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A theoretical study of the rotational dynamics of a linear polar molecule in a two-color non-resonant
cw laser field is presented. By systematically considering the interactions of this field with the
electric dipole moment, polarizability and hyperpolarizability of the molecule, the effect of the
symmetries of the Hamiltonian on the orientation and alignment is explored in a regime where the
time-average approximation does not hold. It is shown that the alignment and orientation satisfy
certain symmetries as a function of the phases and field strengths. On average a one-color cw laser
field doest not orient the molecule, being necessary a two-color one having odd and even products of
the laser frequency to break the head-versus-tail order confinement.

I. INTRODUCTION

Biharmonic signals are widely used in many areas of
physics in order to break the time-shift symmetry of the
external forces and of the electromagnetic fields [1–6].
This symmetry breaking induces a plethora of unexpected
phenomena, as for example, the dissipation-induced net
motion, the current reversals by increasing the amplitudes,
and resonances as a function of the frequency and of the
damping coefficient [7, 8]. These phenomena have been
observed in seemingly unrelated systems, such as semicon-
ductors [9], Josephson junctions [10], optical lattices [11],
ferrofluids [12], Brownian particles [2], Bose-Einstein con-
densates [13], or solitons in non-linear systems [14–16].
Recent studies show that, regardless of the system, the
symmetries of the biharmonic force determine the depen-
dence of the measurements of the amplitudes and phases
of this biharmonic force [17–19].
The spherical symmetry of a thermal sample of

molecules is broken by inducing orientation and align-
ment [20–23] with experimental techniques such as brute
force orientation [24–26], combined electrostatic and non-
resonant laser fields [27–33], THz pulses [34–39], or the
phase-locked two-color laser field [40–44]. An aligned
molecule is characterized by the confinement of the molec-
ular fixed axes along the laboratory fixed frame, and
keeping the head-versus-tail symmetry. For an oriented
molecule, this symmetry is broken and the dipole moment
is pointing towards one hemisphere rather than the oppo-
site. In the spirit of biharmonic signals, continuous-wave
non-resonant laser fields could be employed to create di-
rectional states of polar molecules, rather than the laser
pulses used in experiments, whose time-envelope is often
given by a gaussian function.

Here, a linear polar molecule in a two-color continuous-
wave non-resonant laser field is considered. Within the
Born-Oppenheimer and the rigid-rotor approximations,
the field-dressed rotational dynamics is analyzed. The
laser frequency is chosen so that the time-average ap-
proximation [45] is not correct, but still assuming that

no electronic, vibrational or rotational transitions are
driven by this field. By systematically including in the
Hamiltonian the interactions of the field with the electric
dipole moment, polarizability and hyperpolarizability, the
effect of the symmetries of the system on the orientation
and alignment is analyzed. Due to these symmetries, it is
shown that it is not possible to orient on average the polar
molecule with a one-color cw laser field being necessary
to employ a two-color one, whose summed frequencies
should be an odd multiple of the main laser frequency.
In addition, the alignment and orientation satisfy certain
symmetries with respect to the relative phase of the two
electric field components, and can be expressed as series
expansions for a fixed propagation time.

The paper is organized as follow. In Sec. II, the Hamil-
tonian of the system and its symmetries are described,
and how they affect to the expectation values that charac-
terize the field-dressed rotational dynamics. The results
are analyzed and discussed in Sec. III. In Sec. IIIA the
validity of the time-average approximation is investigated
by including only the interaction between the two-color
electric field and the molecular dipole moment, and if
higher order terms in the interactions are taken into ac-
count. The results for the orientation and alignment are
analyzed in Sec. III B and Sec. III C, respectively, by sys-
tematically including in the description the interactions
of the electric field with the electric dipole moment, po-
larizability, and hyperpolarizability of the molecule. The
conclusions are given in Sec. IV.

II. THE SYSTEM AND THE HAMILTONIAN

A linear polar molecule exposed to a phase-controlled
continuous-wave (cw) two-color laser field linearly po-
larized along the laboratory fixed frame (LFF) Z-axis is
considered. The corresponding electric field E(t) = E(t)Z
is given by the biharmonic function

E(t) =
∑
i=1,2

εi cos [qiω(t+ t0) + δi] , (1)
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with qiω, εi and δi being the laser frequency, electric field
strength and phase of the i-th harmonic, respectively, with
qi being positive integers and i = 1, 2. t0 represents the
time shift of the laser with respect to the initial time, i. e.,
when the molecule starts to interact with the two-color
laser field, which was previously turned on, and, therefore
t0 might not be zero.
The molecule is described by the Born-Oppenheimer

approximation, and the rotational motion is investigated
using the rigid rotor approach. Within this framework,
the Hamiltonian is given by [46, 47]

H = H0 +Hµ +Hα +Hβ , (2)

where the first term stands for the field-free Hamiltonian

H0 = BJ2, (3)

with B being the rotational constant of the molecule, and
J the rotational angular momentum operator. The second,
third and fourth terms represent the interaction of the
electric field with the electric dipole moment, polarizabil-
ity, and hyperpolarizability of the molecule, respectively,

Hµ = −µ cos θ E(t), (4)

Hα = −1
2
(
∆α cos2 θ + α⊥

)
E2(t), (5)

Hβ = −1
6
(
∆β cos3 θ + 3β⊥ cos θ

)
E3(t). (6)

