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Abstract: In recent years, tissue engineering research has led to the development of this field by
designing scaffolds with better properties that can fulfill its purpose of better and faster tissue re-
generation, consequently improving people’s quality of life. Scaffolds are matrices, predominantly
composed of polymeric materials, whose main function is to offer support for cell adhesion and
subsequent growth, leading to the regeneration of the damaged tissue. The widely used biopolymer
in tissue engineering is collagen, which is the most abundant protein in animals. Its use is due to
its structure, biocompatibility, ease of modification, and processability. In this work, collagen-based
scaffolds were developed with different concentrations and processing techniques, by obtaining hy-
drogels and aerogels that were characterized with an emphasis on their morphology and mechanical
properties. Moreover, fructose was added in some cases as a chemical crosslinking agent to study its
influence on the scaffolds’ properties. The obtained results revealed that the scaffolds with higher
collagen concentrations were more rigid and deformable. Comparing both systems, the aerogels were
more rigid, although the hydrogels were more deformable and had higher pore size homogeneity.
Fructose addition produced a slight increase in the critical strain, together with an increase in the
elastic modulus.

Keywords: aerogel; collagen; fructose; hydrogel; scaffold; tissue engineering

1. Introduction

Tissue engineering (TE) was defined as “a multidisciplinary field which applies
principles and methods of engineering and life sciences for the development of biological
substitutes, to restore, maintain or improve tissue function” by Martin et al., (2004) [1]. TE
is based on the development of 3D structures with a high porosity (scaffolds) to provide
an ideal environment for the regeneration of tissues and organs. These scaffolds are
biocompatible matrices fundamentally designed to provide the biological needs of the cells
involved, as well as to offer a template for new tissue formation. Furthermore, they also
contribute to the mechanical and structural integrity of the treated region [2–4].

In this study, two types of scaffolds were synthesized and characterized, namely
hydrogels and aerogels. According to Hoffman (2012), hydrogels are “hydrophilic polymer
networks that can absorb between 10–20% and up to thousands of times their dry weight
in water. Hydrogels may be chemically stable, or they may degrade and eventually
disintegrate and dissolve.” They are called ‘chemical’ or ‘physical’ depending on their
intermolecular interactions [5]. Aerogels are solid systems with meso-and-macropores,
whose diameter can be up to a few hundred nanometers. In addition, aerogels have a
high porosity (up to 95%) being their dispersed phase a gas. Some studies point out that it
is possible to manufacture aerogels at room temperature drying conditions [6], although
supercritical conditions are required in most cases [7].
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TE involves the design and modification of biomaterials that prompt the formation
of tissue in a biomimetic environment with appropriate biomechanical properties [8].
Polymers are the most promising materials to obtain these requirements, because they
are available in a wide variety of compositions, properties, and shapes, and allow the
processing of complex structures. In this way, the use of natural polymers, such as proteins
and polysaccharides, is especially interesting, since they are main components of or have
similar macromolecular properties to the native extracellular matrix (ECM) [9,10], e.g.,
proteins such as collagen [11], elastin [12] or even combinations of both proteins [13].
Collagen is the biopolymer that is the most abundant in animals and, therefore, it is one of
the most used materials in TE for scaffold production.

Among the different types of collagen, fibrillar collagen is the most abundant in verte-
brates, playing a structural role. This role consists of giving molecular architecture, shape,
and resistance to tissues, like tensile strength in the skin or resistance to traction in liga-
ments [14]. Its suitability in TE applications is based on being biocompatible, bioresorbable,
and non-immunogenic. It can be processed in different forms (sheets, sponges, foams,
powders, nanofibrous matrices, etc.) and it is soluble in acidic solutions. Furthermore, a
key factor in TE as the degradation rate can be modulated using different strengthening
methods like enzymatic pre-treatment or crosslinking modifications [15,16].

Crosslinking is the formation of new bonds or relatively short sequences of chemical
bonds to link polymer chains [17]. Crosslinking may occur during the polymerization reac-
tion, using the appropriate monomers, or after the polymerization step by using crosslink-
ing agents that stimulate the necessary reactions to bind different polymer molecules.
The importance of crosslinking procedures lies in the improvement of high-temperature
stability and mechanical properties, leading to optimal materials for industrial use [18].
The resulting modifications in the structure strongly depend on the crosslink-density [17].

