the PBPK model using the FOCE technique.

The CVs were calculated in the same manner as in PK model, with values 33% for Clih, 6.3% for Bmax and 
28.8% for Kd. Shrinkage index for residual error was ε-shrinkage = 0.039 ± 0.30, and η-shrinkages were −0.32, 
0.80 and 0.72 for Cl B K, ,ih max d, respectively, and 0.12 for rchr. Values near zero confirm the goodness of fit42.

Parameter Units Value (RSE %)†

Disposition parameters

θCl (L/h) 5.41 (5.7)

θCLd (L/h) 46.5 (7.5)

θVc (L) 23.0 (7.9)

θVp (L) 39.1 (7.2)

Circadian parameters

θrchr
(pu) 0.29 (6.4)

θtchr
(h) 0.7 (−)

Absorption parameters

θKa (ml/h) 13.8 (7.3)

θMTT (h) 0.72 (5.5)

Interindividual variabilities

IIVCl — 0.10 (20)

IIVKa — 0.33 (18)

IIVMT — 0.05 (40)

IIVchrred — 0.003 (30)

IIVchrphi — 0.01 (−)

Residual error variance

ωr
2 — 0.027 (3.7)

Table 3. Population PK model parameters’ mean and IIV estimates: value (RSE), for Prograf fitting. †RSE is 
calculated through the standard error SE as SE(θ)/θ · 100 for θ and SE ω ω ⋅θ θ( )/(2 ) 1002 2  for variances.
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Additional values obtained during the Bayesian estimation were = . ± .F 15 0 1 6%, = . ± .AUC 198 3 41 324  
(model based) and = . ± .AUC 201 48 39 2724  (NCA log-trapezoidal), with Δ = − . ± .AUC 3 13 6 37 ng/ml · h. 
The accuracy of the TAC concentrations (log-transformed) with respect to TAC measurements was 

= . ± .RMSE 0 092 0 041c . These metric values support the goodness of fit of the PBPK model. Plots of PBPK 
model TAC concentration versus TAC measurements for randomly selected patients and the comparison with 
parameters from other sources can be found in the First Supplementary Document.

Figure 4 presents the pcVPC based on 500 replicas for the fitted PBPK model. A low TAC dose (D/BSA < 
0.9 mg/m2) is presented in the upper plot with nonscaled concentrations (ng/ml). A non-low TAC dose (D/BSA 
≥ 0.9 mg/m2) is shown in the bottom plot, using scaled concentrations (C/(D/BSA).

The non-low TAC dose pcVPC shows very good agreement between the predicted CIs obtained from PBPK 
model simulations and observations. More than 75% of patients pertain to this case. The low-dose plot is based on 
nonscaled concentrations to avoid amplifying the graphical distances due to low denominator values (D/BSA mg/
m2). The model-observations agreement is not as good in this case. However, the 95% CI of the model-predicted 
percentiles was much smaller in the PBPK model than in the PK model (see Fig. 3), which demonstrates the 
PBPK model’s high predictive capability.

Standard metric plots that confirm the normal distribution assumption and results of a Monte Carlo study 
with 600 runs and 3 TAC doses per BW can be found in the PBPK results of the First Supplementary Document. 

Figure 3. Prediction-corrected visual predictive check of TAC normalised concentration for the PK model. 
The solid line is the mean observation percentile, and the dashed lines are 5% and 95% observation percentiles. 
Semi-transparent fields around each observation line represent a simulation-based 95% CI for mean, 5% and 
95% model predicted percentiles.

Parameter Units Value (RSE %)†

Absorption and RBC binding

θCLih (1/h) 956.6 (6.1)

θBmax (μg/L) 11.0 (6.3)

θKd (μg/L) 1.6 (9.0)

Circadian parameters

θrchr
(pu) 0.16 (8.3)

θtchr
(h) 0.7 (−)

Interindividual variabilities§

IIVCLih — 0.114 (16)

IIVBmax — 0.004 (16)

IIVKd — 0.083 (17)

IIVrchr
— 0.367 (32)

IIVtchr
— 0.01 (−)

Residual error variance

ωr
2 — 0.037 (7.4)

Table 4. Population PBPK model parameters’ mean and IIV estimates: value (RSE), for Prograf fitting. †RSE is 
calculated through the standard error SE as SE(θ)/(θ) · 100 for θ and SE ω ω ⋅θ θ( )/(2 ) 1002 2  for variances.
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The AUC24 exposure for a dose of 0.042 mg/kg is 177.6 ± 50.9 ng/ml · h. The deviation is smaller than in the PK 
model but still significant, which supports the need for MIPD in customising the TAC dose.

