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Abstract: The stabilizing effect of lysozymes to salt addition over a gold colloid are exploited in order
to detect lysozymes in human urine samples. The present research is aimed at the development of a
fast, naked-eye detection test for urinary lysozymuria, in which direct comparison with a colorimetric
reference, allows for the immediate determination of positive/negative cases. CIEL*a*b* parameters
were obtained from sample absorbance measurements, and their color difference with respect to
a fixed reference point was measured by calculating the ∆E76 parameter, which is a measure of
how well the colors can be distinguished by an untrained observer. Results show that a simple and
quick test can reliably, in less than 15 min, give a positive colorimetric response in the naked eye for
concentrations of a urinary lysozyme over 57.2 µg/mL. This concentration is well within the limits of
that observed for leukemia-associated lysozymurias, among other disorders.

Keywords: gold nanoparticles; lysozyme; urine; colorimetry; CIELab; naked-eye detection; lysozy-
muria; proteinuria

1. Introduction

Lysozyme, which is a cationic protein at physiological pH, can be eliminated through
the urine because of its low molecular weight. Its charge makes it stand out among most
proteins in the urine (such as albumin and globulins), which have a negative or virtually
neutral charge at a biological pH [1,2]. However, as a general rule, proteins are only
found in trace amounts in human urine samples obtained from healthy individuals. Some
medical conditions involving either renal disfunction or the production of excess lysozyme
can dramatically elevate lysozyme levels in urine (lysozymuria) [3,4]. Lysozymurias are
associated with various renal disorders, such as hypokalemia, extrarenal infections, or
a nephrotic syndrome [5], and have also been determined to be a distinct symptom of
monocytic and myelomonocytic leukemia (both subtypes of acute myeloid leukemia) [3,4].
In the latter cases, lysozyme levels found in urine have been found to be abnormally
high when compared to other disorders. Lysozymuria detection plays a key role in early
diagnose of monocytic and myelomonocytic leukemias.

Noble metal nanoparticles have acquired great importance in the field of biomolecule
detection due to their optical properties. The oscillation of the electronic cloud with the
electric component of the light causes a strong band of absorption in the visible region,
whose location (and, therefore, the color of the sample) depends on the colloid intrinsic
properties and its environment [6]. In this way, when these nanoparticles interact with the
biomolecule to be detected, a change of color takes place in the solution [7,8]. Specifically,
gold nanoparticles (AuNPs) have been extensively used to the detection of a varied and
wide variety of compounds, from proteins to DNA [9–13]. The procedure is quite simple.
The interaction between the analyte and the AuNPs induces approximation (aggregation) of
the nanoparticles, leading to nanoparticle plasmon coupling and a change of color from red
to blue in the solution. Reverse procedures are also possible with analytes being employed

Nanomaterials 2021, 11, 612. https://doi.org/10.3390/nano11030612 https://www.mdpi.com/journal/nanomaterials

https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0002-0201-3919
https://orcid.org/0000-0001-5118-6472
https://orcid.org/0000-0001-5959-9810
https://doi.org/10.3390/nano11030612
https://doi.org/10.3390/nano11030612
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/nano11030612
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/2079-4991/11/3/612?type=check_update&version=1


Nanomaterials 2021, 11, 612 2 of 15

to either prevent aggregation, or further the distance between aggregated particles, causing
a blue-to-red color shift [14]. The former is the case for lysozymes, as shown in Scheme 1.
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Scheme 1. Protective effect of lysozyme upon NaCl addition over citrate-capped gold nanoparticles.

Along those guidelines, multiple strategies have been carried out, from the simplest to
very complex ones, in order to detect a myriad of proteins and other biological molecules.
For example, cholesterol has been detected with AuNPs functionalized with cholesterol
oxidase, interacting with the analyte, who makes junction points between the particles and
causes the previously mentioned chromatic changes (inducing shifts of the absorbance
plasmon band of c.a. 35 nm) [15]. Lin and coworkers have designed a system where the
presence of the protein target (highly effective to VEGF, vascular endothelial growth factor)
catalyze the formation of double chain DNA dendrimers, which cannot protect AuNPs
of the aggregation induced by salt addition [16]. A similar procedure was employed
by He and colleagues, who detected the AFP (Human α-fetoprotein) using the rolling
circle amplification reaction as a cornerstone. The presence of the target protein generates
oligonucleotides that do not prevent the aggregation caused by chloride sodium [13].
Proteins can interact directly with the nanoparticle surface, even accumulating in several
layers and causing (small or big) changes in the absorption band [17].