Natural compounds that could act as chemical crosslinking agents are of special
interest since they do not decrease the biocompatibility of the scaffold, e.g., fructose, which
is a carbohydrate present in different vegetables, fruits, and honey. It is a monosaccharide
with the same structure as glucose since they are isomers [19]. Fructose is obtained by using
microbial enzymes to hydrolyze the starch extracted from different cereals and transform it
into glucose, which, through an isomerization process, is converted to fructose, specifically
D-fructose [20]. Fructose, and generally sugars, can undergo a chemical crosslinking by
the so-called non-enzymatic glycation or Maillard reaction [21,22]. Maillard reaction is
a chemical and non-enzymatic reaction that is produced in three main steps [23]. First,
a condensation reaction between the carbonyl group of fructose and the amino group of
proteins takes place, generating a Schiff base. Due to the instability of the Schiff base, it
is subsequently transformed into the protein Amadori product [24]. Finally, the Amadori
compound drives to the formation of advanced glycation end-products, commonly known
as AGE products [25].

The principal objective of this work was to develop collagen-based scaffolds with
suitable morphological and mechanical properties for their potential application in muscu-
lar tissue growth. To achieve the global purpose, some specific objectives were proposed:
(1) the development of hydrogels and aerogels with the same processing protocol; (2) com-
parative evaluation of the mechanical and morphological properties for both hydrogels
and aerogels systems with different collagen concentrations; and (3) the evaluation of the
incorporation of fructose as a natural crosslinking agent to modified the mechanical and
morphological properties of the chosen collagen aerogel.

2. Materials and Methods
2.1. Materials

Porcine collagen (Type I, protein content higher than 95 wt.%) was purchased from
Essentia Protein Solutions (Graasten, Denmark). Acetic acid and fructose (≥99%) were
both supplied by Sigma-Aldrich (Steinheim, Germany).
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2.2. Formation of Scaffolds

The scaffolds were obtained following the procedure described by Perez-Puyana et al. [26].
The same preparation procedure was carried out for both systems (hydrogels and aerogels),
with the difference that, to obtain aerogels, two further steps were necessary for water re-
moval after hydrogel formation (freeze-drying process). A gelation process was conducted
to obtain the hydrogels. The process followed was similar to that used in other studies
on protein-based hydrogels [26]. Briefly, collagen solutions were prepared at different
concentrations (namely 5, 10, and 20 mg/mL) using acetic acid as solvent (0.05 M, pH = 3).
Subsequently, the solutions were centrifuged at 12,000 rpm and 4 ◦C (MEDIFRIGER BL-S,
J.P Selecta, Barcelona, Spain).

Once centrifuged, the liquid phase was separated and kept in a fridge (Equitec,
Madrid, Spain) at 4 ◦C for 1 h. After this, the formation of the hydrogels was completed.
The aerogels were later obtained by freeze-drying (<15 Pa for 24 h), with a solvent removal
by sublimation, using a freeze dryer (LyoQuest, TELSTAR, Barcelona, Spain).

For the crosslinking study with fructose, the 10 mg/mL collagen aerogel was selected,
and different fructose concentrations (10 and 40 wt.% from the respective collagen concen-
tration) were added to the solutions at the first step of the procedure (hydrogels formation).
This was the same as the one for the scaffolds without a crosslinking agent. Finally, their
structural and mechanical properties were studied and compared.

2.3. Scaffold Characterization
2.3.1. Hydrogel Characterization
Rheological Evaluation

In hydrogels, the viscoelastic properties were evaluated using two types of rheological
tests previously described in Perez-Puyana et al. (2020) [26]. Briefly, strain sweep tests
(0.1–100% at 1 Hz and 20 ◦C) were carried out to determine both the linear viscoelastic
range (LVR) and critical strain. Moreover, frequency sweep tests (0.02–20 Hz at 20 ◦C
and a specific strain from the LVR) were also performed. In these tests, G′, G” and
η* values (elastic and viscous moduli and complex viscosity, respectively) were measured
and compared. This characterization was carried out in a AR 2000 oscillatory rheometer
(TA Instruments, New Castle, DE, USA) with serrated parallel plate geometry (diameter:
40 mm).

