
Cell-Like P Systems With Channel States and
Symport/Antiport Rules

Bosheng Song, Linqiang Pan∗, Member, IEEE, and Mario J. Pérez-Jiménez

Abstract— Cell-like P systems with symport/antiport rules are
inspired by the structure of a cell and the way of communicating
substances through membrane channels between neighboring
regions. In this work, channel states are introduced into cell-like
P systems with symport/antiport rules, and we call this variant
of communication P systems as cell-like P systems with channel
states and symport/antiport rules. In such P systems, at most one
channel is established between neighboring regions, each channel
associates with one state in order to control communication
at each step, and rules are used in a sequential manner: on
each channel at most one rule can be used at each step.
The computational power of such P systems is investigated.
Specifically, we show that cell-like P systems with two states and
using uniport rules, or with any number of states and using
antiport rules of length two, are able to compute only finite sets
of non-negative integers. We further prove that cell-like P systems
with two membranes are as powerful as Turing machines when
channel states and symport/antiport rules are suitably combined.
The results show that channel states are a feature that can
increase the computational power of cell-like P systems with
symport/antiport rules.

Index Terms— Bio-inspired computing, channel state,
membrane computing, P system, universality.

I. INTRODUCTION

MEMBRANE COMPUTING is a fast-growing branch
of natural computing, which arose as an abstraction

of the architecture and functioning of living cells, and the
way in which biochemical substances are processed in a
single cell or in a net of cells [1]. The computing devices
investigated in membrane computing are called P systems.
Many variants of P systems were introduced with mathe-
matical, computer science or biological motivation [2]–[5],
and many of them have been applied to solve real prob-
lems [6]–[10]. According to the membrane structure, there
are two main families of P systems: cell-like P systems which

The work of B. Song and L. Pan was supported by National Natural Science
Foundation of China (61033003, 91130034, 61602192, and 61320106005),
Ph.D. Programs Foundation of Ministry of Education of China
(20120142130008), the Innovation Scientists and Technicians Troop
Construction Projects of Henan Province (154200510012). The work of
M. J. Pérez-Jiménez was supported by “Ministerio de Economía y Com-
petitividad” of Spanish government (TIN2012-37434), cofunded by FEDER
funds. Asterisk indicates corresponding author.

B. Song is with the Key Laboratory of Image Information Processing and

Intelligent Control, School of Automation, Huazhong University of Science
and Technology, Wuhan 430074, Hubei, China.∗

L. Pan is with the Key Laboratory of Image Information Process-

ing and Intelligent Control, School of Automation, Huazhong Univer-
sity of Science and Technology, Wuhan 430074, Hubei, China. (e-mail:
lqpan@mail.hust.edu.cn).

M. J. Pérez-Jiménez is with the Department of Computer Science and
Artificial Intelligence, University of Sevilla, Sevilla Avda. Reina Mercedes s/n,
41012, Spain.

have a hierarchical arrangement of membranes as in a cell [1]
and tissue-like P systems or neural-like P systems which
have several one-membrane cells as in a tissue or a neural
net [11], [12]. A comprehensive introduction of membrane
computing can be found in the monograph [13], [14], and
for the most up-to-date source of information on both general
and technical levels, one can go to the P systems web page
http://ppage.psystems.eu.

A cell-like P system consists of a hierarchical arrangement
of membranes, each membrane delimiting a compartment
(also called region), where multisets of objects and rules
to make these objects evolve are placed. A membrane with
no compartments inside is called elementary, otherwise it
is called non-elementary. The outmost membrane is called
a skin membrane, the space outside the skin membrane is
called the environment. Evolution rules have the form of
either rewriting or communication (symport/antiport) rules.
The present work focuses on symport/antiport rules, which
were proposed in [15], [16]. A symport rule is written in the
forms (u, in) or (u, out), meaning that the objects specified by
multiset u can enter or exit the membrane with which the rule
is associated. Uniport rules are those by which only one object
is moved. An antiport rule is written in the form (u, out; v, in),
meaning that the objects of u exit and simultaneously, those
of v enter the membrane with which the rule is associated.
The length of a communication rule is the total number of
objects involved in that rule.

The computational power of cell-like P systems with sym-
port/antiport rules has been investigated widely, and under
several strategies concerning the use of rules such P systems
are proved to be computationally complete [15], [17]–[24].
An interesting strategy concerning the use of symport/antiport
rules was presented in [25], where channel states were intro-
duced into tissue P systems to control the symport/antiport
rules. Hence a variant of tissue P systems, called tissue
P systems with channel states, was proposed, where there is
at most one channel between two cells or between a cell and
the environment, a state is associated with each channel to
control the communication at each step, and rules are used in
a sequential manner: on each channel at most one rule can be
used at a computation step.

It is known that cell-like P systems with two membranes
and using symport rules of length 2 or using symport rules
of rule 1 and antiport rules of length 2 are Turing universal
(see [14, Theorem 5.10, Ch. 5]). However, in these systems,
rules are used in a maximally parallel manner, that is, at each
step, a maximal multiset of rules between two cells or between
a cell and the environment are applied, no further rule can be
added being applicable.

In this work, channel states are introduced into cell-like
P systems with symport/antiport rules, and we call this new
variant of communication P systems as cell-like P systems
with channel states and symport/antiport rules. In such
P systems, at most one channel is established between neigh-
boring regions, a state is associated with each channel to
control the communication at each step, and rules are used
in a sequential manner at the level of each channel (on each
channel associated with two neighboring regions, at most one
rule can be used at one step) and in a parallel manner at the
level of the system (all channels which can use a rule must
do it).