In these expressions, θ is the Euler angle between the
internuclear molecular axis and the LFF Z-axis, µ the
permanent electric dipole moment, ∆α = α‖ − α⊥ the
polarizability anisotropy, with α⊥ and α‖ being its per-
pendicular and parallel components, and ∆β = β‖ − 3β⊥
hyperpolarizability anisotropy, with β⊥ and β‖ being the
perpendicular and parallel components, respectively. The
aim is to explore the dependence of the field-dressed rota-
tional dynamics on the parameters of the two-color laser
field, including its frequency. To do so, the laser frequency
is reduced and considered within the regime where the
time-average approximation is not correct [45], but still
assuming that the laser electric field is non-resonant, i. e.,
it cannot drive any electronic, vibrational or rotational
transition.
The Hamiltonian (2) is invariant under arbitrary ro-

tations around the LFF Z-axis CZ(ε), and reflections
on the LFF XZ-plane, σXZ. These symmetries imply
that the eigenstates associated to Hamiltonian (2) with
a constant electric field are degenerate in |M |, with M
being the projection of the rotational angular momentum
along the LFF Z-axis. The time-dependent Schrödinger
equation associated to the Hamiltonian (2) is solved by
combining the short iterative Lanczos method [48] for
the time variable, and a basis set expansion in terms of
the field-free basis, formed by the spherical harmonics
YJ,M (Ω) with Ω = (θ, φ) being the Euler angles, including
the symmetries of the Hamiltonian, i. e., fixed M . The
time-dependent Schrödinger equation is solved assuming

that at t = 0 the molecule is in a field-free eigenstate, i. e.,
ψ(Ω, t = 0) = YJ,M (Ω).
In this work, the field-dressed rotational dynamics is

analyzed in terms of the expectation values

〈cosk θ〉 =
∫
ψ∗(Ω, t) cosk θψ(Ω, t)dΩ, (7)

with ψ(Ω, t) being the time-dependent wave function, and
positive k. For the orientation and alignment, k = 1
and k = 2, respectively. The wave function ψ(Ω, t) and
the expectation values depend on the laser field parame-
ters (1), and, therefore, they are invariant under the same
symmetry transformations as the Hamiltonian (2).
The two-color electric field (1) is invariant under the

following transformation

T : (q1, q2, ω)→
(
κq1, κq2,

ω

κ

)
with κ ∈ Z+, (8)

and, therefore, the Hamiltonian (2) is also invariant under
this transformation. As a consequence, the orientation
and alignment are also invariant under T . Thus, the
symmetry analysis can be restricted to q1 and q2 satisfying
gcd(q1, q2) = 1. The symmetries in the phases δ1 and δ2
and amplitudes ε1 and ε2 of the two-color electric field (1),
imply that

〈cosk θ〉(t, t0, ε1, ε2, ω, δ1, δ2) = (9)
〈cosk θ〉(t, t0, (−1)n1ε1, (−1)n2ε2, ω, δ1 + n1π, δ2 + n2π),

with n1 and n2 being integers, and k ∈ Z+. Note
that this expression shows explicitly its dependence on
t, t0, ε1, ε2, ω, δ1, and δ2 of this expectation value. The
inversion of the electric field direction gives rise to the
following invariance

〈cosk θ〉(t, t0, ε1, ε2, ω, δ1, δ2) = (10)
(−1)k〈cosk θ〉(t, t0,−ε1,−ε2, ω, δ1, δ2),

with k ∈ Z+. The Hamiltonian (2) is invariant under
a temporal shift of t0 by changing correspondingly the
phases δ1 and δ2, and this expectation value satisfies

〈cosk θ〉(t, t0, ε1, ε2, ω, δ1, δ2) = (11)
〈cosk θ〉(t, t0 + τ, ε1, ε2, ω, δ1 − q1ωτ, δ2 − q2ωτ) ∀τ,

k ∈ Z+. In contrast to the rest of the laser field pa-
rameters, the value of t0 cannot be easily controlled in
an experiment. Therefore, these expectation values are
averaged over t0 [19] as

〈〈cosk θ〉〉 = ω

2π

∫ 2π
ω

0
dt0〈cosk θ〉 with k ∈ Z+, (12)

where the integral is restricted to an electric field period
due to the t0 periodicity of the electric field (1).

For a one-color electric field, i. e., ε1 = 0 or ε2 = 0, the
Hamiltonian (2) fulfills the symmetry in t0 H (θ, t0) =
H
(
π − θ, t0 + π

qiω

)
, with εi 6= 0 and i = 1 or 2, and the
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expectation values satisfy

〈cosk θ〉
(
t0 + π

qiω

)
= (−1)k〈cosk θ〉(t0), (13)

and, therefore

〈〈cosk θ〉〉 =
[
1 + (−1)k

] qiω
2π

∫ π
qiω

0
dt0〈cosk θ〉, (14)

where the dependence on the field parameters is omitted.
For k = 1, relation (14) indicates that on average the
molecule is not oriented by a one-color laser field, regard-
less of its frequency, even if all three interactions are taken
into account. Note that for a fixed t0, the molecule is
oriented, whereas for t0 + π

qiω
, it gets the same orientation

but in the opposite direction as shown in (13). As a con-
sequence, the t0-averaged orientation becomes zero. For
k = 2, equation (14) implies the interval of integration
in (12) can be reduced to t0 to 0 ≤ t0 ≤ π

qiω
.

From the symmetries in Eq. (9), the t0-averaged expec-
tation value satisfies

〈〈cosk θ〉〉(t, ε1, ε2, ω, δ1, δ2) = (15)
〈〈cosk θ〉〉(t, (−1)n1ε1, (−1)n2ε2, ω, δ1 + n1π, δ2 + n2π),

with n1 and n2 being integers. The symmetry due to the
inversion of the electric field direction (10) reads as

〈〈cosk θ〉〉(t, ε1, ε2, ω, δ1, δ2) = (16)
(−1)k〈〈cosk θ〉〉(t,− ε1 ,−ε2, ω, δ1, δ2).