Morphological Evaluation

The hydrogels were morphologically assessed using a Cryo-SEM microscope (Zeiss-
EVO, Oberkochen, Germany), at an acceleration voltage of 10 kV. All samples were firstly
cooled with nitrogen at −196 ◦C and sputtered with Au. Image-J software (National-
Institute for Health, Bethesda, MA, USA), was used to evaluate both mean pore size and
its distribution for the selected systems.

2.3.2. Aerogel Characterization
Rheological Evaluation

Dynamic compression tests were carried out following the procedures described
by Perez-Puyana et al., (2019) [27]. An RSA3 rheometer (TA Instruments, New Castle,
DE, USA), with a smooth parallel-plate geometry (dia: 15 mm) was used to perform the
strain sweep tests (2.5 × 10−4–2.5% at 1 Hz and 25 ◦C) and the frequency sweep tests
(0.02–20 Hz at 25 ◦C and a specific strain from the LVR). In these tests, E′ and E” (elastic
and viscous moduli) together with tan δ (loss tangent) and µ* (complex viscosity) values
were measured.

Morphological Evaluation

The aerogels were morphologically analyzed using a Zeiss EVO-SEM microscope
(Zeiss-EVO, Oberkochen, Germany) at an acceleration voltage of 20 kV. All samples were
previously treated with Osmium vapor (1%) in a fumehood for 8 h to fix the samples and
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facilitate their observation under the microscope. Later, the fixed samples were covered by
a thin film of Au, using a sputter coater Leica (Wetzlar, Germany), to improve the quality
of the micrograph (improving the sample conductivity). The images were analyzed (mean
pore size and pore size distribution) using a free domain software (Image-J, National-
Institute for Health, Bethesda, MA, USA).

Crosslinking Degree

Crosslinking degree was quantified following the protocol of Ofner and Bubnis [28].
Briefly, it was obtained by measuring the content of free and crosslinked amino groups in
the different systems (Genesys-20 Thermo Scientific, Waltham, MA, USA). The quantifi-
cation was obtained using a blank as 100% of crosslinked amino groups, while a system
without adding fructose was used as 0% of crosslinking induced. In this way, the crosslink-
ing degree induced by the addition of fructose was evaluated.

Swelling Degree

This property is important to predict the behavior of the scaffold in the body, where
it will be in close contact with biological fluids. For their evaluation, the scaffolds were
immersed in distilled water at 25 ± 2 ◦C, weighing them after 24 h [29]. The swelling ratio
was calculated using Equation (1):

Swelling ratio (%) =

(
w− w0

w0

)
× 100 (1)

where w0 and w are the weights of the scaffold before and after the water immer-
sion, respectively.

2.4. Statistical Analysis

Each measurement was performed in triplicate. Statistical analyses were performed
using PASW-Statistics (Windows, Version18: SPSS, Chicago, IL, USA). t-tests and one-way
analysis of variance (p < 0.05) were used for each analysis. Standard deviations were
obtained for the parameters evaluated.

3. Results and Discussion
3.1. Hydrogels vs. Aerogels at Different Collagen Concentrations

Figure 1 shows the evolution of the elastic and viscous moduli (Figure 1A,B, respec-
tively) and complex viscosity (Figure 1C,D) with frequencies for both hydrogel (Figure 1A,C)
and aerogel (Figure 1B,D) systems, with different concentrations of collagen (5, 10 and
20 mg/mL).

Both systems showed a gel-like behavior, where the elastic modulus was above the
viscous modulus, without great variations in frequency. These results indicated that all
the systems had enough stability, allowing prediction of their behavior regardless of the
time of strain application. Besides, although no significant differences were observed in the
spectrum tendencies with frequency, an increase in collagen concentration, especially for
20 mg/mL, resulted in an increment of the corresponding elastic and viscous moduli. This
behavior with the increase of biopolymer concentration has been previously observed in
other works [30]. For complex viscosity (Figure 1C,D), the same tendency can be observed,
where concentrations of 5 and 10 mg/mL almost overlap, although the 20 mg/mL scaffolds
show a significant increase for both hydrogel and aerogel systems, which means that higher
concentrations result in a more viscous behavior.
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Figure 1. Evolution of elastic (G′ and E′) and viscous (G” and E”) moduli and complex viscosity (η* and µ*) of collagen-based
hydrogels (A,C) and aerogels (B,D) at different collagen concentrations (5, 10 and 20 mg/mL).