The computational power of cell-like P systems with chan-
nel states and symport/antiport rules is investigated. Specifi-
cally, we prove that such P systems with two states and only
using uniport rules, or with any number of states and using
antiport rules of length two, are able to compute only finite
sets of non-negative integers. We further show that cell-like
P systems with two membranes are Turing universal when
having any number of states and only using uniport rules, or
four states and only using symport rules of length two, or two
states and only using symport rules of length three, or one
state and only using antiport rules of length three, or three
states and using uniport rules and antiport rules of length two.

It is known that cell-like P systems with two membranes
using only symport rules of length at most 1 and working in a
sequential manner are not Turing universal. It will be proved
that such kind of P systems with channel states are Turing uni-
versal (see Theorem 4.4) (note that by the definition, cell-like
P systems with channel states work in a sequential manner).
This comparison shows that the feature of channel states can
increase the computational power of cell-like P systems with
symport/antiport rules.

II. PRELIMINARIES

In this section, we recall some basic notions and notations
from formal language theory and membrane computing that
we use in this work. For further details and information the
reader is referred to [14], [26].

An alphabet � is a non-empty set and its elements are called
symbols. A string u over � is a finite sequence of symbols
from �. The number of occurrences in u of symbols from �
is called the length of the string u, denoted by |u|. The empty
string (with length 0) is denoted by λ. The set of all strings
over an alphabet � is denoted by �∗, and by �+ = �∗\{λ}
we denote the set of all non-empty strings. A language over
� is a set of strings over �.

A multiset over an alphabet � is a function m : � → N,
which gives a nonnegative multiplicity m(x) for each x ∈ �.
The support of a multiset m is defined as supp(m) = {x ∈
� | f (x) > 0}. A multiset is finite if its support is a finite set.
We denote by ∅ the empty multiset. The size of a finite multiset
m = (�, f) is

∑
x∈� f (x), and it is denoted by |m|. Let m1,

m2 be multisets over �. The union of m1 and m2, denoted by
m1 + m2, is the multiset over � defined as (m1 + m2)(x) =
m1(x) + m2(x) for each x ∈ �. We say that m1 is contained
in m2 and we denote it by m1 ⊆ m2, if m1(x) ≤ m2(x) for
each x ∈ �. The relative complement of m2 in m1, denoted

by m1 \m2, is the multiset defined as (m1 \m2)(x) = m1(x)−
m2(x) if m1(x) ≥ m2(x), and (m1 \ m2)(x) = 0 otherwise.

We denote by N F I N the family of all finite sets of
positive integers. By N M AT we denote the family of sets
of positive integers generated by matrix grammars without
appearance checking. By N RE we denote the family of
recursively enumerable sets of natural numbers. It is known
that N M AT ⊂ N RE [27].

A register machine is a tuple M = (m, H, l0, lh , I), where

• m is the number of registers;
• H is a set of labels;
• l0, lh ∈ H are distinguished labels, where l0 is the label

of the initial instruction, and lh is the label of the halting
instruction;

• I is a set of labeled program instructions of the following
forms (each label from H labels only one instruction from
I , thus precisely identifying it):

• li : (ADD(r), l j , lk) (add 1 to register r and then
go to one of the instructions with labels l j , lk , non-
deterministically chosen);

• li : (SUB(r), l j , lk) (if register r is non-zero, then
subtract 1 from it, and go to the instruction with label
l j ; otherwise, go to the instruction with label lk);

• lh : HALT (the halt instruction).

A register machine M generates a set N(M) of numbers
in the following way: initially, all registers of the machine
are empty (i.e., storing the number zero); the machine starts
to apply the instruction with label l0 and continues to apply
instructions as indicated by the labels (and made possible
by the contents of registers); if the machine M reaches the
halt instruction lh , then the number n presented in specified
register 1 at that time is said to be generated by M . If the
computation does not halt, then no number is generated.
It is known that register machines generate all sets of num-
bers which are Turing computable, hence they characterize
N RE [28], [29].

III. CELL-LIKE P SYSTEMS WITH CHANNEL STATES AND

SYMPORT/ANTIPORT RULES

In this section, we give the definition of cell-like P systems
with channel states and symport/antiport rules.

Definition 3.1: A cell-like P system with channel states and
symport/antiport rules, of degree q ≥ 1, is a tuple

�=(�, K , E, μ,M1, . . .,Mq , s1, . . ., sq ,R1, . . .,Rq , iout),

where

• � is a finite alphabet of objects and E ⊆ �;
• K is an alphabet of states (not necessarily disjoint of �);
• μ is a rooted tree with q nodes labelled by 1, . . ., q;
• Mi , 1 ≤ i ≤ q , are finite multisets over �;
• si , 1 ≤ i ≤ q , are channel states;
• Ri , 1 ≤ i ≤ q , are finite sets of rules of the following

forms (associated with the channels):

• Symport rules: (s, (u, in), s′) or (s, (u, out), s′), for
s, s′ ∈ K , u ∈ �+;

• Antiport rules: (s, (u, out; v, in), s′), for s, s′ ∈ K ,
u, v ∈ �+;

• iout ∈ {0, 1, . . ., q}.

