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Advances in the miniaturization of microelectromechanical systems (MEMS) [1] are
revolutionizing the possibilities of sample analysis. For example, microfluidic devices
enable the manipulation of tiny amounts of liquids, minimizing the consumption of samples
and reagents and paving the way to portable Lab-on-a-Chip (LOC) devices for point-of-
care diagnosis [2]. Pretreatments such as separation and concentration of target analytes
are an essential step before assays on biological or environmental samples [3], which
usually consist of a mixture of components including particles of microscopic dimensions.
Therefore, the development of efficient and reliable particle separation techniques is a
major challenge in the progress of LOC technologies.

An innovative strategy for continuous microparticle sorting in microfluidics is the
use of deterministic lateral displacement (DLD) devices [4–6]. Several recent publications
demonstrate its potential for separation of bioparticles [7–9]. DLD devices consist in
microchannels containing an array of pillars with diameters around tens of microns or
smaller. The pillars are arranged in rows that are slightly tilted with respect to the lateral
channel walls. When a liquid with suspended particles flows through the array, it turns out
that particles bigger than a critical size (Dc) bump on the pillars and deviate. Repetition
of this bumping results in a net lateral displacement of the particles reaching the end of
the channel. This is in contrast to the behavior of particles smaller than Dc, which zigzag
around the pillars and keep moving in the direction of the fluid flow [10]. DLD devices
perform binary separation mainly by size (separation based on particle deformability has
also been demonstrated [11,12]). Dc is determined by geometrical factors such as pillar
radius, gap between neighboring pillars, and tilting angle of the rows, which cannot be
tuned once the microchannel is fabricated.

A current topic of research is the effect of electric fields on the motion of particles
in aqueous suspensions within DLD devices. The first work of electric-field assisted
DLD separation was by Beech et al. [13], who inserted electrodes at the inlet and outlet
of the microchannel and demonstrated that particles smaller than Dc can be displaced
upon application of ac electric fields with a frequency of 100 Hz. Thus, the particle de-
viation can be externally controlled via an electrical signal. More recent work is based
on the application of an electric field perpendicular to the flow direction [14,15]. This is
accomplished by integrating electrodes on the sides of the microchannel, reducing the
electrode gap and, consequently, the amplitude of the applied voltages. Among the benefits
of using lower voltages, we point out the possibility of increasing the frequency range
of the ac signals up to hundreds of kHz—these frequencies are not achievable by stan-
dard voltage amplifiers if required to generate thousands of volts. Using this electrode
configuration, Calero et al. [16] recently demonstrated that particle deviation at high fre-
quencies ( f > 1 kHz) is caused by dielectrophoresis (DEP), i.e., the movement of particles
in a nonuniform electric field caused by polarization effects [17,18]. However, for low
frequencies of the applied voltages, the particles undergo electrophoresis and oscillate
perpendicular to the flow direction. In this case, the particles are also deflected, and,
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significantly, the threshold electric field magnitude for particle deviation is much lower
than for high frequencies (DEP deviation).

The physical mechanism behind particle separation at low frequencies has not been
clarified yet. The smaller values of the applied electric fields suggest that another phe-
nomenon different from DEP is responsible for this. Recent experimental work has shown
the appearance of stationary flow vortices around the pillars for ac signals around hun-
dreds of Hz and below [16,19,20]. Future work will be focused on the effect of these flows
on particle separation, not only on DLD channels but also in related problems such as
insulating-DEP (iDEP) devices where constrictions create non-homogeneous electric fields
leading to dielectrophoretic trapping of particles [21,22].
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