The invariance on t0 (11) gives rise to the following phase-
shift symmetry

〈〈cosk θ〉〉(t, ε1, ε2, ω, δ1, δ2) = (17)
〈〈cosk θ〉〉(t, ε1, ε2 , ω, δ1 + q1∆, δ2 + q2∆)

with ∆ being an arbitrary phase-shift.
The symmetries (15), (16) and (17) imply additional

identities for the t0-averaged expectation values. For q1
and q2 odd integers, it yields

〈〈cosk θ〉〉(t, ε1, ε2, ω, δ1, δ2) = 0, (18)

with k being an odd integer, which indicates the lack of
orientation for k = 1, and

〈〈cosk θ〉〉(t, ε1, ε2, ω, δ1, δ2) = (19)

〈〈cosk θ〉〉
(
t, ε1, ε2, ω, δ1 + n1

π

2 , δ2 +(2− (−1)
q2−q1

2 )n1
π

2

)
,

with n1 being an integer, and k an even integer. Thus,
in this case the molecule is aligned but not oriented.
Whereas for q1 odd and q2 even, it holds

〈〈cosk θ〉〉(t, ε1, ε2, ω, δ1, δ2) = (20)

(−1)k(
n1q2

2 +n2q1)〈〈cosk θ〉〉(t, ε1, ε2 , ω, δ1 + n1
π

2 , δ2 + n2π)

with n1 and n2 being integers, and, k ∈ Z+. Hence, in

the latter case the molecule is both oriented and aligned.
Due to the symmetries of the Hamiltonian, the t0-

averaged expectation values of the orientation and align-
ment can be expressed as a series expansion in terms of the
amplitude and phase, i. e., εj and δj , of the j-harmonics
due to the two-color electric field (1) for fixed time t [19].
The corresponding expansions (A6), (A7), (A8), and (A9)
are derived in the Appendix.

III. RESULTS

The carbonyl sulfide molecule OCS serve as prototype
for this study. For OCS [49], the rotational constant is
B = 0.20286 cm−1, the rotational period Trot = 82.2 ps,
the permanent electric dipole µ = 0.71 D, polarizabil-
ity anisotropy and perpendicular term ∆α = 27.26 a.u.,
and α⊥ = 26.08 a.u., respectively, hyperpolarizability
anisotropy and perpendicular term ∆β = 132.3 a.u., and
β⊥ = −59.1 a.u., respectively. For t = 0, the OCS
is assumed to be in its rotational ground state, i. e.,
ψ(Ω, t = 0) = Y0,0(Ω). Although this work is restricted to
the field-dressed rotational dynamics of the ground state,
similar results are obtained for excited rotational states.
Since the t0-averaged expectation values satisfy the

phase-shift symmetry (17), the phase of the first harmonic
is fixed to zero, δ1 = 0. The electric field strengths are
taken as ε1 = (1 − γ)E0 and ε2 = γE0 with 0 ≤ γ ≤ 1.
The field strength is related to the laser field intensity
as E0 =

√
2I
cε0

, with c being the speed of the light and
ε0 the vacuum electric permittivity. The laser intensity
is fixed to I = 5 · 1011 W/cm2, with the electric field
strength being E0 ≈ 1.94 · 107 V/cm. Note that this
strong laser intensity is routinely used in non-resonant
ac laser pulses, whereas is larger than the experimentally
available intensities of cw lasers [50]. However, such a
large laser intensity provokes a moderate orientation and
a strong alignment of the molecule, and these effects
can be analyzed in terms of the field symmetries. The
electric field frequencies are fixed to q1 = 1 and q2 = 2,
which provoke both the orientation and alignment of the
molecule.

A. Validity of the time-average approximation

Despite of not considering a laser pulse, this section
is devoted to investigate the validity of the time-average
approximation [45]. For a non-resonant two-color laser
field, if the field frequencies, ω and 2ω, are far from
any molecular resonance and higher than the molecular
rotational frequency, the Hamiltonian (2) is averaged over
the rapid oscillations of the non-resonant laser field. Note
that for a laser pulse, it is further assumed that the laser
period is much shorter than the pulse duration. If the
time-average approximation would be correct, then the
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FIG. 1. For the Hamiltonian H = H0 +Hµ, orientation versus
time and t0 for a two-color laser field with periods (a) T = 10 fs
and (b) T = 400 fs. The field parameters are fixed to γ = 0.5,
δ1 = 0, and δ2 = π/2.

Hamiltonian (2) would be reduced to

H = BJ2 − 1
2
(
∆α cos2 θ + α⊥

)
f1(ε1, ε2, q1, q2, δ1, δ2)

− 1
6
(
∆β cos3 θ + 3β⊥ cos θ

)
f2(ε1, ε2, q1, q2, δ1, δ2) (21)

with

f1(ε1, ε2, q1, q2, δ1, δ2) = ε21 + ε22
2 + ε1ε2 cos(δ1 − δ2)δq1,q2

f2(ε1, ε2, q1, q2, δ1, δ2) = 3
4ε

2
1ε2δ2q1,q2 cos(2δ1 − δ2)

+ 3
4ε1ε

2
2δq1,2q2 cos(δ1 − 2δ2).

For a two-color electric field with q1 = 1 and q2 = 2, the
time-averaged Hamiltonian (21) reads

H = BJ2 − 1
4
(
∆α cos2 θ + α⊥

)
(ε21 + ε22)

− 1
8
(
∆β cos3 θ + 3β⊥ cos θ

)
ε21ε2 cos(2δ1 − δ2). (22)

Thus, depending on the values of the phases δ1 and δ2,
this time-averaged Hamiltonian might align the molecule,
or both orient and align it.
For a one-color laser field, the Hamiltonian (22) indi-

cates that if the time-average approximation is correct the
molecule should not be oriented. Regardless of the valid-
ity of the time-average approximation, the equality (14)
shows that the t0-averaged orientation is zero if only one-
color laser field is included in the full Hamiltonian (2).
However, by fixing t0 and considering only the interaction
with the electric dipole moment, the absolute value of the
orientation becomes larger than 10−2 for periods larger
or equal than 10 fs and |〈〈cos θ〉〉| ≈ 10−8; whereas for
T = 1 fs, |〈cos θ〉| ≈ 10−3 and 〈〈cos θ〉〉 ≈ 10−9. In the
regime T & 10 fs the time-average approximation starts
to fail. The t0-averaged alignment is non-zero, see Eq.