A cell-like P system with channel states and sym-
port/antiport rules of degree q ≥ 1 can be viewed as a set
of q membranes labelled by 1, . . ., q , arranged in a hierarchical
structure of a rooted tree (the root labelled by 1 is the skin
membrane), such that: a) M1, . . .,Mq represent the finite
multisets of objects initially placed in the q membranes of
the system; b) E is the set of objects initially located in
the environment of the system, all of them available in an
arbitrary number of copies; c) s1, . . ., sq are initial channel
states between neighboring regions; specifically si is the initial
state associated with the channel between membrane i and its
parent; d) R1, . . .,Rq are finite sets of rules (Ri corresponds
to membrane i of μ); e) iout is a distinguished region which
will encode the output of the system. The term region i
(0 ≤ i ≤ q) refers to membrane i in case 1 ≤ i ≤ q
and to the environment in case i = 0. For each membrane
i ∈ {2, . . ., q}, we denote by p(i) the parent of membrane
i in the rooted tree μ, the “parent” of the skin membrane
is the environment, denoted by p(1) = 0. The length of a
symport rule (s, (u, in), s′) or (s, (u, out), s′) (an antiport rule
(s, (u, out; v, in), s′), respectively) is defined as |u| (|u|+ |v|,
respectively). It is worth pointing out that any rule in Ri

involves membrane i and its parent region p(i).
We note the important restriction that there is at most

one channel between neighboring regions, where at each
step a state from K is associated. This does not restrict the
communication between the neighboring regions, because the
movement of objects in the two directions of a channel is
allowed.

A symport rule (s, (u, out), s′) ∈ Ri is applicable to a
configuration at a moment if the channel between membrane i
and its parent region p(i) has the state s and membrane i
contains multiset u at that moment. When such a rule is
applied, multiset u is sent to region p(i) and the channel
state between region i and region p(i) is changed from
s to s′.

A symport rule (s, (u, in), s′) ∈ Ri is applicable to a
configuration at a moment if the channel between membrane i
and its parent region p(i) has the state s and the region
p(i) contains multiset u at that moment. When such a rule is
applied, multiset u enters membrane i from region p(i) and the
channel state between region i and region p(i) is changed from
s to s′.

An antiport rule (s, (u, out; v, in), s′) ∈ Ri is applicable
to a configuration at a moment if the channel between mem-
brane i and its parent region p(i) has the state s, and mem-
brane i contains multiset u as well as its parent region contains
multiset v at that moment. When such a rule is applied,
multiset u from membrane i is sent to region p(i), at the
same time multiset v enters region i from region p(i), and the
channel state between region i and region p(i) is changed from
s to s′.

The rules of a cell-like P system with channel states and
symport/antiport rules are applied in a sequential manner at
the level of each channel (on each channel associated with two
neighboring regions, at most one rule can be used at one step)
and in a parallel manner at the level of the system (all channels
which can use a rule must do it).

A configuration of a cell-like P system with channel states
and symport/antiport rules at any instant is described by all
multisets of objects over � associated with the regions, all
states associated with each channel and the multiset of objects
over � \ E associated with the environment at that moment.
Note that the objects from E have infinite copies, so they
are not properly changed along the computation. The initial
configuration is (M1, . . .,Mq , s1, . . ., sq; ∅).

Starting from the initial configuration and applying rules
as described above, one obtains a sequence of consecutive
configurations. Each passage from a configuration to a suc-
cessor configuration is called a transition. A configuration is a
halting configuration if no rule of the system is applicable to it.
A sequence of transitions starting from the initial configuration
is a computation. Only a halting computation gives a result,
encoded by the number of copies of objects present in the
output region iout .

The set of natural numbers computed in the way men-
tioned above by a cell-like P system with channel states and
symport/antiport rules � is denoted by N(�). The family
of all sets of numbers computed by such P systems with
at most m membranes, k states, and using symport rules
of length at most t1, antiport rules of length at most t2 is
denoted by N O Pm (statek , symt1, antit2). Note that if only
symport rules (resp., only antiport rules) are used in a system,
then it is simply denoted by N O Pm (statek , symt1) (resp.,
N O Pm (statek, antit2)). If one of the parameters m, k, t1, t2
is not bounded, then it is replaced with ∗.

IV. COMPUTATIONAL POWER OF CELL-LIKE P SYSTEMS

WITH CHANNEL STATES AND SYMPORT/ANTIPORT RULES

In this section, we investigate the computational power of
cell-like P systems with channel states and symport/antiport
rules.

In the proofs of Theorems 4.4, 4.5, 4.6, 4.7 and 4.8, we
consider a register machine M = (m, H, l0, lh, I) as described
in Section II.

Theorem 4.1: N O P∗(state∗, anti2) ⊆ N F I N .
Proof: The proof follows from the fact that the number

of objects in a membrane cannot be changed by using only
antiport rules of length 2, therefore the number of objects in
any cell-like P system with antiport rules of length 2 will not
change during any sequence of transitions starting from the
initial configuration and ending with a halting configuration,
and the number of channel states is finite during this process.
Hence, only finite sets of natural numbers can be generated.

Theorem 4.2: N O P∗(state2, sym1) ⊆ N F I N .
Proof: It is enough to observe that the number of objects

in the system can increase only if a rule (s, (a, in), s′) with
a ∈ E , is used in the skin membrane (the channel state between
the skin membrane and the environment must be changed,
otherwise the system never halts); on the other hand, if there
is a rule (s, (a, in), s′) with a ∈ E and a rule (s′, (b, in), s) for
b ∈ E, a �= b in the skin membrane then the computation never
halts. Hence it is easy to see that for any halting computation,
at most n + 1 objects may be generated, with n being the
number of objects initially present in the system. Therefore,
the generated set of numbers is included in N F I N .

Tissue P systems with one cell can be viewed as cell-like
P systems with one membrane and symport/antiport rules,
hence we have the following results [25].

Theorem 4.3: N O P1(state1, anti4) = N O P1(state∗,
sym1, anti2) = N M AT .