A good number of studies have developed protocols for the detection of a lysozyme
using gold nanoparticles with some of them in biological media [18–20]. Wang et al.
carried out urinary lysozyme determination by employing gold nanoparticles in a really
notable work that, nevertheless, employs resonance light scattering spectra for detection.
Wang et al. also use lysozyme as a direct nanoparticle aggregator, so their positive response
corresponds to a blue tint while a negative response gives a red tint. This method gives a
lower detection threshold as lysozyme acts as an aggregating agent even when present in
very small quantities [21], but it opens the possibility for samples to turn back to red when
high quantities of lysozyme are present, as lysozyme presents a marked protective effect
over nanoparticle aggregation [21]. Detection by aggregation is also highly vulnerable to
any other interferents that may cause particles to agglomerate, such as cationic compounds.
They do compensate for this by doing a very comprehensive work on pre-processing urine
samples, including a protocol for the elimination of human serum albumin (HSA). This
is a protein interferent that may appear alongside lysozyme in renal-damage-induced
proteinuria [22]. However, their work is carried out by employing a complex detection
technique that, while not as vulnerable as naked eye testing for all those factors, is also
expensive and may not be available at all at testing locations.

Fei Fu et al. [19] do detect lysozyme in human blood samples by using plasmon
resonance light-scattering of gold nanoparticles, but they need to consider the use of a



Nanomaterials 2021, 11, 612 3 of 15

peptidoglycan to bind to lysozyme, and they base their work on a luminescence response,
involving complex measurements and equipment. Lihua Lu et al. [23] employ a novel
Ir (III) complex to generate a strong luminescence response by means of a duplex DNA
with a TBAG-quadruplex tail for the detection of lysozyme. The protein induces duplex
dissociation of a complex of Ir (III) to generate the luminescence response.

Other authors, such as Jing Luen Wai and Siu Yee New [20], have used non-citrate
AuNPs, specifically cysteamine-stabilised AuNPs (cysAuNPs). The great advantage is that
these nanoparticles can directly interact with DNA with an anionic charge, without the
need for an inert electrolyte. However, in addition to functionalizing gold, they work with
lysozyme-binding aptamer (LBA) and their study only refers to aqueous media. There
are other, very recent studies to detect lysozyme, but all of them either employ aptamers
or work with non-biological samples, such as wine samples [24,25]. Other authors use
nanorods [26] or carbon nanotubes, which are also functionalized with aptamers [27].
Lixiang Zuo does lysozyme detection in urine samples, but their method involves prepa-
ration of Mn-doped ZnS quantum dots [28] as does the one employed by Zhenli Qiu and
coworkers for spiked serum samples [29].

Since the aim of our work is to develop a cheap, easy to use, naked-eye lysozyme
sensor that can be employed without the need for expensive equipment or training, we
have employed CIEL*a*b* colorimetric parameters for the determination of the quality
of our results. The CIEL*a*b* colorimetric system is an absolute color coordinate system
that is based on the theory of opposite colors developed by Schrödinger [30]. That is, red
and green cannot be perceived at the same time, and neither can blue and yellow due to
them generating eye responses that are opposite of each other [31]. The system is defined
around an illuminant (which emulates external light under controlled circumstances) and
an observer (which emulates human eye structure) function [32]. With those two conditions,
a white color point is generated as the zero, and color intensities are mapped alongside
three axes: L*, which corresponds to the luminance of the system, a*, which represents red
against green tint, and b*, which does the same to yellow versus blue (Scheme 2).
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CIEL*a*b* color coordinates do not depend on the device employed for reproduction
(as do other systems, such as RGB for digital color or CMYK for printing), but, instead,
univocally and universally define a specific tone. They are also useful for the determination
of color differences, as the distance between two color points (∆E) expressed in the L*a*b*
reference system determine how different they are, or, in other words, if they will be
perceived as different tones by an observer. The minimum distance between two different
colors and tones of the same color is known, and has been extensively studied [33]. A value
of the ∆E parameter equal to or over 2.3 for two colorimetric points is known as the Just
Noticeable Difference (JND) and is considered the minimum distance needed for those two
points to be considered distinguishable, under good conditions, by a human observer at a
naked eye.