Adaptive models (Advagraf data). Figure 5 shows the blood TAC concentrations predicted by the PK 
model fitted with Prograf data and with no parametric adjustment from day 1 to day 8, for 2 randomly selected 
patients. The TAC formulation changed from Prograf to Advagraf at the beginning of day 2. Two daily TAC doses 
(Prograf) on day 1 and once-daily doses (Advagraf) on days 2–8 were considered during the model’s execution. 
The model TAC concentration at the beginning of day 8 (re-admission) (C0) overvalued the C0 TAC measure-
ment in 19 of 21 patients. The differences measured minus the model C0 for the whole population was −1.91 ± 
1.46 ng/ml (mean ± SD).

Figure 6 shows the same prediction scenario with the fitted PBPK model. Prediction errors were similar. The 
differences measured minus the model C0 for the whole population was −2.94 ± 2.93 (mean ± SD ng/ml).

The TAC overvaluation could be due to the fact that the models were not adjusted to consider the prolonged 
release of Advagraf. However, errors in TAC predictions can also be induced by intraindividual variations in the 
parameters over the course of a week. Adaptive procedure 1 was defined to discriminate those potential causes. 
Models were first adapted to correct the influence of TAC formulation, using a parameter associated with the drug 
release rate. Once the model prediction of TAC concentration at the beginning of day 8 is accurate, any additional 
adaptation required to correct other TAC concentration predictions during day 8 would support the existence of 
intraindividual parameter variations.

Procedure 1 requires the existence of a model parameter related to the drug release rate. Procedure 2, however, 
uses an alternative adaptive technique that avoids this requirement. Adapted models provided by procedure 2 are 
compared with final adapted models produced by procedure 1.

Adaptive procedure 1. Procedure 1 was unable to adapt the PK model by means of the FDT  parameter for pro-
viding an accurate C0 TAC concentration. However, this adaptive procedure was successfully applied to the PBPK 
model to correct C0 TAC concentration. This result demonstrates that the drug liberation time LibT  (and the 
underlying mechanism) is correlated with drug formulation release, in contrast to FDT  in the PK model.

The predictive accuracy of the PBPK model with adjusted LibT  (WLS adaptive technique) was ΔC0 (C0 meas-
urement - model difference), equal to 0.004 ± 0.039 (mean ± SD ng/ml) for the whole population. LibT  increased 
176 ± 225.4 min (20 of 21 patients showed increased LibT  value). The mean LibT  increment agrees with the 
greater release rate of Advagraf. However, the high dispersion suggests there could be other parameters with sig-
nificant intrapatient variation. Plots with predictions of the adapted PBPK model for randomly selected patients 
and additional details are presented in adaptive procedure 1 in the First Supplementary Document.

Despite the accurate prediction of trough TAC on the re-admission day, the LibT -adapted PBPK model did 
not provide an accurate prediction of the other TAC measurements on that day. Table 5 shows the adjustment of 
parameters in the second stage of adaptive procedure 1. The C0-instant column provides differences in parame-
ters between consecutive patients before this second model adaptation.

Figure 4. Dose stratified (D/BSA mg/m2) prediction-corrected visual predictive check of TAC concentration 
for the PBPK model. The solid line is the mean observation percentile, whereas dashed lines are the 5% and 95% 
observation percentiles. Semi-transparent fields around the observation lines refer to simulation-based 95% CIs 
for mean, 5% and 95% model predicted percentiles.
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TAC concentrations and AUC24 predictions of the second adapted PBPK model were accurate, as shown. The 
main parameter involved in the final model adaptation is the intrinsic hepatic clearance per liver volume (Clih). 
Other parameters, such as Kabs in WLS and B K,max d in Bayes, experienced lower variations, other than having a 
smaller influence on TAC concentrations, as proven in the sensitivity analysis. LibT  dispersion is related to the 

Figure 5. Central compartment TAC concentrations from the PK model fitted for Prograf data (days 1–8), 
versus blood TAC measurements used for model fitting (day 1) and blood TAC measurements during hospital 
re-admission (day 8) for Patient 5 (a) and Patient 10 (b). Time in h.