In what follows, several Turing universal results are
obtained by cell-like P systems when channel states and
symport/antiport rules are suitably combined.

Theorem 4.4: N O P2(state∗, sym1) = N RE .
Proof: We only prove the inclusion N RE ⊆

N O P2(state∗, sym1). The reverse inclusion follows from the
Church-Turing thesis.

Let us consider a register machine M = (m, H, l0, lh , I).
We construct the cell-like P system with channel states and
symport/antiport rules � to simulate the register machine M .

� = (�, K , E, μ,M1,M2, l0, s,R1,R2, 1),

where

• � = {ai | 1 ≤ i ≤ m} ∪ {b, e},
• K = {s, s′, s′′, s′′′} ∪ {l, l ′, l ′′, l ′′′, liv | l ∈ H },
• E = {ai | 1 ≤ i ≤ m} ∪ {e},
• μ = [[]2]1,
• M1 = ∅, M2 = {b}, and the sets R1, R2 of rules are as

follows:
• For each ADD instruction li : (ADD(r), l j , lk) of M , we

consider the following rules in R1 :
r1 : (li , (ar , in), l j),
r2 : (li , (ar , in), lk)

An ADD instruction li is simulated obviously. Under the
control of channel state li between membrane 1 and the envi-
ronment, one of rules r1 and r2 is used non-deterministically.
By applying rule r1 (resp., r2), one copy of object ar is
introduced into membrane 1 (simulating that the number stored
in register r is increased by one), and the channel state between
membrane 1 and the environment is changed to l j (resp., lk).
Hence, the system starts to simulate an instruction with label
l j or lk . Clearly, the instruction li of M is correctly simulated
by �.

• For each SUB instruction li : (SUB(r), l j , lk) of M ,

• we consider the following rules in R1:
r3 : (li , (e, in), l ′i),
r4 : (l ′i , (ar , out), l ′′i),
r5 : (l ′′i , (b, out), l ′′i),
r6 : (l ′i , (b, out), l ′i),
r7 : (l ′′i , (b, in), l ′′′i),
r8 : (l ′i , (b, in), liv

i),
r9 : (l ′′′i , (e, out), l j),

r10 : (liv
i , (e, out), lk);

• and we consider the following rules in R2 :
r11 : (s, (e, in), s′),
r12 : (s′, (b, out), s′′),
r13 : (s′′, (e, out), s′′′),
r14 : (s′′′, (b, in), s).

A SUB instruction li is simulated by system � in the
following way: At step 1, under the influence of channel
state li between membrane 1 and the environment, one copy
of object e is sent into membrane 1 by using rule r3, and the

TABLE I

THE APPLICATION OF RULES IN R1 AND R2 , THE EVOLUTION OF CHAN-
NEL STATES s1 AND s2, AND THE REWRITING OF MULTISETS M1

AND M2 IN MEMBRANES 1 AND 2, RESPECTIVELY, DURING THE

SIMULATION OF A SUB INSTRUCTION li : (SUB(r), l j , lk) WITH

REGISTER r NOT EMPTY, WHERE z, z′ ARE MULTISETS OF

OBJECTS FROM THE SET {a1, . . ., am}, z = z′ ar

channel state is changed to l ′i . In what follows, we have two
cases:

• There is at least one copy of object ar in membrane 1
(corresponding to the fact that the number stored in
register r is greater than 0). In this case, at step 2, rule r4
is enabled and applied, one copy of object ar is sent to
the environment (one copy of object ar is consumed), and
channel state between membrane 1 and the environment
is changed from l ′i to l ′′i ; simultaneously, by using rule r11,
object e is sent into membrane 2, the channel state
between membrane 2 and membrane 1 is changed from
s to s′. At step 3, rule r12 is used, object b is sent
out of membrane 2 (changing the channel state between
membrane 2 and membrane 1 to s′′), which will be sent
to the environment at the next step by applying rule r5;
by using rule r13, object e is sent out of membrane 2,
the channel state between membrane 2 and membrane 1
is changed to s′′′. At step 5, rule r7 is enabled and used,
object b is sent into membrane 1, which will be sent
back to membrane 2 at the next step by using rule r14
(the channel state between membrane 2 and membrane 1
is changed back to s again); simultaneously, the chan-
nel state between membrane 1 and the environment is
changed to l ′′′i , which will be changed to l j at step 6 by
using rule r9. Hence in this case, one copy of object ar

is consumed in membrane 1 (simulating that the number
stored in register r is decreased by one), and the system
starts to simulate the instruction l j (see Table I).

• There is no object ar in membrane 1 (corresponding to
the fact that the number stored in register r is 0). In this
case, at step 2, only rule r11 is enabled and applied, object
e is sent into membrane 2 and object b will be sent out of
this membrane at the next step. At step 4, by using rule r6,
object b is sent to the environment, which will be sent
into membrane 1 at the next step by using rule r8, the
channel state between membrane 1 and the environment
is changed from l ′i to liv

i ; by applying rule r13, the channel
state between membrane 2 and membrane 1 is changed
to s′′′. At step 6, rule r14 is applied, object b is sent back
to membrane 2, the channel state between membrane 2
and membrane 1 is changed to s again; simultaneously,
by using rule r10, the channel state between membrane 1
and the environment is changed to lk . Hence, the system
starts to simulate the instruction lk (see Table II).