−0.1

0.0

0.1

0.2

0.3

〈〈
co

s
θ〉
〉

(a)

T = 10 fs

T = 100 fs

T = 200 fs

T = 400 fs

0 100 200 300 400 500
t (ps)

0.3

0.4

0.5

0.6

〈〈
co

s2
θ〉
〉

(b)

T = 10 fs T = 100 fs T = 200 fs T = 400 fs

0 50 100
−10−2
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FIG. 2. For the Hamiltonian H = H0 + Hµ, (a) orientation
and (b) alignment averaged over t0 as a function of time for
the electric field periods T = 10 fs (blue dashed line), 100 fs
(orange solid line), 200 fs (red dotted line) and 400 fs (green
dot-dashed line). The electric field parameters are fixed to
γ = 0.5, δ1 = 0, and δ2 = π/2.

(14), and the maximal deviation from its field-free value,
〈〈cos2 θ〉〉 = 1/3, is of the order of 10−4. Whereas for a
fixed t0, the alignment deviation from its field-free value
reaches up to 10−3 for a laser period of 10 fs. If the in-
teractions of the electric field with the polarizability and
hyperpolarizability are also included, the absolute value
of the orientation is also greater than 10−2 for T & 10 fs
and a fixed t0. The alignment for a fixed t0 and the
t0-averaged alignment reach values up to 0.85 for a laser
period of 10 fs.

For a two-color laser field, the simplest system including
only the interaction of the field with the electric dipole
moment, i. e., H = H0 +Hµ is first analyzed. Figs. 1 (a)
and (b) show the orientation as a function of t0 and time
for laser field periods 10 fs and 400 fs, respectively, and the
field parameters γ = 0.5 and δ2 = π/2. The orientation is
non-zero even for the 10 fs laser period, and depends on
t0. These two features contradict the validity of the time-
average approximation. Fig. 2 presents the t0-averaged
orientation and t0-averaged alignment as a function of
the time for the electric field periods T = 10, 100, 200
and 400 fs, and γ = 0.5 and δ2 = π/2. For T = 10 fs,
the t0-averaged orientation is of the order of 10−6. Note
that |〈cos θ〉| is four orders of magnitude larger, but due
to the dependence of 〈cos θ〉 on t0, see Fig. 1 (a), the
t0-averaged 〈〈cos θ〉〉 becomes very small. The maximal
deviation of the t0-averaged alignment from its field-free
value is 1.8 × 10−4. Thus, for T = 2π

ω = 10 fs, on
average the molecule is not oriented nor aligned. As a
consequence, one can mistakenly conclude that the time-
average approximation can be applied, however, for a fixed
t0, it is not correct as shown by the results in Fig. 1 (a).
For T = 100 fs, the deviations of 〈〈cos θ〉〉 and 〈〈cos2 θ〉〉
from the corresponding field-free values are still small
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FIG. 3. For the full Hamiltonian H = H0 +Hµ +Hα +Hβ ,
orientation versus time and t0 for a two-color laser field with
periods (a) T = 10 fs and (b) T = 400 fs. The field parameters
are fixed to γ = 0.5, δ1 = 0, and δ2 = π/2.

but not negligible. By increasing the laser field period
T , i. e., reducing the laser frequency ω, the t0-averaged
orientation and t0-averaged alignment increase, see for
instance 〈〈cos θ〉〉 and 〈〈cos2 θ〉〉 for T = 200 and 400 fs.

For the three interactions, i. e., H = H0+Hµ+Hα+Hβ ,
Figs. 3 (a) and (b) show the orientation as a function of t0
and time for the laser field periods T = 10 fs and 400 fs,
respectively, and the electric field parameters γ = 0.5 and
δ2 = π/2. As in the previous case, 〈cos θ〉 is non-zero and
depends on t0, which indicates that even for a T = 10 fs
laser, the time-average approximation is not correct. Fig. 4
shows the t0-averaged orientation and t0-averaged align-
ment as a function of the time for the electric field periods
T = 10, 100, 200 and 400 fs. Due to the dependence on t0
of 〈cos θ〉, the t0-averaged orientation is rather small even
for the laser frequency 400 fs. This cancellation effect
does not take place when 〈〈cos2 θ〉〉 is computed because
〈cos2 θ〉 > 0. As a consequence, the t0-averaged alignment
is very large for all considered laser field periods.

B. Orientation induced by the two-color laser field

In this section, the rotational dynamics is explored, by
first focusing on the orientation in a two-color laser field
with period T = 2π

ω = 400 fs and δ1 = 0. Note that
this electric field period is two orders of magnitude larger
than the period of the non-resonant lasers used typically
in experiment such as YAG-Laser and Ti-Shaphire [51].
However, such a large electric field period ensures a certain
degree of the t0-averaged orientation of the molecule, and
allows us to analyze the field-dressed dynamics in terms
of the field symmetries. This is done by systematically
including in the description the interactions of electric
field with the electric dipole moment, polarizability, and
hyperpolarizability of the molecule.

By considering only the interaction of the electric field
with its permanent electric dipole moment, i. e., H = H0 +

−6×10−2
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0 50 100
−10−3

−10−6
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FIG. 4. For the three interactions, (a) orientation and (b)
alignment averaged over t0 versus time for the electric field
periods T = 2π/ω = 10 fs (blue dashed line), 100 fs (orange
solid line), 200 fs (red dotted line) and 400 fs (green dot-
dashed line). The two-color electric field parameters are fixed
to γ = 0.5, δ1 = 0 and δ2 = π/2.