There is precedent for the use of CIEL*a*b colorimetric parameters for the analysis of
the interaction of gold nanoparticles with a ligand [34]. However, the present work makes
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use of CIEL*a*b* parameters and their difference to determine if naked-eye test results will
be read as different (positive response) or not (negative response) by a human observer
during a field test, but the use of a colorimeter is not a requisite to carry out the testing. In
this field, CIEL*a*b* parameter quantification has most notably been employed such as by
Mbambo et al. in 2019 [35] who used color reproduction to create a digital color scale for
the development of a salinity test for saline and estuarine water. Similar tests employing
RGB colors for digital simulation on a smartphone have also been developed recently for
the detection of sibutramine on food products [36].

In this work, we present a direct, simple, and novel method that allows for naked-eye
detection of micromolar range concentrations of lysozyme in urine. To this end, non-
functionalized, anionic gold nanoparticles have been used in order to exploit both the
previously mentioned strong positive charge of lysozyme and the extraordinary optical
properties of colloidal gold. The strong blue color of aggregated gold nanoparticles has
been taken as the reference point. NaCl has been used as the agglomerating agent, and
sodium citrate has been added after synthesis in order to act as a stabilizer, helping to
reach lower detection limits. Nanoparticle size, concentration of all reactants involved,
and addition order have been carefully optimized in order to develop a stable, solid, and
reliable system with clearly distinguishable positive (in the presence of lysozyme) and
negative signals.

2. Materials and Methods
2.1. Nanoparticle Synthesis and Stabilization

Spherical citrate-capped gold nanoparticles were synthesized by a modified Turkevich
method, involving direct reduction of HAuCl4 salts (Sigma-Aldrich, Darmstadt, Germany,
ref. number 520918) with sodium citrate (Riedel-de Haën, Honeywell International, Char-
lotte, NC, USA, ref. number 32320) at 95 ◦C with magnetical stirring [37]. The resulting
synthesis was characterized by transmission electron microscopy (TEM) and the images
obtained were analyzed using ImageJ software. For preliminary tests, mean particle di-
ameter was found to be 14.1 ± 0.9 nm, with a circularity over 92% for all cases, and the
final nanoparticle concentration in the synthesis was estimated at 4.1 × 10−9 M. Working
tests were carried out with a synthesis with a mean particle diameter of 15.0 ± 1.4 nm,
and a concentration of 3.6 × 10−9 M. In both cases, nanoparticle synthesis was found to be
monodisperse (less than a 15% size dispersion; see Figure 1).
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Figure 1. (a) Absorbance spectrum and (b) TEM imaging of the nanoparticle synthesis employed for working tests. Scale
bar corresponds to 200 nm.

Preliminary experiments with urine samples showed that the post-synthesis addition
of sodium citrate greatly increased nanoparticle stability and allowed for a clearer colori-
metric signal and a lower detection limit. The optimum final citrate concentration was
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found to be 2.3 × 10−3 M. Higher concentrations of added sodium citrate were found to
have the opposite effect due to the influence of the increase in the medium ionic strength
being greater than that of NP stabilization by citrate adsorption. On the other hand, when
citrate concentration was increased during the synthetic procedure, nanoparticle precipita-
tion was observed. For this reason, an additional step involving sodium citrate addition
was incorporated into all sample preparation protocols, as described below.

2.2. Preliminary Testing
2.2.1. Sample Collection and Processing for Preliminary Testing

Urine samples from healthy subjects (labelled 1 to 3) were collected and known
concentrations of lysozyme were added to each sample. Concentrations of lysozyme in the
as-prepared urine solutions accounted for urinary lysozyme concentrations ranging from
10−5 M (143.1 µg/mL) to 5 × 10−8 M (0.72 µg/mL) and a zero sample (urine, no lysozyme).
A 50% predilution (1 mL sample + 1 mL water) was then carried out in order to minimize
urine color interference.

2.2.2. Preliminary Testing Protocols

Colorimetric analysis was carried out by mixing, in this order, 200 µL AuNPs +
900 µL deionized water + 200 µL sodium citrate + 200 µL prediluted urine samples +
500 µL NaCl. Final concentrations were [AuNPs] = 3.7 × 10−10 M, [Citrate] = 2.3 × 10−3 M,
[NaCl] = 0.05 M. Working solutions were completely stirred and left to react for 5 min for
color stabilization. In addition to the test solutions, a sample was prepared containing no
added lysozyme (AuNPs + water + citrate + urine + NaCl, zero sample) and another with-
out urine or lysozyme (AuNPs + water + citrate + NaCl, blank sample). The reproducibility
of the method was evaluated by measuring three separate solutions prepared from the
same initial sample (labeled as samples 1.1 to 1.3).