Figure 6. Blood TAC concentrations from the PBPK model fitted for Prograf data (days 1–8), versus blood 
TAC measurements used for model fitting (day 1) and blood TAC measurements during hospital re-admission 
(day 8) for Patient 5 (a) and Patient 10 (b). Time in h.
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re-adjustment of the parameters with relevant intraindividual variation. The mean interindividual differences are 
approximately zero, and intraindividual dispersions are smaller than interindividual dispersions.

The main conclusions from the evaluation of adaptive procedure 1 are the confirmation that the LibT
-associated mechanism governs the release rate of the TAC formulation and thus may be adjusted through adap-
tive techniques such as WLS. We also found non-negligible IPVs for Clih and Kabs. Additional plots and data in 
the First Supplementary Document show more details that support these conclusions.

Adaptive procedure 2. Table 6 shows the parametric adjustment of the PBPK model using adaptive procedure 
2. The accuracy of TAC predictions, given by RMSEc and ΔAUC24, were better for WLS than Bayesian adaptive 
technique.

The results agree with those of procedure 1. LibT , Clih and Kabs remain the primary parameters that need to be 
adapted due to the change in formulation release and IPV. Kabs shows a higher mean increase (2.3 1/h) than in 
procedure 1. However, adaptive procedure 1 included 2 sequential changes in LibT  (the first value acts on days 
2–7, while the second value acts on day 8), against the unique LibT  change in procedure 2 (acting during days 
2–8). This explains the IPV differences between procedures 1 and 2.

The main conclusions form the evaluation of procedure 2 when compared with procedure 1 for the PBPK 
model are the confirmation of the IPV of Clih and Kabs parameters and the demonstration that LibT  can support 
changes in the release rate of the TAC formulation. LibT  cannot be adjusted through the Bayesian adaptive 
method because it is not in the set of PBPK model population parameters, which explains its poorer predictive 
behaviour. Additional plots in the First Supplementary Document show more details about this poorer behaviour. 
Differences in model-based bioavailability between day 1 and day 8 are addressed in the Discussion section.

Table 7 shows the parametric adjustment of the PK model using adaptive procedure 2. The Cl and Ka means 
were reduced with respect to their previous values in the Prograf fitted model. The FDT  mean was slightly 
increased in agreement with the prolonged release of Advagraf, but dispersion was high. The mean transit time 
(MTT ) was virtually unchanged. The accuracy of the predictions (provided by RMSEc and ΔAUC24) were better 
for WLS than for the Bayesian adaptive method. This behaviour can be explained because FDT  is not a PK model 
population parameter. The difference in accuracy between the Bayesian and WLS methods is smaller than for the 
PBPK model, consistent with the lower influence of FDT than LibT on the model’s behaviour.

The intraindividual dispersion (SD) of the adjusted parameters for adaptive procedure 2 were lower than 
the interindividual dispersion obtained during Prograf fitting for the PK and PBPK models, which supports the 
robustness of the models and adaptive techniques.

C0-instant† Bayes WLS

ΔClih (1/h) −4.88 ± 563.8 143.2 ± 380.6 −169.0 ± 333.6

ΔBmax (ng/ml) 0.0 ± 0.0 0.3 ± 1.2 —

ΔKd (ng/ml) 0.0 ± 0.1 −0.2 ± 0.4 —

ΔKabs (1/h) — — 0.4 ± 2.7

ΔLibT (min) 2.9 ± 326.8 — 12.3 ± 343.7

ΔAUC24
‡ (ng/ml · h) — 0.0 ± 16.3 0.8 ± 6.7

RMSEc — 0.157 ± 0.070 0.088 ± 0.032

Table 5. Parameter increments due to the second adjustment of the PBPK model (adaptive procedure 1), 
with Bayesian and WLS techniques. ΔAUC24 (difference model − NCA AUC24), RMSEc (log-transformed 
blood concentration error model - measurement, mean ± SD). †Differences in C0-instant calculated as inter-
individual differences of parameters. ‡NCA value calculated with log-trapezoidal integration.