Hµ, the contour plots Fig. 5 (a), (b) and (c) present the
t0-averaged orientation as a function of the propagation
time t and the phase of the second-harmonic δ2 for the
strength parameters γ = 0.25, 0.5 and 0.75, respectively.
For a fixed time, 〈〈cos θ〉〉 satisfies the symmetry (20) for
k = 1, n1 = 0, and n2 = 1, and approximately fulfills the
relation 〈〈cos θ〉〉(t, δ2) ≈ 〈〈cos θ〉〉(t, π−δ2). Regardless of
the values of γ and t, 〈〈cos θ〉〉 shows the same dependence
on δ2, reaching its maximal orientation in absolute value
for δ2 ≈ π/2 and δ2 ≈ 3π/2, and the minimal one for
δ2 ≈ 0 and δ2 ≈ π. For a certain γ and δ2, 〈〈cos θ〉〉
oscillates as a function of time, and the field-dressed wave
function has contributions of only few field-free states.
Note that for δ2 ≈ 0, π, the amplitude of these oscillations
is very small.
By adding the interaction of the electric field with

the molecular polarizability, i. e., H = H0 + Hµ +
Hα, the field-dressed dynamics becomes more complex.
The corresponding t0-averaged orientation is presented
in Fig. 5 (d), (e) and (f) for γ = 0.25, 0.5 and 0.75, respec-
tively. In this case, 〈〈cos θ〉〉 also satisfies the symmetry
relation (20) for k = 1, n1 = 0, and n2 = 1. In addition,
the dependence of 〈〈cos θ〉〉 on the second-harmonic phase
for fixed time t strongly depends on the parameter γ, i. e.,
on the relative weight of the electric field components.
For γ = 0.25, the t0-averaged orientation is composed of
slow oscillations with superimposed fast modulations of
the amplitude, and it is lower than 0.12. In contrast, an
orientation up to 0.24 is achieved for γ = 0.5 and γ = 0.75,
and 〈〈cos θ〉〉 slowly oscillates with time, whereas the am-
plitude also show small oscillations.

The t0-averaged orientation when the three interactions
are considered, i. e., H = H0 +Hµ+Hα+Hβ , is presented
in Fig. 5 (g), (h) and (i) for γ = 0.25, 0.5 and 0.75,
respectively. The rotational dynamics in this case shows
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FIG. 5. Orientation averaged over t0 as a function of the time and the second-harmonic phase for the parameters (a), (d) and
(g) γ = 0.25, (b), (e), and (h) γ = 0.5 and (c), (f) and (i) γ = 0.75. The interaction Hamiltonian includes Hµ in panels (a), (b)
and (c); Hµ +Hα in panels (d), (e) and (f); and Hµ +Hα +Hβ in panels (g), (h) and (i).

a qualitatively similar behavior as when Hβ is neglected,
compare panels (d)-(g), (e)-(h) and (f)-(i) of Fig. 5. The
absolute value of the orientation is slightly larger in this
case, and for a fixed δ2, the oscillations as a function of t
show smaller periods.
For a fixed configuration of the two-color laser field

and a certain propagation time t, the analytic expres-
sion (A8) of 〈〈cos θ〉〉, and its dependence on the phase of
the second harmonics δ2 is illustrated in Fig. 6. Panels
(a) and (b) in Fig. 6 show the t0-averaged orientation
as a function δ2 for propagation times t = 200 ps and
t = 600 ps, respectively, and the two components of
the electric field having the same weight, i. e., γ = 0.5.
These curves have been numerically fitted to the expan-
sion (A8) using the δ2-independent constants Cj(t, ε1, ε2)
and ϕj(t, ε1, ε2) as fitting parameters with j being an odd
integer. Figs. 6 (c) and (d) show these fitted coefficients
Cj(t, ε1, ε2) at t = 200 ps and t = 600 ps, respectively,
the fitted phases are shown in Figs. 6 (e) and (f). If
only the interaction with the electric dipole moment is
included, the first coefficient j = 1 is sufficient to repro-
duce the dependence of 〈〈cos θ〉〉 in δ2 with a fairly good
accuracy, and the phase of this j = 1 coefficient is close to
π/2, in agreement with the observed sine-like behaviour,
i. e., 〈〈cos θ〉〉(t, δ2) ≈ 〈〈cos θ〉〉(t, π − δ2). Note that the
next term in the expansion (A8) with j = 3 is smaller
than 5× 10−5 for these two propagation times. The de-
viation of the phases ϕ1(t, ε1, ε2) and ϕ3(t, ε1, ε2) from
being exactly π/2 prevents the t0-averaged orientation
from being exactly zero at δ2 = 0 and π. By adding the
interaction with the molecular polarizability, higher order
terms becomes more important in Eq. (A8). Indeed,
the j ≥ 7 (j ≥ 11) coefficients are smaller than 10−4 for
t = 200 ps (t = 600 ps). Finally, if the three interactions
are considered, i. e., H = H0 + Hµ + Hα + Hβ , the de-
pendence of 〈〈cos θ〉〉 in δ2 gets more complicated, and
the contribution of higher order terms increases gaining
importance on the expansion (A8). In these two cases,

the fitted phases take values very close to π or 2π, see
Figs. 6 (e) and (f), and the deviation from these values
prevents 〈〈cos θ〉〉 from being zero at δ2 = π/2 and 3π/2.

This analysis is completed by investigating the depen-
dence of the t0-averaged orientation on the relative weight
of the two electric field components γ in Fig. 7. When
only the interaction with the electric dipole moment is
taken into account, the results for δ2 = 0, π/2, and 3π/4
are presented in Fig. 7 (a), (b) and (c), respectively. As
discussed in Sec. III A, the t0-averaged orientation is zero
for γ = 0 and γ = 1 because the electric field (1) becomes
one-color. For fixed γ and δ2, 〈〈cos θ〉〉 shows fast oscilla-
tion versus t. The dependence of 〈〈cos θ〉〉 on γ changes as
the propagation time t increases. The orientation tends
to reach larger values for 0.25 . γ . 0.75. The maximal
orientation is 0.16, which is achieved for δ2 = π/2. The
orientation for δ2 = 0 is non zero but lower than 10−3.