TABLE II

THE APPLICATION OF RULES IN R1 AND R2 , THE EVOLUTION OF CHAN-
NEL STATES s1 AND s2 , AND THE REWRITING OF MULTISETS M1

AND M2 IN MEMBRANES 1 AND 2, RESPECTIVELY, DURING THE

SIMULATION OF A SUB INSTRUCTION li : (SUB(r), l j , lk) WITH

REGISTER r EMPTY, WHERE z IS A MULTISET OF OBJECTS
FROM THE SET {a1, . . ., am }

Hence, the SUB instruction of M is correctly simulated by
system �.

When the channel state between membrane 1 and the
environment is lh , no rule can be used in the system, and
the computation halts. The number of the copies of object a1
in membrane 1 corresponds to the result of the computation,
hence N(M) = N(�).

Theorem 4.5: N O P2(state4, sym2) = N RE .
Proof: We only prove the inclusion N RE ⊆

N O P2(state4, sym2). The reverse inclusion follows from the
Church-Turing thesis.

Let us consider a register machine M = (m, H, l0, lh , I).
We construct the cell-like P system with channel states and
symport/antiport rules � to simulate the machine M .

� = (�, K , E, μ,M1,M2, s, s,R1,R2, 1),

where

• � = {ai | 1 ≤ i ≤ m}∪{b, b′, b′′, l, l ′, l ′′ | b, l ∈ H }∪{e},
• K = {s, s′, s′′, s′′′},
• E = {ai | 1 ≤ i ≤ m} ∪ {l, l ′, l ′′ | l ∈ H } ∪ {e},
• μ = [[]2]1,
• M1 = {l0}, M2 = {b, b′, b′′ | b ∈ H }, and the sets R1,

R2 of rules are constructed as follows:
• For each ADD instruction li : (ADD(r), l j , lk) of M , we

consider the following rules in R1:
r1 : (s, (li bi , out), s),
r2 : (s, (bi ar , in), s′),
r3 : (s′, (bi , out), s′),
r4 : (s′, (bil j , in), s′′),
r5 : (s′, (bilk, in), s′′),
r6 : (s′′, (bi , out), s′′),
r7 : (s′′, (bi e, in), s);

• and we consider the following rules in R2 :
r8 : (s, (li , in), s),
r9 : (s, (li bi , out), s′),
r10 : (s′, (bi e, in), s)

An ADD instruction li is simulated by system � in the
following way: At step 1, under the control of channel state s
between membrane 2 and membrane 1, object li is sent
into membrane 2 by using rule r8, this object together with
object bi will be sent out of this membrane at the next step
(by using rule r9), and the channel state between membrane 2
and membrane 1 is changed from s to s′. With the appearance

of object bi in membrane 1, rule r1 is enabled at step 3; by
using this rule, object bi is sent to the environment, and one
copy of object ar will be sent into membrane 1 at the next step
(by applying rule r2), the channel state between membrane 1
and the environment is changed to s′. At step 5, under the
influence of channel state s′ between membrane 1 and the
environment, rule r3 can be used, object bi is sent to the
environment again. At the next step, one of rules r4 and r5
is used non-deterministically. By applying rule r4 (resp., r5),
objects bi , l j (resp., bi , lk) are sent into membrane 1, changing
the channel state between membrane 1 and the environment to
s′′. Note that the instruction l j or lk starts to be simulated only
if the channel state between membrane 2 and membrane 1
is s, where this state appears only at the last step (as we
will see below, the channel state between membrane 2 and
membrane 1 is changed to s at step 9, which is the last step
for simulating an ADD instruction). At the next two steps,
by using rules r6 and r7 one by one, object bi is sent to
the environment and this object together with object e will
be sent into membrane 1, changing the channel state between
membrane 1 and the environment to s again. At step 9, rule r10
is enabled and applied, object bi is sent back to membrane 2,
and the channel state between membrane 2 and membrane 1
is changed from s′ to s. Hence, one copy of object ar is
introduced in membrane 1 (simulating that the number stored
in register r is increased by one), the system starts to simulate
the instruction with label l j or lk . So the instruction li of M
is correctly simulated by � (see Table III).

• For each SUB instruction li : (SUB(r), l j , lk) of M,
• we consider the following rules in R1:

• r11 : (s, (b′
i li , out), s),

r12 : (s, (b′
i l

′
i , in), s′),

r13 : (s′, (b′
i , out), s′),

r14 : (s′, (b′
i l

′′
i , in), s′′),

r15 : (s′′, (l ′i ar , out), s′′′),
r16 : (s′′′, (b′′

i , out), s′′′),
r17 : (s′′, (b′′

i l ′i , out), s′′),
r18 : (s′′′, (b′′

i l j , in), s),
r19 : (s′′, (b′′

i lk, in), s),
r20 : (s, (b′′

i l ′′i , out), s),
r21 : (s, (b′′

i e, in), s);
• and we consider the following rules in R2 :

r22 : (s, (li , in), s),
r23 : (s, (b′

i li , out), s′),
r24 : (s′, (b′

i l
′′
i , in), s′),

r25 : (s′, (b′′
i l ′′i , out), s′),

r26 : (s′, (b′′
i e, in), s)

A SUB instruction li is simulated by system � in the
following way: At step 1, rule r22 is used, object li is
sent into membrane 2, this object together with object b′

i
will be sent out of this membrane at the next step by
using rule r23, and the channel state between membrane 2
and membrane 1 is changed to s′. At step 3, rule r11 is
used, object b′

i is sent to the environment, and object l ′i
will be introduced into membrane 1 at the next step by
using rule r12, the channel state between membrane 1
and the environment is changed from s to s′. At the next