2.3. Working Protocol
2.3.1. Urine Collection and Processing

Ten urine samples from healthy subjects (labelled A to J) were collected and known
concentrations of lysozyme were added to each sample. Preliminary test results allowed
for the first approximation to the positive response threshold, and, therefore, lysozyme
concentrations were updated. Some concentration points that were observed to be too
low for detection were removed, and more points were added in the turning zone in
order to better pinpoint the detection threshold. Concentrations of lysozyme in the as-
prepared urine solution now accounted for urinary lysozyme concentrations ranging from
143.1 µg/mL to 7.15 µg/mL, plus a zero sample with no added lysozyme.

As per the preliminary test results, urinary salt concentration was considered to
be a possible source of interference in which one where the proposed 50% urine dilution
employed during preliminary sample preparation failed to properly address. Pre-treatment
protocols were then updated as follows. The lysozyme was added to native urine samples
in a first step 1:2 dilution. Then, the refraction index of all spiked urine samples and that of
water was measured at room temperature (between 22.8 and 23.5 ◦C) in an Abbe WYA-1S
refractometer, and a ratio ri = rsample/rwater was then calculated. Deionized Milli-Q water
was added to the samples until ri < 1.002. Those diluted urine samples were then employed
for sample preparation.

2.3.2. Sample Preparation

In light of the preliminary tests’ results, a few modifications were made in order to
develop the final working protocol. In this order, 400 µL AuNPs (1.9 × 10−8 M) + 500 µL
deionized water + 400 µL sodium citrate (1.16 × 10−3 M) + 200 µL prediluted urine samples
were mixed. A blank containing no urine, which was replaced by the equivalent volume of
deionized water, was also prepared in the same way for each sample. A 1 M NaCl solution
was then added drop-by-drop, while stirring, to this urine-free blank until a blue color shift
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was observed. The same volume of NaCl was then added to the sample preparations. This
step allowed us to pinpoint the exact quantity of salt needed to change the color of a given
gold preparation, eliminating the possibility of a false positive caused by a deficit of NaCl.

2.4. Sample Measurement and Obtainment of CIEL*a*b* Parameters

For both the preliminary and the final working protocol, samples were completely
stirred and left to react for 5 min for color stabilization before measurements were done.
Colorimetric analysis was carried out by measuring transmittance in a Cary 500 UV-vis
spectrophotometer (Agilent, Santa Clara, CA, USA) working at room temperature. XYZ
color space measurements were derived from transmittance values according to the CIE
(International Commission on Illumination) standards for a D65 illuminant and 2◦ standard
observer [38]. In order to set up quantitative guidelines for the determination of a positive
response color threshold, a mathematical conversion from XYZ to L*a*b* was carried out
as described by the CIE [38].

Digital (RGB) simulation of the sample colors was also carried out. Conversion from
the XYZ data to RGB was done in accordance with the equations found in https://www.
easyrgb.com/en/math.php (accessed on 3 March 2014). Those colors are reproduced in
this paper to graphically illustrate the results of our analysis, but were not employed for
mathematical calculations.

The ∆E parameter, which evaluates a color difference between a sample and a reference
color, was calculated from CIEL*a*b* parameters for all cases [39]. It is important to note
that ∆E values were calculated in two different ways for the preliminary tests and for the
final ones.

• Preliminary tests: referenced to L*a*b* parameters of a blank sample, which does
contain aggregated AuNPs without urine or lysozyme and, therefore, can be employed
as a neutral reference point. However, in doing so, it was observed that zero-lysozyme
samples could also show subtle color differences from the urine-free blank.

• Working tests: referenced to the mean L*a*b* parameters obtained for all zero
(lysozyme-free) urine samples. In this way, a “neutral” reference that was not di-
rectly related to any of the samples was created, and residual matrix effects of urine
that could induce color changes were accounted for and compensated.

For ∆E evaluation, the classical CIE76 formula (equivalent to the Euclidean distance
between the reference and the sample color coordinates in a reference system) was used
(Equation (1)).