Prograf† Bayes WLS

ΔClih (1/h) −4.88 ± 563.8 637.1 ± 421.6 −38.3 ± 325.8

ΔBmax (ng/ml) 0.0 ± 0.0 0.2 ± 0.3 —

ΔKd (ng/ml) 0.0 ± 0.1 −0.2 ± 0.4 —

ΔKabs (1/h) — — 2.3 ± 3.5

ΔLibT (min) — — 277.2 ± 284.4

ΔF (%) 0.1 ± 12.1 10.0 ± 1.6 −1.8 ± 6.4

ΔAUC24 (ng/ml · h) — 4.5 ± 15.6 2.8 ± 8.6

RMSEc — 0.235 ± 0.095 0.109 ± 0.063

Table 6. Parameter increments for the PBPK model adjusted according to adaptive procedure 2. Final rows 
show the increment of bioavailability of day 8 with respect to day 1, F, as well as the accuracy indices ΔAUC24 
(difference model − NCA value) and RMSEc (log-transformed, mean ± SD). †Differences Δ in Prograf column 
are calculated as inter-individual differences of parameters.
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Discussion
This study has developed and investigated 2 new TAC population PK models with the aim of evaluating their 
capability as predictive engines for personalised dosage recommendations. One of the models followed a PBPK 
approach, while both models added circadian modulation of absorption and clearance variables, which, to the 
best of our knowledge, has not been presented in any published PK TAC model to date, despite TAC chronomod-
ulation having been widely cited7,22,23.

The study was divided into 2 phases. The first phase fitted the models against a paediatric population with 
twice daily Prograf administration (Prograf data). The second phase evaluated their ability to predict effects of 
changes in TAC formulation (Advagraf data) and intrapatient variation, through two adaptive techniques.

Based on the results from the first phase, the PK and PBPK models demonstrated robustness against param-
eter perturbations, as well as accuracy and suitability for describing blood TAC dynamics for paediatric renal 
transplant recipients administered Prograf every 12 h. The inclusion of circadian rhythms improved the models’ 
predictive capability, measured with 24-h blood TAC concentrations and administering Prograf twice daily.

Both the IIV and residual variability (see Table 3 in the First Supplementary Document) of the new PK model 
were similar to those of the Andreu et al. model16, despite the fact that the new PK model did not consider IOV. 
This outcome suggests that the circadian rhythms explain a significant portion of IPV associated with IOV in the 
Andreu et al. model. In addition, IIV and residual variabilities were based on a 24-h TAC measurement period in 
our study, in contrast to the 12 h of the Andreu et al. study. Considering the greater heterogeneity of our paediatric 
renal transplant recipients, these results suggest that the new PK model has greater predictive capability than the 
Andreu et al. PK model.

The parametric comparison between our PK model and the Andreu et al. PK model was addressed in the 
previous section, although the mean peripheral volume (Vp), requires additional discussion. The Vp was 39.1 l in 
our model compared with 526.03 l in the Andreu et al. model. The authors justify their value based on the exten-
sive TAC distribution in tissues, an assertion that appears to conflict with the published steady state distribution 
volumes of TAC, which are approximately 1300 l for plasma and 47.6 l for whole blood (for healthy individuals)48. 
The TAC concentrations in our model and in the Andreu et al. model refer to whole blood, in which a distribution 
volume of approximately 40–100 l appears more reasonable. A possible solution is that the Vp in the Andreu et al. 
study refers to the apparent value (V F/p ).

Other 2-compartment PK models of TAC give the following values of Vp (calculated with ≈F 10% in the case 
of apparent values): 152 l (paediatric)15, 63.6 l (adults)13, 47.7 l (adults)17. In the Benkali et al. study17 Vp was calcu-
lated as ⋅K K V/cp pc c, in which flow micro-constants K K,cp pc and central volume Vc were provided by the authors.

The PBPK model showed 95% CIs for the predicted percentiles for TAC concentrations much smaller than in 
the PK model, as well as AUC24 dispersions for normalised TAC doses 4-fold lower than in the PK model (Monte 
Carlo studies, see Tables 4 and 6 in the First Supplementary Document). These results demonstrate the better 
predictive behaviour of the PBPK model compared with the PK model for the first phase of the study, consistent 
with the mechanistic nature of PBPK models18.