TABLE III

THE APPLICATION OF RULES IN R1 AND R2 , THE EVOLUTION OF CHANNEL STATES s1 AND s2, AND THE REWRITING OF MULTISETS M1 AND M2
IN MEMBRANES 1 AND 2, RESPECTIVELY, DURING THE SIMULATION OF AN ADD INSTRUCTION li : (ADD(r), l j , lk), WHERE z IS A MULTISET

OF OBJECTS FROM THE SET {a1, . . ., am , e}, AND u(H), v(H),w(H) ARE MULTISETS WHICH CONTAIN EACH b ∈ H, b′ ∈ H,b′′ ∈ H
EXACTLY ONCE, RESPECTIVELY

TABLE IV

THE APPLICATION OF RULES IN R1 AND R2 , THE EVOLUTION OF CHANNEL STATES s1 AND s2, AND THE REWRITING OF MULTISETS M1 AND M2
IN MEMBRANES 1 AND 2, RESPECTIVELY, DURING THE SIMULATION OF A SUB INSTRUCTION li : (SUB(r), l j , lk) WITH REGISTER r NOT

EMPTY, WHERE z, z′ ARE MULTISETS OF OBJECTS FROM THE SET {a1, . . . , am }, z = z′ar , AND u(H), v(H),w(H) ARE MULTISETS WHICH

CONTAIN EACH b ∈ H, b′ ∈ H, b′′ ∈ H EXACTLY ONCE, RESPECTIVELY

two steps, rules r13 and r14 are used one by one, one copy
of object l ′′i is sent into membrane 1, and the channel state
between membrane 1 and the environment is changed
from s′ to s′′. In what follows, we have two cases:

• There is at least one copy of object ar in membrane 1
(corresponding to the fact that the number stored
in register r is greater than 0). In this case, at
step 7, rule r15 is enabled and applied, objects l ′i , ar

are sent to the environment (one copy of object ar

is consumed, simulating that the number stored in
register r is decreased by one), changing the channel
state between membrane 1 and the environment
from s′′ to s′′′; simultaneously, objects b′

i , l ′′i are
sent into membrane 2 by using rule r24. With the
appearance of object l ′′i in membrane 2, rule r25 is
used, object b′′

i is sent out of membrane 2, which
will be sent to the environment at the next step
by using rule r16. Under the influence of channel
state s′′′ between membrane 1 and the environment,
instruction object l j is sent into membrane 1 by
using rule r18, changing the channel state between
membrane 1 and the environment to s. At step 11,

by applying rule r20, object b′′
i is sent to the envi-

ronment, and this object together with object e will
be sent into membrane 1 at the next step (by using
rule r21). At step 13, rule r26 is used, object b′′

i is sent
back to membrane 2, and the channel state between
membrane 2 and membrane 1 is changed from s′ to s.
In this case, one copy of object ar is consumed in
membrane 1, and the system starts to simulate the
instruction l j . Note that only when the channel state
between membrane 2 and membrane 1 is changed
to s, the follow-up instruction l j can be simulated
(see Table IV).

• There is no object ar in membrane 1 (corresponding
to the fact that the number stored in register r
is 0). In this case, at step 7, only rule r24 can be
used, objects b′

i , l ′′i are sent into membrane 2 and
objects b′′

i , l ′′i will be sent out of this membrane at
the next step by using rule r25. Rule r17 can be
used when object b′′

i appears in membrane 1; this
object together with object l ′i will be sent to the
environment at step 9. Under the control of channel
state s′′ between membrane 1 and the environment,

TABLE V

THE APPLICATION OF RULES IN R1 AND R2 , THE EVOLUTION OF CHANNEL STATES s1 AND s2, AND THE REWRITING OF MULTISETS M1 AND M2
IN MEMBRANES 1 AND 2, RESPECTIVELY, DURING THE SIMULATION OF A SUB INSTRUCTION li : (SUB(r), l j , lk) WITH REGISTER r EMPTY,

WHERE z IS A MULTISET OF OBJECTS FROM THE SET {a1, . . . , am}, AND u(H), v(H),w(H) ARE MULTISETS WHICH CONTAIN EACH

b ∈ H,b′ ∈ H,b′′ ∈ H EXACTLY ONCE, RESPECTIVELY

instruction object lk is sent into membrane 1 by
using rule r19, changing the channel state between
membrane 1 and the environment to s. Rule r20
can be used at step 11, thus objects b′′

i , l ′′i are sent
to the environment. At the next two steps, objects
b′′

i , e are sent into membrane 1 by using rule r21 and
then these objects will be sent into membrane 2 by
applying rule r26, changing the channel state between
membrane 2 and membrane 1 from s′ to s. Hence, the
system starts to simulate the instruction lk . Note that
only when the channel state between membrane 2
and membrane 1 is changed to s, the follow-up
instruction lk can be simulated (see Table V).

Hence, the SUB instruction of M is correctly simulated
by system �.

When the object lh appears in membrane 1, no rule can
be used in the system, and the computation halts. The
number of copies of the object a1 in membrane 1 corre-
sponds to the result of the computation, hence N(M)=
N(�).

Theorem 4.6: N O P2(state2, sym3) = N RE .
Proof: We only prove the inclusion N RE ⊆

N O P2(state2, sym3). The reverse inclusion follows from
the Church-Turing thesis.
Let us consider a register machine M = (m, H, l0, lh , I).
We construct the cell-like P system with channel states
and symport/antiport rules � to simulate the machine M .