For H = H0 +Hµ +Hα, Figs. 7 (d), (e) and (f) present
〈〈cos θ〉〉 for δ2 = 0, π/2 and 3π/4, respectively. Com-
pared to the previous case, the dependence of 〈〈cos θ〉〉
on γ and t is significantly changed. As a function of
t, 〈〈cos θ〉〉 shows slow oscillations, whose amplitude is
modulated. A significant orientation of the molecule is
attained for several values of γ. The maximal absolute
value of the orientation is reached for δ2 = 0, π (not
shown here), and 3π/4, whereas the minimal one occurs
for δ2 = π/2. Indeed, for δ2 = π/2, |〈〈cos θ〉〉| is smaller
than 0.08, and it reaches close to 0.3 for δ2 = 3π/4 and 0,
respectively. By adding the interaction with the hyperpo-
larizability, i. e., H = H0 +Hµ+Hα+Hβ , the t0-averaged
orientation is not significantly modified, see Fig. 7 (g), (h)
and (i). In particular, 〈〈cos θ〉〉 shows a qualitatively
similar dependence on t and γ as in the previous case.
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FIG. 6. For a two-color electric field with γ = 0.5, t0-averaged orientation as a function of the second-harmonic phase at
fixed propagation times (a) t = 200 ps and (b) t = 600 ps. (c) and (d) fitted coefficients Cj(t, ε1, ε2), and (e) and (f) fitted
phases ϕj(t, ε1, ε2) from the analytic expression (A8) of 〈〈cos θ〉〉 for t = 200 ps and t = 600 ps, respectively. The interaction
Hamiltonian includes Hµ (red dot-dashed line), Hµ +Hα (orange solid line), and Hµ +Hα +Hβ (blue dashed line).

FIG. 7. The t0-averaged orientation as a function of the propagation time and of the relative weight of the two electric field
components γ for the phase of the second-harmonic (a), (d), and (g) δ2 = 0; (b), (e) and (h) δ2 = π/2; and (c), (f) and (i)
δ2 = 3π/4. The interaction Hamiltonian includes Hµ in panels (a), (b) and (c); Hµ + Hα in panels (d), (e) and (f); and
Hµ +Hα +Hβ in panels (g), (h) and (i).

lo
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FIG. 8. The t0-averaged alignment a function of the propaga-
tion time and the second-harmonic phase δ2 for the relative
weight of the electric field components γ = 0.5. The inter-
action Hamiltonian includes (a) Hµ, (b) Hµ + Hα, and (c)
Hµ +Hα +Hβ .

C. Alignment induced by the two-color laser field

This section presents the t0-averaged alignment of the
molecule in a two-color laser field with period T = 400 fs.
The panels (a), (b) and (c) of Fig. 8 present 〈〈cos2 θ〉〉 ver-
sus δ2 and t when the two electric field components have
the same weight γ = 0.5 and by including progressively
the three interactions with the two-color electric field in
the Hamiltonian. For all considered configurations, the
t0-averaged alignment satisfies the symmetry relation (20)
for k = 2, n1 = 0 and n2 = 1. ForH = H0+Hµ, 〈〈cos2 θ〉〉
depends very weakly on δ2, and oscillates as t increases
quasi-periodically between 0.3 and 0.6, see Fig. 8 (a). By
also taking into account the interaction with the molecular
polarizability and with the hyperpolarizability, 〈〈cos2 θ〉〉
show a rather weak dependence on δ2 for short propaga-
tion times, which becomes stronger for t & 200 ps, see
Figs. 8 (b) and (c). In these cases, the oscillations of
〈〈cos2 θ〉〉 versus t are faster and reach up to 0.9, indicat-
ing that the molecule is strongly aligned.

The analytic expression (A9) provides the dependence
on δ2 of the expectation values 〈〈cos2 θ〉〉. In Fig. 9,
〈〈cos2 θ〉〉 is plotted as a function of the second-harmonic
phase for γ = 0.5 and propagation times t = 200 ps
and t = 600 ps. The fitted coefficients Cj(t, ε1, ε2) and
phases ϕj(t, ε1, ε2), with j being an even integer, of
these numerical results to the series (A9) are presented
in Fig. 9 (c-d), and (e-f), respectively. When only the
electric field interaction with the electric dipole moment
is taken into account, the alignment does not depend

on δ2, and the j = 0 coefficient is enough to accurately
reproduce this result, i. e., C0(t, ε1, ε2) is only the fitting
parameter. The next term C2(t, ε1, ε2) is smaller than
2 × 10−4. For H = H0 + Hµ + Hα, higher order terms
are needed in the 〈〈cos2 θ〉〉 analytical expansion, and
they become smaller than 10−4 for j ≥ 6 and j ≥ 8 for
t = 200 ps and t = 600 ps, respectively. By adding Hβ ,
i. e., H = H0 + Hµ + Hα + Hβ , the δ2-dependence of
〈〈cos2 θ〉〉 becomes more complex, and even higher order
terms are required for an accurate fitting. For the fitting
phases ϕj(t, ε1, ε2) in these two cases, a broad range of
values is encountered, see Figs. 9 (e) and (f).