Table 1 shows the mean values of critical strain (γcrit), G′, tanδ, and η* at 1 Hz for
hydrogel systems and critical strain (γcrit), E′, tanδ, and µ* at 1 Hz for aerogel systems.
From these results, it can be confirmed that, with the increase of collagen concentration,
there were no significant differences between the 5 and 10 mg/mL systems. However, the
20 mg/mL scaffolds had higher moduli, viscosity, and critical strain, indicating more rigid,
viscous, and deformable hydrogel and aerogel at higher collagen concentration. In addition,
it is remarkable that the aerogel systems were more rigid and viscous than the hydrogel
systems with the same concentrations. Nevertheless, the hydrogel system with the highest
concentration was more deformable than the aerogel system with the same concentration.

Table 1. Critical strain, elastic modulus, complex viscosity, and loss tangent at 1 Hz (G′1, tan δ1,

and η*1) of collagen-based hydrogels and aerogels at different collagen concentrations (5, 10, and
20 mg/mL).

Scaffold Concentration
(mg/mL) γcrit (%) G’1/E’1 (Pa) |η*1|/|µ*|1 (Pa·s) tan(δ)1

Hydrogel
5 0.6 a 0.13 A 0.13 γ 0.7 I

10 1.0 ab 0.4 A 0.5 δ 0.6 I

20 10 c 144 B 147 ε 0.02 II

Aerogel
5 0.8 a 5284 C 1349 α 0.10 III

10 1.3 ab 6076 C 1270 α 0.09 III

20 2.0 b 20825 D 3413 β 0.12 III

Different letters (a–b; A–D; α–δ; I–III) as superscripts were included to denote significant differences in the values
shown in each column (p < 0.05).
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Figure 2 shows a macroscopic and microscopic view of collagen-based hydrogel and
aerogel, both at a concentration of 10 mg/mL. Figure 2A shows the macroscopic view of the
10 mg/mL collagen hydrogel, which can be described as a white gel texture structure. The
microstructure analyzed by Cryo-SEM of the same hydrogel is represented in Figure 2B.
As can be observed, there is an important degree of structuration with a much more
homogeneous pore size distribution compared to the aerogel with the same concentration
(Figure 2D), as the scaffold presents higher porosity with a large amount of great-sized
pores, since its dispersed phase is a gas, whereas, for the hydrogel, the dispersed phase is
liquid. This would explain the difference of structures between both systems. However,
the main distinctive feature in the case of aerogels is the heterogeneity in the size of the
pores, which are comprised in the range of 130–300 µm, to be expected for collagen aerogels
(120–200 µm) [31]. Furthermore, it is worth highlighting the high interconnectivity degree
between pores, which, along with its propitious pore size, would be favorable for cell
implantation and growth, and the consequent tissue regeneration. Moreover, there is
greater uniformity in the pore size of the hydrogels (Figure 2B), although it is remarkable
that the pores with greater size seem to appear in the outer regions of the hydrogel, whereas
the smaller ones are located in inner regions. The pores in the image have an approximate
size of 1–11 µm, which is out of the range for favorable muscular tissue cell proliferation
(20–125 µm) [32]. For pore sizes under this range, as in this case, cells were excluded from
the interior of the matrix, which would pose a problem for its potential use in TE.
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Figure 2. Macroscopic and microscopic images of a collagen-based hydrogel (A,B) and a collagen-
based aerogel (C,D) at a concentration of 10 mg/mL.