The poorer agreement between the model and the observations for low doses (D/BSA < 0.9 mg/m2, Fig. 4) in 
PBPK needs clarifying. This behaviour was not observed in the PK model because it had much higher interpatient 
concentration variabilities than the PBPK model. No demographic differences were found in patients with low 
doses. Cho et al. determined the accuracy of the TAC measurements by performing a dimension TAC assay, 
which showed a total CV accuracy in the range of 7.3–5.7% for TAC concentrations of 4.09–18.5 ng/ml; a limit of 
blank of 0.29 ng/ml, a limit of detection of 0.47 ng/ml and a limit of quantification of 0.81 ng/ml, as well as a car-
ryover between samples of 0.41% and an average correlation coefficient with respect to the liquid 
chromatography-tandem mass spectrometry method of 0.816549. However, the correlation coefficient was 0.6347, 
with a bias of 0.277 (−1.205 to 1.759) ng/ml for kidney transplant recipient measures, which could have contrib-
uted to the poorer behaviour for low doses because of the lower TAC concentrations (associated with an increase 
in the total analytical assay CV). Trough blood TAC concentrations were 6.5 ± 1.3 ng/ml for the total population 
versus 5.74 ± 0.9 ng/ml for the low-concentration group, which agrees with that suggestion that lower TAC con-
centrations contributed to the poorer behavior for low doses. The small number of patients in the low-dose group 
(5) limits additional research in this study. However, whole blood TAC concentration PBPK predictions for 
low-dose patients ( = . ± .RMSE 0 085 0 033c ) maintain the same accuracy as for the total population 

Prograf† Bayes WLS

ΔCl (L/h) −0.02 ± 2.08 −1.33 ± 1.55 −1.93 ± 1.80

ΔKa (ml/h) 1.23 ± 13.93 −9.91 ± 8.10 −9.62 ± 8.41

ΔMTT (h) 0.00 ± 0.21 0.055 ± 0.126 −0.038 ± 0.215

ΔFDT (h) — — 0.34 ± 0.50

ΔF (%) 1.1 ± 15.0 2.2 ± 10.0 −3.6 ± 12.6

ΔAUC24 (ng/ml · h) — −6.51 ± 8.74 −3.76 ± 8.11

RMSEc — 0.096 ± 0.037 0.085 ± 0.036

Table 7. Parameter increments for the PK model adjusted according to adaptive procedure 2. Final rows show 
the increment of bioavailability between days 8 and 1, F, in addition to the accuracy indices ΔAUC24 (difference 
model − NCA value) and RMSEc (log-transformed, mean ± SD). †Differences Δ in Prograf column are 
calculated as inter-individual differences of parameters.
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( = . ± .RMSE 0 092 0 041c , see fitting PBPK model in the Results section), supporting the suitability of the PBPK 
model for the low-dose group.

This is the first pharmacokinetic model-based study that supports the relationship between daily TAC con-
centration patterns and the circadian modulation of clearance and absorption, which has been previously sug-
gested23. This knowledge is relevant, given the fact that circadian variations in TAC pharmacokinetics have 
important clinical implications7,22,23. To the best of our knowledge, this is also the first study to compare a reduced 
PBPK model with a PK model for the same clinical population (paediatric) subjected to TAC administration.

In the second phase of the study, both models required adjustment using adaptive techniques to accurately 
predict blood TAC concentrations during the hospital re-admission of patients on day 8, after the switch from the 
Prograf to Advagraf formulation on day 2.

The increase in LibT  in the PBPK model, using the WLS adaptive technique, corrected the deviation of the 
predicted trough TAC concentration (C0) at the beginning of day 8. The mean value of the adapted LibT  was 

+ =100 176 276 min, in which 100 min is the value estimated in the Prograf phase and 176 ± 225.4 min is the 
parameter adjustment (stage 1 of procedure 1). An estimated value of LibT  can also be obtained according to the 
liberation mechanism implemented in the model, considering that 40% of the Advagraf mass is released approx-
imately 1.5 h later in simulated gastric fluid50, using Eq. 7 in the First Supplementary Document, which states:

= =
.

. ⋅
= . ⋅ − −

LibT
K
D

1 0 4
1 5 60

4 4 10 min (10)
lib 3 1

Therefore, = . ⋅ =−LibT 1/4 4 10 2253  min, which is near the mean of 276 (176 + 100) min obtained by the adap-
tive technique with TAC measurements from day 8. This result supports the strong relationship between the drug 
liberation time (LibT ) and the drug formulation release and demonstrates the capability of the WLS adaptive 
technique and PBPK model to predict blood TAC concentrations after changes in the drug formulation release rate.