� = (�, K , E, μ,M1,M2, s, s,R1,R2, 1),

where
• � = {ai | 1 ≤ i ≤ m} ∪ {l, l ′, l ′′, l ′′′, liv , lv | l ∈

H } ∪ {e},
• K = {s, s′},
• E = {liv , lv | l ∈ H } ∪ {e},
• μ = [[]2]1,
• M1 = {l0} ∪ {l ′, l ′′ | l ∈ H }, M2 = {l ′′′ | l ∈ H },

and the sets R1, R2 of rules are as follows:
• For each ADD instruction li : (ADD(r), l j , lk) of

M , we consider the following rules in R1:
r1 : (s, (li l ′i , out), s),

r2 : (s, (l ′i l j ar , in), s),
r3 : (s, (l ′i lkar , in), s).

An ADD instruction li is simulated in two steps.
At step 1, objects li , l ′i are sent to the environment by
using rule r1. At the next step, one of rules r2 and r3 is
used non-deterministically. By applying rule r2 (resp., r3),
objects l ′i , l j , ar (resp., l ′i , lk , ar) are sent into membrane 1
from the environment. Hence, one copy of object ar is
introduced into membrane 1 (simulating that the number
stored in register r is increased by one), and the system
starts to simulate the instruction with label l j or lk . So
the instruction li of M is correctly simulated by �.

• For each SUB instruction li : (SUB(r), l j , lk) of M,
• we consider the following rules in R1:

• r4 : (s, (li l ′′i , out), s),
r5 : (s, (l ′′i l iv

i lvi , in), s),
r6 : (s, (liv

i ar , out), s′),
r7 : (s′, (l ′′′i lvi , out), s′),
r8 : (s, (l ′′′i l iv

i lvi , out), s),
r9 : (s′, (l ′′′i l j e, in), s),
r10 : (s, (l ′′′i lke, in), s);
and we consider the following rules in R2:

• r11 : (s, (lvi , in), s′),
r12 : (s′, (l ′′′i lvi , out), s′),
r13 : (s′, (l ′′′i e, in), s)

A SUB instruction li is simulated by system � in the
following way: At step 1, rule r4 is applied, object l ′′i
is sent to the environment, and this object together with
objects liv

i , lvi will be sent into membrane 1 at the next
step by using rule r5. In what follows, we have two cases:

• There is at least one copy of object ar in membrane 1
(corresponding to the fact that the number stored
in register r is greater than 0). In this case, at
step 3, rules r6 and r11 are enabled; by applying
rule r6, objects liv

i , ar are sent to the environment
(one copy of object ar is consumed, simulating that
the number stored in register r is decreased by one),
changing the channel state between membrane 1 and
the environment to s′; by using rule r11, object lvi

TABLE VI

THE APPLICATION OF RULES IN R1 AND R2 , THE EVOLUTION OF CHANNEL STATES s1 AND s2 , AND THE REWRITING OF MULTISETS M1 AND M2 IN
MEMBRANES 1 AND 2, RESPECTIVELY, DURING THE SIMULATION OF A SUB INSTRUCTION li : (SUB(r), l j , lk) WITH REGISTER r NOT EMPTY,

WHERE z, z′ ARE MULTISETS OF OBJECTS FROM THE SET {a1, . . . , am}, z = z′ar , AND u(H), v(H) ARE MULTISETS WHICH CONTAIN

EACH l′, l′′ ∈ H EXACTLY ONCE IN MEMBRANE 1, w(H) IS MULTISET WHICH CONTAINS EACH l′′′ ∈ H EXACTLY

ONCE IN MEMBRANE 2

is sent into membrane 2 (the channel state between
membrane 1 and membrane 2 is changed from s to
s′), and this object together with object l ′′′i will be
sent out of this membrane at the next step (by using
rule r12). When object l ′′′i appears in membrane 1, by
using rule r7, object l ′′′i is sent to the environment,
and instruction object l j will be sent into membrane 1
at the next step by applying rule r9; the channel state
between membrane 1 and the environment is changed
to s from s′. At step 7, by using rule r13, object l ′′′i
and object e are sent back to membrane 2, and the
channel state between membrane 1 and membrane 2
is changed to s. Note that during the simulation
of a SUB instruction li , the next (ADD or SUB)
instruction starts to be simulated at step 7, which
does not affect the correctness of the simulation
of the next instruction. In this case, one copy of
object ar is consumed in membrane 1, and the system
starts to simulate the instruction l j (see Table VI).

• There is no object ar in membrane 1 (corresponding
to the fact that the number stored in register r is 0).
In this case, at step 3, only rule r11 can be used,
object lvi is sent into membrane 2 (the channel state
between membrane 1 and membrane 2 is changed
from s to s′), and this object together with object l ′′′i
will be sent out of this membrane at the next step
(by using rule r12). At step 5, rule r8 is enabled; by
using this rule, object l ′′′i is sent to the environment,
and object lk will be sent into membrane 1 at the
next step (by using rule r10). At step 7, by using
rule r13, object l ′′′i and object e are sent back to
membrane 2, and the channel state between mem-
brane 1 and membrane 2 is changed to s. Note that
during the simulation of a SUB instruction li , the
next (ADD or SUB) instruction starts to be simulated
at step 7, which does not affect the correctness of the
simulation of the next instruction. Hence, the system
starts to simulate the instruction lk (see Table VII).

Hence, the SUB instruction of M is correctly simulated
by system �.
When the object lh appears in membrane 1, no rule can
be used in the system, and the computation halts. The
number of copies of object a1 in membrane 1 corresponds
to the result of the computation, hence N(M) = N(�).

Theorem 4.7: N O P2(state1, anti3) = N RE .
Proof: We only prove the inclusion N RE ⊆

N O P2(state1, anti3). The reverse inclusion follows from
the Church-Turing thesis.
Let us consider a register machine M = (m, H, l0, lh, I).
We construct the cell-like P system with channel states
and symport/antiport rules � to simulate the machine M .