Figure 2C shows a picture of the macroscopic appearance of the 10 mg/mL collagen
aerogel. It is characterized by an intense white color with certain translucency due to the
high porosity of this kind of system. Between Figure 2A,C, there is a marked difference
in textures due to the presence (hydrogel) or absence (aerogel) of water in its structure.
However, it can be observed that the processing conditions did not affect the coloration of
the scaffolds.
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3.2. Evaluation of Fructose as Crosslinking Agent

After comparing the mechanical and morphological properties of both systems, aero-
gel was selected for the crosslinking study with fructose, due to its greater rigidity and
viscosity, and its better pore size range for muscular tissue cell proliferation. The inter-
mediate concentration was chosen for the evaluation. Fructose has been selected as a
chemical crosslinking agent based on the fact that any reducing sugar could induce a
Maillard reaction in protein molecules [33,34]. Specifically, fructose would react with the
lysine residue in collagen inducing a modification of the microstructure and, therefore, the
properties of the aerogels.

Figure 3 shows the results of frequency sweep tests for 10 mg/mL collagen aerogels
with different fructose concentrations (10 and 40 wt.%), as previously described. The colla-
gen aerogel system without fructose was also included as a reference. Results showed that
there was a predominantly elastic behavior with a low influence of frequency (Figure 3A),
although certain instability appeared at the scaffold with the lowest fructose concentration.
For the system with a lower concentration of added fructose (10 wt.%), the elastic modulus
decreased with respect to the aerogel without a crosslinking agent, whereas for higher
fructose concentrations there was a slight increase in the elastic modulus. This could be
because low crosslinking agent concentrations added to the systems start the crosslinking
reaction, which does not provoke the strengthening of the structure. On the other hand, a
higher fructose concentration implied a sufficient crosslinking degree that implied a slight
improvement of the mechanical properties. Figure 3B represents the results of the variation
of the complex viscosity moduli of each system with frequency. As can be observed, the
lower fructose concentration aerogel is less viscous (since the elastic modulus value is
lower), although similar to the scaffold without a crosslinking agent. However, increas-
ing fructose concentration led to a more viscous behavior, slightly surpassing the values
obtained by the collagen aerogel without fructose.
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Figure 3. Evolution of (A) elastic and viscous moduli and (B) complex viscosity for 10 mg/mL collagen-based aerogels with
different concentrations of fructose (0, 10 and 40 wt.%).

Table 2 shows the values of critical strain (γcrit), E′, tan δ and µ* at 1 Hz (E′1, tan δ1
and µ*1) for the aerogel systems with and without fructose. From these results, it can be
highlighted that for the low concentration of fructose added, there was a slight increase
in critical strain. However, it is worth mentioning that its value was in the error range,
implying that there was no significant variation in critical strain for the value obtained for
the aerogel without fructose. Moreover, there was a decrease in the elastic modulus and
complex viscosity modulus, which meant that the addition of low fructose concentration
led to less rigid and viscous scaffolds. Nevertheless, for the 40 wt.% fructose system,
there was an increase in elastic modulus and complex viscous modulus, obtaining values
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closer to those of collagen 20 mg/mL. However, fructose incorporation as a crosslinking
agent generates a very slight reaction in the system, thereby adding other chemicals would
probably stimulate the reaction [35]. In any case, this increment in rigidity and viscosity
does not imply an increase in its critical strain, which establishes that the deformability of
the system is not altered along with its biocompatibility, since fructose is a natural product.

Table 2. Critical strain (ycrit), elastic modulus, complex viscosity, and loss tangent at 1 Hz (E′1,
|µ*|1 and tan(δ)1, respectively) of 10 mg/mL collagen-based aerogels with different concentration
of fructose (0, 10, and 40 wt.%). Different letters as superscripts were included to denote significant
differences in the values shown in each column (p < 0.05).

Collagen
Concentration

(mg/mL)

Fructose
Concentration (%) γcrit (%) E′1 (Pa) |µ*|1

(Pa·s) tan (δ)1

5 - 0.8 a 5284 A 1349 α 0.10 I,II

10

0 1.3 ab 6076 A 1270 α 0.09 I,II

10 2.0 ab 5912 A 969 α 0.07 I

40 0.8 a 11,567 B 1897 β 0.12 II

20 - 2.0 b 20,825 C 3413 γ 0.12 II

Different letters (a–b; A–C; α–γ; I–II) as superscripts were included to denote significant differences in the values
shown in each column (p < 0.05).