∆E76 =

√
(L∗ − L∗

Blank)
2 + (a∗ − a∗Blank)

2 + (b∗ − b∗Blank)
2 (1)

3. Results
3.1. Preliminary Test Results

For the preliminary tests, upon NaCl addition, absorbance spectra were recorded, as
shown in Figure 2. It is important to note that, for this representation, absorbance spectra
were normalized in order to better show maxima position. Peak position showed a clear
red shift (towards higher λ) at lower lysozyme concentrations, followed by blue shifting
for concentrations of 71.5 µg/mL or over. The zero point of the series shows a smaller red
shift than that observed for the lower lysozyme concentrations.

Naked-eye results (Figure 3) showed, in all but one of the cases, a clear red color
(positive response) for urinary lysozyme concentrations of 71.5 µg/mL or higher after
NaCl addition. Zero samples were blue in all cases, as were the blanks (not shown). No blue
color was found in any of the samples prior to salt addition. All samples showed a color
change when the lysozyme concentration was over the previously mentioned detection
threshold, even though, in the outlier case, a purple tint instead of red was reached as the
final point.

https://www.easyrgb.com/en/math.php
https://www.easyrgb.com/en/math.php
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In order to set up quantitative guidelines for the determination of a positive response
color threshold, transmittance measurements were done and CIELab parameters were
derived from the results. The obtained L*a*b* values were then used for digital simulation
of the sample colors, in order to allow for a clearer color observation without external
illumination interference (Figure 4). Three freshly-collected samples, 1, 2, and 3 (outlier
case), were analyzed, and the reproducibility of the method was evaluated by measuring
three separate solutions prepared from the same initial sample (labeled as samples 1.1 to
1.3). From those measurements, standard deviation of the ∆E parameter was found to be
under 10% for all cases.

In this case, ∆E values were measured in reference to the L*a*b* parameters of the
blank sample, which contains aggregated AuNPs without urine or lysozyme. For ∆E
evaluation, the CIE76 formula was used (see Equation (1)). Results were contrasted against
those obtained from the more complex, corrected ∆E CIE94 formula [40].

∆E94 =

√
∆L∗2

kLSL
+

∆C∗2

kCSC
+

∆H∗2

kHSH
(2)
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C∗ =
√

a∗2 + b∗2 (3)

∆C∗ = C∗ − C∗
Blank (4)

∆H∗ =
√

∆a∗2 + ∆b∗2 − ∆C∗2 (5)

SL = 1 (6)

SC = 1 + 0.045 C∗
Blank (7)

SH = 1 + 0.015 C∗
Blank (8)

kL = kS = kH = 1 (9)
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Despite the CIE94 system being more accurate at addressing smaller color differ-
ences [39] and non-uniform color perception [31] than the CIE76, less than a 2% difference
was found in all cases between CIE76 and CIE94 values (Table 1). Since the precision gain
was deemed not enough to justify the use of a more complex system, the CIE76 system was
employed through the rest of our study.

Table 1. ∆E76 and ∆E94 values obtained by direct comparation of the samples with the urine-free blank. Shaded values are
over the JND threshold, with darker shaded ones being over the color difference threshold.

Sample 1.1 Sample 1.2 Sample 1.3 Sample 2 Sample 3

[Lys]/µg·mL−1 ∆E76 ∆E94 ∆E76 ∆E94 ∆E76 ∆E94 ∆E76 ∆E94 ∆E76 ∆E94

143.07 5.7 5.6 5.7 5.6 5.2 5.1 5.9 5.8 3.0 3.0
71.54 5.4 5.3 5.2 5.1 5.3 5.2 5.4 5.3 2.8 2.8
14.31 2.5 2.5 2.5 2.4 2.4 2.4 2.7 2.7 0.9 0.9
7.15 2.1 2.1 2.0 2.0 1.8 1.8 2.6 2.6 1.5 1.5
1.43 1.7 1.6 1.7 1.7 1.7 1.6 2.1 2.1 0.9 0.9
0.72 1.5 1.5 1.6 1.6 1.6 1.6 2.1 2.1 1.0 1.0