The requirement of a new parametric adjustment in the PBPK model to accurately predict blood TAC concen-
trations during day 8 demonstrates the existence of a significant IPV in Clih and Kabs over a week of progression, 
as well as circadian rhythms. This outcome is important for 2 reasons. First, our clinical study was designed to 
achieve high pharmacological adherence and control food intake, DDI, diarrhoea and the TAC formulation. The 
selected analytical assay, based on the affinity chrome-mediated immunoassay, fulfils the recommendations of the 
International Association of Therapeutic Drug Monitoring and Clinical Toxicology (total accuracy CV < 9%), 
with good scores for the detection limits, linearity and carryover49. This finding confirms that the control of these 
conditions is not enough to avoid TAC IPV in stable kidney transplant recipients51. Second, this is the first study 
to calculate TAC IPV by means of parametric intrapatient changes, instead of the standard scaled TAC concentra-
tions (C0/D)7,8, which provides a method for analysing the mechanisms are involved.

Although the PK model cannot be adapted using the parameter FDT  to correct C0 TAC due to the low corre-
lation of FDT  with the drug release rate, both the PK and PBPK models could be adjusted to correct the predic-
tions of TAC concentrations on day 8, using the strategy of adaptive procedure 2. Adjustments to the PBPK model 
with procedure 2 agree with those of procedure 1, supporting the reliability of procedure 2 as an adaptive tech-
nique to adjust PK models. These results support the suitability of population PK and PBPK models as predictive 
engines for personalised dosage recommendations.

Table 8 presents measured and calculated exposures AUC24 for Prograf (day 1) and Advagraf (day 8, 1 week 
after 1:1 conversion). Associated F bioavailability can be calculated from ⋅ = ⋅F D Cl AUC for constant Cl52. 
Although this is not the case due to IPV in Cl, Eq. (2) in our model solved this issue. Tables 6 and 7 show the 
changes in F values after TAC formulation conversion. Despite a mean reduction in AUC24 of approximately 20 
ng/ml · h after 1:1 conversion, in agreement with previous studies37,53, F  bioavailability calculated with 
WLS-adapted PK and PBPK models experienced a small mean variation with large dispersion. This result demon-
strates that F bioavailability is not correlated with AUC24 in 1:1 Prograf to Advagraf conversion due to the IPV of 
TAC clearance. An additional plot that shows F t( ) in the PBPK model as a function of LibT  can be found in 
the First Supplementary Document.

To summarise, after highlighting the need to further the development of real-time MIPD for TAC that lowers 
the risk of graft failure in kidney transplantation, this study presented a comparison in the predictive performance 
of 2 new TAC PK models, with 3 major conclusions. First, TAC absorption and metabolic clearance circadian 
rhythms appear to be the major cause of daily TAC IPV and can be modelled with a population approach to 
improve the accuracy of prediction, mainly with PBPK. Second, TAC PK models may be used as adaptive predic-
tive engines for MIPD, under various TAC formulations. The PBPK approach has demonstrated better adaptive 
capability than single PK. Third, parametric changes due to TAC IPV can be calculated during the adaptive pro-
cess, which provides information on the mechanisms involved. A preliminary real-time MIPD software design 
for clinical practice based on PK models has been published54 and provides guidelines for subsequent research.

NCA† PK‡ PBPK‡

AUC24 day 1 201.48 ± 39.27 200.3 ± 40.7 198.3 ± 41.3

AUC24 day 8 177.1 ± 42.3 177.4 ± 48.0 179.9 ± 42.3

Table 8. TAC AUC24 (ng/ml · h) values (mean ± SD) at days 1 (Prograf) and 8 (Advagraf) calculated through 
measurements and models. †Log-trapezoidal integration with blood measurements. ‡WLS - adapted models 
(procedure 2).
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The conclusions of this study are limited to the controlled and stable renal transplant paediatric population. 
Mathematical models are limited to the functional scope defined in the Model Development section. The interoc-
casion variability was not implemented in our models as justified in the Methods Section, despite this term is 
commonly included in population PK models and it can affect the TDM accuracy. However, our outcomes sug-
gest that circadian rhythms explain a significant portion of IPV associated with IOV. In addition, the exclusion 
of IOV term may be a preferred approach to maximize precision in the calculation of individual doses using 
model-based Bayesian forecasting, according to the recent study by Abrantes et al.55. Moreover, adaptive math-
ematical models have demonstrated their ability to predict customized biochemical levels, such as glycemia, 
without the inclusion of IOV25. We did not consider DDIs at the present time. Further research is needed to add 
unstable patients and extend models to consider DDIs. Current knowledge on physiological and pharmacokinetic 
modelling suggests that these extensions are feasible.

Data availability
All data generated or analysed during this study are included in this published article (and its Supplementary 
Information files).
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