Figure 4 shows images of macroscopic and microscopic views of aerogels with dif-
ferent fructose concentrations (10 and 40 wt.%). It is worth highlighting the difference
between the macroscopic views of Figure 4A,B, which represent fructose added aerogels,
and Figure 2C (system without a cross-linking agent). In this way, the scaffolds with
fructose incorporated presented a certain yellowish tonality, which was more noticeable
with a higher fructose concentration. This coloration is due to the Schiff base formation
after the Maillard reaction with collagen [35]. It can also be noted that this effect involves
an increase of the scaffolds’ transparency. Moreover, fructose addition modified the mi-
crostructure of the scaffolds, comparing the SEM images obtained (Figure 4B,D) and the
reference collagen aerogel without a crosslinking agent (Figure 2D). The scaffold without a
crosslinking agent shows a sheet-like microstructure, with great heterogeneity in pore size
and distribution, whereas the presence of fructose derived in a more structured and ho-
mogeneous microstructure. According to the images included in Figure 4 (Figure 4B,D for
the systems with fructose concentrations of 10 and 40 wt.%, respectively), the addition of
fructose at 10 wt.% generated a porous structure with pore sizes in the interval of 6–55 µm
(mean pore size: ca. 28 µm). Higher fructose concentration (40 wt.%) generated a structure
with bigger, circular, and heterogeneous pores (pore size range between 17 and 110 µm
and mean pore size of ca. 45 µm), although, as was previously observed, the appearance
of this more porous microstructure did not influence the mechanical properties of the
system. Overall, SEM imaging revealed that collagen microstructure notably changed by
the addition of fructose due to the possible aggregation that occurred due to the Maillard
reaction between collagen and fructose. Similar results were found in previous studies
carried out by Etxabide et al. [24].

Table 3 shows the values of crosslinking degree and swelling degree of the aerogels
with added fructose compared to the reference system without a crosslinking agent. For
the crosslinking degree, there was an increasing tendency with fructose concentration,
whereas the swelling degree showed the opposite behavior, i.e., when reaching a higher
crosslinking degree, the scaffolds were able to absorb less water within their structure,
which has been previously observed by Perez-Puyana et al. [36].
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Figure 4. Macrographs and micrographs of 10 mg/mL collagen-based aerogels with different
concentrations of fructose: 0 (A,B), 10 (A,B) and 40 wt% (C,D).

Table 3. Crosslinking and swelling degrees and pore size range for 10 mg/mL collagen-based
aerogels with different concentrations of fructose (0, 10, and 40 wt.%). Different letters as superscripts
were included to denote significant differences in the values shown in each column (p < 0.05).

Scaffolds Crosslinking Degree
(%) Swelling Degree (%) Pore Size Range

(µm)

Collagen 10 mg/mL
(0 wt.% Fructose) - 113 A 130–300 α

Collagen 10 mg/mL
(10 wt.% Fructose) 18 a 70 B 6–55 β

Collagen 10 mg/mL
(40 wt.% Fructose) 27 b 32 C 17–110 β

Different letters (a–b; A–C; α–β) as superscripts were included to denote significant differences in the values
shown in each column (p < 0.05).

4. Conclusions

Collagen-based hydrogels and aerogels with adequate mechanical properties for
potential use in TE were developed. From the morphology of both systems, different
conclusions can be drawn, as the morphology of the aerogel systems was suitable for
applications in TE, whereas the hydrogels had problems associated with pore size.

From the results of this study, it can be concluded that higher collagen concentra-
tions lead to better rigidity and deformability. Moreover, the comparison of mechanical
properties between the two systems (hydrogels and aerogels) evidenced that the aerogels
were more rigid than the hydrogels, whereas the opposite occurred when comparing
their deformability. The morphology study proved that both systems had great porosity,
although the hydrogels had greater homogeneity in pore size than the aerogels. However,
the hydrogels pore size (1–11 µm) did not fit the critical range for muscular tissue cell
proliferation (20–125 µm), unlike the aerogels (130–300 µm). Thus, it would be necessary
to modify the system composition or processing conditions to overcome this limitation.
Fructose addition in the aerogels induced slight changes in both the morphological and
mechanical properties of the scaffolds, which seemed to be more evident for higher fructose
concentrations (40 wt.%).
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Future works will be based on a more detailed study on the application of these
scaffolds in tissue engineering. For this, degradation analysis, cell viability, and biological
studies in vitro and in vivo will be performed.
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