0 2.6 2.5 2.3 2.3 2.3 2.2 2.4 2.4 1.3 1.3

As noted before, a ∆E value of 2.3 or over is termed the JND (Just Noticeable Difference)
threshold for close tones to be considered as distinguishable by an untrained observer [32].
Two tones that present a ∆E color difference under the JND are harder or impossible to
distinguish from each other, while two tones whose ∆E is over the JND will be interpreted as
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different. The JND threshold is indicated by a dashed line in Figure 5. The most significant
finding of this series is that the color difference value ∆E between the blank and zero
samples in normal cases can be found in the ∆E = 2.3 to 2.6 bracket. This means that zero
samples (lysozyme-free urine samples) can be distinguished from the blank sample by
direct comparison, thereby, posing a risk for false positive results.
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3.2. Working Test Results

A working test protocol differed from the preliminary one in some ways, as we tuned
up our work conditions to enhance results. For a start, after the 1:2 predilution employed
for native urine samples, their refractive index was also measured prior to starting the test.
Pre-diluted samples were then diluted again until their ri = rsample/rwater was under 1.002
in order to compensate for their different salt content, and then the rest of the protocol
was followed.

Nanoparticle volume in preparations was raised to 400 µL from the original 200 µL,
aiming for the obtention of a more intense tint without compromising detection thresholds.
In addition, the “fixed volume” preparations employed through preliminary tests were
changed to “dynamic volume” ones. The final volume in the detection cuvettes was
not always the same, but was compensated to be as small as possible while still having
the appropriate NaCl concentration to induce nanoparticle aggregation in the absence
of lysozyme. To this end, each urine series was accompanied by a control sample, in
which both lysozyme and urine volume were replaced by deionized water. This control
sample was then added NaCl 1 M drop-by-drop until the blue tint appeared, and then
the same NaCl volume was added to each point in a given series. This approach has two
benefits: first, as AuNPs synthesis tend to slightly differ in concentration between batches,
the minimum NaCl volume needed for aggregation may not always be the same, and,
second, the risk of a “false positive” caused by a deficiency of added NaCl is also averted.
Minimizing preparation volume also has the added benefit of avoiding excess AuNPs
dilution, therefore, allowing for clearer red and blue tints to be observed.

As can be seen in Figure 6, the red shift of the absorbance maxima upon NaCl addition
can now clearly be observed for samples 0 to 28.6 µg/mL, while upper concentrations
retain the red color of unaggregated nanoparticles and appear blue-shifted in relation to
the zero. No “bouncing” of the zero-lysozyme sample is observed.
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positive response can be observed for concentrations as low as 28.6 µg/mL. It is also inter-
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of lysozyme (0 µg/mL, see Figure 4) was corrected by the changes made to the improved 
protocol, minimizing the risk of a false positive. 

Figure 6. Normalized absorbance spectra for different concentrations of urinary lysozyme. Series
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Figure 7 shows the RGB simulation of naked-eye test results. Again, for all samples,
a clear red tint appears at higher lysozyme concentrations. For some of the samples, a
positive response can be observed for concentrations as low as 28.6 µg/mL. It is also
interesting to note that the reddish effect observed on some preliminary samples in the
absence of lysozyme (0 µg/mL, see Figure 4) was corrected by the changes made to the
improved protocol, minimizing the risk of a false positive.
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Figure 7. RGB color simulation obtained from experimental L*a*b* parameters corresponding to different lysozyme
concentrations in urine.

For the experimental L*a*b* parameters of the 10 samples, ∆E values were derived.
In this case, however, the reference point from which the color difference was calculated
was the numerical mean of the three parameters for the zero sample of all series. In this
way, the calculus compensated for the small red shift that had previously been observed
for some of the zero samples. It is important to note that there was a little difference in the
results when each ∆E was calculated by taking its own series zero as a reference. However,
a common reference colorimetric point that can, for example, be reproduced digitally or in
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printing is more useful in a real setting where there is no access to a known lysozyme-free
sample. The resulting L*a*b* values taken as reference were L* = 94.4, a* = −0.62, b* = −2.7.

As can be observed in Table 2 and Figure 8, for a lysozyme concentration of 114.4 µg/mL
or over, all 10 samples gave positive results that could be distinguished from the reference
at a naked eye. Moreover, nine out of ten cases were also over the JND threshold for
lysozyme concentrations as low as 57.2 µg/mL, and four of them also gave a positive
response when lysozyme concentration was halved. For the zero samples, none of them
deviated so much from the reference as to constitute a false positive. This represents a
marked improvement from the preliminary results in which zero samples could appear
over the JND threshold.