To conclude, the dependence of 〈〈cos2 θ〉〉 on γ and t is
illustrated in Fig. 10 for δ2 = 3π/4. If only the electric
field interaction with the electric dipole moment is taken
into account, see Fig. 10 (a), the t0-alignment oscillates
between 0.3 and 0.7, and reaches the largest values in the
region γ < 0.5, i. e., when the field strength of the first-
harmonic is bigger than the one of the second-harmonic.
For fixed γ, 〈〈cos2 θ〉〉 shows quite regular oscillations
versus time. By taking into account the electric field
interaction with the polarizability and with both polariz-
ability and hyperpolarizability, Fig. 10 (b) and Fig. 10 (c)
respectively, 〈〈cos2 θ〉〉 reaches larger values, up to 0.9,
and the frequency of its oscillations is increased.

IV. CONCLUSIONS

The impact of a two-color continuous-wave non-
resonant laser field in the rotational dynamics of a linear
polar molecule has been investigated. Working within the
Born-Oppenheimer and the rigid-rotor approximations,
the symmetries of the Hamiltonian have been explored
and their effects on the field-dressed rotational dynam-
ics. Due to these symmetries, it is not possible to orient
the polar molecule with a one-color cw laser field being
necessary to employ a two-color one having odd and even
products of the laser frequency.

The validity of the time-average approximation is first
investigated assuming that this cw-non-resonant field does
not drive any electronic, vibrational or rotational tran-
sitions, and despite that the laser field is not a pulse as
normally used in experiments. For a cw-laser, this approx-
imation starts to fail for laser periods satisfying T & 10 fs.
The field-dressed rotational dynamics has been analyzed
in the regime where the time-average approximation is not
correct. By systematically including the interaction of the
field with the electric dipole moment, polarizability and
hyperpolarizability in the Hamiltonian, the t0-averaged
orientation and alignment have been analyzed versus the
two-color laser field phase and relative strength of the
two components. If only the interaction with the elec-
tric dipole moment is taken into account, the orientation
has sinusoidal dependence on this relative phase, whereas
the alignment is independent of it. Being possible to
reproduce these numerical results with single-term ana-
lytical expressions. By considering the interaction with
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FIG. 9. For a two-color electric field with γ = 0.5, t0-averaged alignment as a function of the second-harmonic phase at
fixed propagation times (a) t = 200 ps and (b) t = 600 ps. (c) and (d) fitted coefficients Cj(t, ε1, ε2), and (e) and (f) fitted
phases ϕj(t, ε1 ε2) from the analytic expression (A9) of 〈〈cos2 θ〉〉 for t = 200 ps and t = 600 ps, respectively. The interaction
Hamiltonian includes Hµ (red dot-dashed line), Hµ +Hα (orange solid line), and Hµ +Hα +Hβ (blue dashed line).

FIG. 10. The t0-averaged alignment as a function of the
propagation time and the relative weight of the electric field
components γ for the second-harmonic phase δ2 = 3π/4. The
interaction Hamiltonian includes (a) Hµ, (b) Hµ +Hα, and
(c) Hµ +Hα +Hβ .

the molecular polarizability, and, in addition with the
hyperpolarizability, the orientation and alignment show
a more complex, but still symmetric, dependence on the
phase. As a consequence, more terms on the analytical
expression are required to properly reproduce the numer-
ical results. Regarding their dependence on the relative
weight of the two electric field components, the largest
t0-averaged orientation and alignment are not necessarily
obtained when both have the same weight.

Although this study is restricted to the OCS molecule,
the observed physical phenomena occur in other polar
molecules. A natural extension to this work would be to
consider a linear molecule in a two-color cw laser fields
with the two electric field components having perpendic-

ular polarizations [52]. In this field-configuration, the
symmetries of the system are reduced, and the two field
components tend to align and orient the molecule in dif-
ferent directions. In addition, more complex molecules,
such as symmetric or asymmetric tops, in two-color cw
non-resonant laser field could be also explored.
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Appendix A: Analytic expressions of the orientation
and alignment

Following the results of Ref. [17–19], the orientation and
the alignment can be expressed in terms of the amplitude
and phase, εj and δj , of the j-harmonics gj(t, t0, εj , δj) =
εj cos[qjω(t+ t0)+δj ], with j = 1, . . . , s, appearing in the
Hamiltonian (2) due to the interaction of the molecule
with the two-color electric field (1). The frequencies,
amplitudes, and phases of these harmonics are collected
in Table I. The first two rows in Table I with j = 1 and
2 provide the harmonics of the biharmonic field, which
appear due to the interaction of the biharmonic electric
field with the permanent electric dipole moment. By
including also the interaction of the biharmonic electric
field with the molecular polarizability, a term proportional
to E2(t) appears, and the harmonics with j = 3, . . . , 6,
see Table I, also contribute to the Hamiltonian. The
cubic term E3(t) is due to interaction with the molecular
hyperpolarizability, and is responsible for the harmonics
with 7 ≤ j ≤ 14 in Table I.
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j qj εj δj

1 q1 ε1 δ1
2 q2 ε2 δ2
3 2q1 ε21/2 2δ1
4 2q2 ε22/2 2δ2
5 q1 + q2 ε1ε2 δ1 + δ2
6 q2 − q1 ε1ε2 δ2 − δ1
7 q1 (3/2)ε1ε22 + (3/4)ε31 δ1
8 q2 (3/2)ε21ε2 + (3/4)ε32 δ2
9 3q1 ε31/4 3δ1
10 3q2 ε32/4 3δ2
11 q2 + 2q1 (3/4)ε21ε2 δ2 + 2δ1
12 q2 − 2q1 (3/4)ε21ε2 δ2 − 2δ1
13 2q2 + q1 (3/4)ε1ε22 2δ2 + δ1
14 2q2 − q1 (3/4)ε1ε22 2δ2 − δ1

TABLE I. Prefactor of the frequency ω, qj , amplitude, εj and
phase, δj , of the j-harmonics appearing in the Hamiltonian (2)
due to the interaction of the molecule with the two-color
electric field (1).