Table 2. ∆E76 values obtained by direct comparison of the samples with the medium values of all
zero samples. Shaded values are over the Just Noticeable Difference (JND) threshold, with darker
shaded ones being over the color difference threshold.

Lysozyme (µg/mL) A B C D E F G H I J Medium Value

143.1 3.1 3.5 5.2 6.1 5.3 4.0 5.9 4.9 3.7 3.9 4.7 ± 1.0
114.4 2.4 3.7 6.1 2.8 3.8 3.8 4.6 4.3 3.3 4.3 4.0 ± 1.0
85.8 1.7 4.3 4.4 6.3 4.2 4.3 5.8 4.1 3.1 - 4.4 ± 1.4
57.2 1.1 3.6 3.1 4.7 2.9 2.9 5.0 3.6 2.8 4.3 3.5 ± 1.1
28.6 0.5 2.0 1.8 3.0 2.6 1.2 3.0 2.0 1.8 2.8 2.2 ± 0.8
14.3 0.5 0.9 1.1 0.5 1.5 1.1 2.3 1.1 0.9 - 1.6 ± 0.6
7.2 1.0 - 0.9 0.6 1.1 1.0 1.0 0.9 0.8 1.1 1.3 ± 0.2
0 0.7 0.8 1.1 1.3 1.0 0.3 1.1 0.9 0.6 0.7 1.1 ± 0.3
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4. Discussion
4.1. Preliminary Test Results

Absorbance measurements of the lysozyme-spiked urine samples (see Figure 2) clearly
showed the protective effect of lysozyme over gold nanoparticle aggregation for the more
concentrated samples, which are 71.5 µg/mL and over. On the other hand, in light of
those results, it becomes apparent that the multitude of processes involved with analyzing
biological samples do cause a clear widening of the peaks, which is more apparent for
blue-shifted results (14.3 µg/mL and under). This widening causes the exact position of
the maximum to become ambiguous. This method of determining a positive response also
requires spectrophotometric measurements.

For naked-eye tests, the positive signal threshold was considered to correspond to
values over the JND (∆E values of 2.3 and over), which is understood to be the smallest
∆E value needed for two tones to be perceived as different by untrained observers. As
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seen in Figure 4 and Table 1, results corresponding to urinary lysozyme concentrations
of 71.5 µg/mL and over (clear red tint in the solution at naked eye) did reflect in all
cases, but the outlier, on values of ∆E over 5, which are generally accepted to correspond
to a clear color difference between two samples [33,41]. The color difference between
concentrations of 71.5 and 143.1 µg/mL was almost non-existent. If all positive responses
are analyzed globally, the positive response ∆E bracket extends from 5.2 to 5.7 with a mean
value of ∆E = 5.5. Therefore, in the majority of the cases, the color difference observed
after tuning up the system (15-nm anionic, citrate-capped AuNPs under optimum citrate
and NaCl concentrations) allows for a clear distinction between a lysozyme-containing
and a lysozyme-free urine sample. By direct comparison with a freshly prepared blank
sample, naked-eye lysozyme detection in urine can, therefore, be carried out in a quick and
easy way.

However, although the positive-blank color difference is enough to be noticeable at a
glance in the outlier case 3, the difference between the positive response of this sample 3 at
[lys] > 71.5 mg/mL (∆E76 ≈ 2.8), and the 1 and 2 control samples with [lys] = 0 (∆E76 ≈ 2.4)
is not big enough to unequivocally ascertain the presence of lysozyme by the naked eye
observation without either risking false positives for 1 and 2 or a false negative for 3.

The presence of a purple tint on zero-lysozyme samples can be attributed to the pres-
ence of trace amounts of other proteins. Those data are in accordance with Wang et al. [18]
who reported similar observations when analyzing lysozyme-spiked urine samples through
the Plasmon Resonance Light-Scattering (PRLS) technique. The higher grade of AuNPs
aggregation found in sample 3, which leads to a greater blue color intensity, might be due
to an abnormally high salt content in the initial sample.

4.2. Working Test Results

With the modified protocol, the normalized absorbance spectra of the samples (Figure 6)
shows a similar behaviour to that observed for the preliminary test results. Lower lysozyme
concentration samples do experience a red shifting of the absorbance spectra due to
nanoparticle aggregation, while higher concentration samples remain on the green-blue
absorbance zone. In this case, although the general tendency is clear, peak widening
becomes even more apparent than it was during the preliminary phase of the study.

As for naked-eye testing, changes made to the preliminary testing protocol proved
useful in pinpointing the detection threshold of the method. The use of a “real” refer-
ence point for the test series, obtained from the mathematical mean of the three L*a*b*
parameters for the zero-lysozyme samples, meant that the possible purple tint that may
appear in a lysozyme-free sample is accounted and compensated for. The reference shift
also meant that less lysozyme-containing samples tested over ∆E = 5, that is, they were
less distinguishable from the real reference than they were from the AuNPs + NaCl refer-
ence employed for the preliminary tests. However, all positives still tested over the JND,
meaning that the color difference is still enough for the system to work.

On this ten-sample series, no false positives were observed. That is, all zero samples
tested well under ∆E = 2.3 and cannot be considered as distinguishable from the reference
at a naked eye. On the other hand, nine out of the ten samples showed a color change
over the JND when lysozyme concentrations over 57.2 µg/mL were employed, reading
as positives. For the outlier case, the color change appeared at a higher concentration
threshold of 114.4 µg/mL. Concentrations under that threshold can be considered as “false
negatives” in which the color test reads as a negative even in the presence of measurable
lysozyme concentrations. More importantly, four out of ten samples also showed color
changes over the JND for concentrations as low as 28.6 µg/mL, therefore, also testing as
positives.

Based on that data, and on mean ∆E values and error margins that can be found in
Figure 8, we propose a detection limit of 57.2 µg/mL for our naked-eye urinary lysozyme test.
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4.3. Result Evaluation

Finally, in order to evaluate the usefulness of the proposed method, the obtained
lower threshold limit needs to be put in context. Urinary lysozymuria associated with
monocitic and myelomonocitic leukemia was found in a classic work to range between
25 and 420 µg/mL of lysozyme [3]. A range of 62 to 211 µg/mL has been observed for
acute monocitic leukemia, and a range of 0 to 87 µg/mL has been observed for acute
myelomonocitic leukemia [42]. It is important to note that urinary lysozymuria is virtually
absent in other leukemia types, so its early detection may help narrow leukemia type diag-
noses in a clinical setting. Lysozymuria has also been found associated with varied renal
diseases, up to approximately 30 µg/mL [5]. Patients suffering from diabetic nephropathy
can also show increased urinary lysozyme levels, up to 10 µg/mL [43].

As for interference testing, human albumin (HSA), which is a protein commonly
found in urine [1,44], has been found to interact with gold nanoparticles [45,46]. Globulins,
which is another common urinary protein family [47], have also been reported to have
the same effect [45]. Those interactions, where the adsorption of proteins over the particle
leads to the formation of a protein corona, may cause a small degree of protection in the
presence of salt, leading to a purple color. In concrete, HSA may appear alongside or
instead of lysozyme in some kinds of proteinurias, such as those induced by renal damage
or diabetes [48]. Protocols for elimination of those proteins by precipitation have been
proposed by Wang et al. [18]. Since the isoelectric point of those proteins is below 7 in all
cases [1], they remain uncharged at a biological pH, while lysozyme presents a cationic
charge. This means that selective elimination of contaminant proteins, if suspected, can be
carried out relatively easily.

5. Conclusions

As stated before, a good number of studies have dealt with lysozyme detection in the
last few years. However, almost all of the existing studies employed complex detection
techniques that may or may not be available in a clinical setting, or made use of expensive
nano-systems (for example, aptamer-based tests) in which production costs may be a
limiting factor when trying to develop a first-approach commercial test to lysozyme and
urinary proteinuria. Most of the existing literature also deals with methods developed
either in aqueous media or non-biological samples, such as wine samples, with urine
examples being scarce even in the face of the preeminence of lysozymurias and other
proteinurias associated with various disorders.

In light of the data exposed throughout this manuscript, it becomes apparent that
our method is able to detect urinary lysozyme concentrations within the range distinctly
associated with both monocitic and myelomonocitic leukemia, among other pathologies.
Both lower production costs and shorter detection times in relation to existing tests point
to a method that could become a helpful aid in early detection of those pathologies, which
is crucial to save lives. It is also a fast (under 10 min), easy, and inexpensive system to do
first-line testing for lysozymuria, requires no specialized equipment to be carried out, and
can be read by a simple, naked-eye color assessment with a reference.
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