Based on simple symmetry considerations of the s har-
monic functions, see Ref. [18, 19], the orientation and the
alignment can be expressed as

〈cosk θ〉(t, t0, ε, δ) = (A1)∑
n∈Zs

Cn(t, ε)
s∏
j=1

ε
|nj |
j cos[n · δ+ωt0n · q+Θn(t, ε)],

where q = {q1, · · · , qs}, ε = {ε1, · · · , εs}, δ =
{δ1, · · · , δs}, and Cn(t, ε) and Θn(t, ε) are both even
functions of each εj . The t0-averaged expectation values
satisfy [19]

〈〈cosk θ〉〉(t, ε, δ) = (A2)

C0(t, ε) +
∑
n∈S

Cn(t, ε)
s∏
j=1

ε
|nj |
j cos[n · δ+Θn(t, ε)],

where

S = {n ∈ Zs : n · q = 0} (A3)

denotes the set of nonzero solutions of the Diophantine
equation n · q = 0, whose leftmost nonzero component is
positive [18].
If only the interaction of the electric field with the

electric dipole moment is included in Hamiltonian (2), s =
2, and q = {q1, q2}, ε = {ε1, ε2}, and δ = {δ1, δ2} [17, 18].
The Diophantine equation is n1q1 + n2q2 = 0. The t0-
averaged expectation value (12) can be written as

〈〈cosk θ〉〉(t, ε1, ε2, δ1, δ2) = (A4)
+∞∑
j=0
|Cj(t, ε1, ε2)| (εq2

1 ε
q1
2 )j cos

[
jξ12 + Θj(t, ε1, ε2)

]
,

where ξ12 = (q1δ2−q2δ1) and Θ0(t, ε1, ε2) = 0 [19]. Due to

the inversion of the electric field direction symmetry (16),
it holds that: i) the series (A4) includes only even terms
for k even if q1 + q2 is odd, otherwise all the terms con-
tribute; ii) Eq. (A4) includes only odd ones for k odd if
q1 + q2 is odd; and iii) if q1 + q2 is even, 〈〈cosk θ〉〉 = 0
with k odd, and for k = 1, the molecule is not oriented.

By including also the interaction with the polarizability,
six harmonics appear in the Hamiltonian, i. e., s = 6 in
the set (A3) of non-zero solutions of the Diophantine
equation, which reads

(n1 +2n3 +n5−n6)q1 +(n2 +2n4 +n5 +n6)q2 = 0, (A5)

and S = {n1 = −2n3 − n5 + n6 − mq2, n1 > 0, n2 =
−2n4 − n5 − n6 + mq1, (m,n3, n4, n5, n6) ∈ Z5}. As a
consequence, n · δ = mξ12. Using this result, Eq. (A2)
can be rewritten as

〈〈cosk θ〉〉(t, ε1, ε2, δ1, δ2) = C0(t, ε1, ε2) + (A6)∑
(n,m)∈S

Cn(t, ε1, ε2)ε|xn|
1 ε

|yn|
2 cos[mξ12+Θn(t, ε1, ε2)],

where xn, yn and m are integers determined not only
by the solutions of the Diophantine equation, but also
by the symmetries. Indeed, the symmetry (16) implies
that |xn| + |yn| has the same parity as k. Thus, this
expectation value (A6) is rewritten as

〈〈cosk θ〉〉(t, ε1, ε2, δ1, δ2) = (A7)
+∞∑
j=0
Cj(t, ε1, ε2) cos [jξ12+ϕj(t, ε1, ε2)] ,

with Cj(t,−ε1,−ε2) = (−1)kCj(t, ε1, ε2). Furthermore,
due to the symmetry on the phases (15) two cases can
be distinguished according to the parity of q1 + q2. (i) If
q1 + q2 is an even integer, q1 and q2 are both odd integer
numbers because gcd(q1, q2) = 1. As a consequence of the
symmetry (15), the identity 〈〈cosk θ〉〉 = (−1)k 〈〈cosk θ〉〉
is obtained. Therefore, the expectation values is zero
for k odd and satisfies (A7) for k even. (ii) If q1 + q2 is
an odd integer, q1 and q2 have different parity. Due to
the symmetry (15), for odd or even values of k in (A7),
only odd or even terms contribute to the corresponding
expansion, respectively, i. e.,

〈〈cos2k+1 θ〉〉(t, ε1, ε2, δ1, δ2) = (A8)
+∞∑
j=1

(j odd)

Cj(t, ε1, ε2) cos [jξ12+ϕj(t, ε1, ε2)] ,

and

〈〈cos2k θ〉〉(t, ε1, ε2, δ1, δ2) = (A9)
+∞∑
j=0

(j even)

Cj(t, ε1, ε2) cos [jξ12+ϕj(t, ε1, ε2)] .

When the interaction between the electric field and
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hyperpolarizability is also included in the Hamiltonian,
s = 14 in the set of non-zero solutions (A3) of the Dio-
phantine equation, which reads [n1 + 2(n3 + n11 − n12) +
n5 − n6 + n7 + 3n9 + n13 − n14]q1 + [n2 + 2(n4 + n13 +
n14) + n5 + n6 + n8 + 3n10 + n11 + n12]q2 = 0. Therefore,
S = {n1 = −2(n3 +n11−n12)−n5 +n6−n7−3n9−n13 +
n14−mq2, n1 > 0, n2 = −2(n4+n13+n14)−n5−n6−n8−

3n10 − n11 − n12 + mq1, (m,n3, n4, · · · , n14) ∈ Z13}. As
a consequence, n · δ = mξ12 is also satisfied. In this case,
expression (A6) is also obtained, and a similar symmetry
analysis transforms it into the formulas (A8) and (A9) if
q1 + q2 is an odd integer. Finally, note that (A4) can also
be rewritten as (A8) and (A9) if q1 + q2 is an odd integer.
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