� = (�, K , E, μ,M1,M2, s, s,R1,R2, 1),

where
• � = {ai | 1 ≤ i ≤ m} ∪ {l, l ′, l ′′, l ′′′, liv , lv , lv i | l ∈

H } ∪ {b},
• K = {s},
• E = � \ {b},
• μ = [[]2]1,
• M1 = {l0}, M2 = {b}, and the sets R1, R2 of rules

are as follows:
• For each ADD instruction li : (ADD(r), l j , lk) of

M , we consider the following rules in R1:r1 :
(s, (li , out; l j ar , in), s),
r2 : (s, (li , out; lkar , in), s).

An ADD instruction li is simulated obviously. One of
rules r1 and r2 is used non-deterministically. By applying
rule r1 (resp., r2), object li in membrane 1 is exchanged
with objects l j , ar (resp., lk, ar) from the environment.
Hence, the system starts to simulate an instruction with
label l j or lk . Clearly, the instruction li of M is correctly
simulated by �.

• For each SUB instruction li : (SUB(r), l j , lk) of M,
• we consider the following rules in R1:

r3 : (s, (li , out; l ′i l ′′i , in), s),
r4 : (s, (l ′i ar , out; l ′′′i , in), s),
r5 : (s, (bl ′′′i , out; liv

i , in), s),
r6 : (s, (bl ′i , out; lv i

i , in), s),
r7 : (s, (l ′′i , out; blvi , in), s),
r8 : (s, (liv

i lvi , out; l j , in), s),
r9 : (s, (lvi lv i

i , out; lk, in), s);
and we consider the following rules in R2:
r10 : (s, (b, out; l ′′i , in), s),
r11 : (s, (l ′′i , out; liv

i , in), s),
r12 : (s, (l ′′i , out; lv i

i , in), s),
r13 : (s, (liv

i , out; b, in), s),
r14 : (s, (lv i

i , out; b, in), s)

TABLE VII

THE APPLICATION OF RULES IN R1 AND R2 , THE EVOLUTION OF CHANNEL STATES s1 AND s2 , AND THE REWRITING OF MULTISETS M1 AND M2 IN
MEMBRANES 1 AND 2, RESPECTIVELY, DURING THE SIMULATION OF A SUB INSTRUCTION li : (SUB(r), l j , lk) WITH REGISTER r EMPTY, WHERE

z IS A MULTISET OF OBJECTS FROM THE SET {a1, . . . , am}, AND u(H), v(H) ARE MULTISETS WHICH CONTAIN EACH l′, l′′ ∈ H EXACTLY

ONCE IN MEMBRANE 1, w(H) IS MULTISET WHICH CONTAINS EACH l′′′ ∈ H EXACTLY ONCE IN MEMBRANE 2

A SUB instruction li is simulated by system � in the
following way: At step 1, by using rule r3, object li in
membrane 1 is exchanged with objects l ′i , l ′′i from the
environment. In what follows, we have two cases:

• There is at least one copy of object ar in mem-
brane 1. In this case, at step 2, rules r4 and r10 are
enabled. By using r4, objects l ′i , ar in membrane 1
are sent to the environment (one copy of object ar

is consumed in membrane 1), and object l ′′′i is sent
into membrane 1; by using rule r10, object b in
membrane 2 is exchanged with object l ′′i in mem-
brane 1. At the next step, rule r5 is enabled and
used, objects b, l ′′′i are sent to the environment, and
object liv

i is sent into membrane 1, which will be
exchanged with object l ′′i in membrane 2 at step 4
(by using rule r11). At step 5, rule r7 is used, object l ′′i
is sent to the environment, and objects b, lvi are
sent into membrane 1. At the next step, by using
rule r13, object b is sent back into membrane 2, and
object liv

i is sent to membrane 1, this object together
with object lvi will be sent to the environment, and
object l j is sent into membrane 1 by using rule r8 at
the next step. In this case, one copy of object ar is
consumed in membrane 1, and the system starts to
simulate the instruction l j (see Table VIII).

• There is no object ar in membrane 1. In this case,
at step 2, only rule r10 can be used, object b is sent
into membrane 1, this object together with object l ′i
will be sent to the environment at the next step;
simultaneously, object lv i

i is sent into membrane 1.
When object lv i

i appears in membrane 1, rule r12 is
enabled and used, object l ′′i is sent into membrane 1,
this object can be exchanged with objects b, lvi from
the environment at the next step by applying rule r10.
At step 6, rule r14 is used, object lv i

i is sent out of
membrane 2, object b is sent back to membrane 2.
At step 7, objects lvi , lv i

i is sent to the environment,
and object lk is sent into membrane 1 from the
environment by using rule r9. Hence, the system
starts to simulate the instruction lk (see Table IX).

Hence, the SUB instruction of M is correctly simulated
by system �.

TABLE VIII

THE APPLICATION OF RULES IN R1 AND R2 , THE EVOLUTION OF CHAN-
NEL STATES s1 AND s2, AND THE REWRITING OF MULTISETS M1

AND M2 IN MEMBRANES 1 AND 2, RESPECTIVELY, DURING THE

SIMULATION OF A SUB INSTRUCTION li : (SUB(r), l j , lk) WITH

REGISTER r NOT EMPTY, WHERE z, z′ ARE MULTISETS OF

OBJECTS FROM THE SET {a1, . . . , am }, z = z′ar

TABLE IX

THE APPLICATION OF RULES IN R1 AND R2 , THE EVOLUTION OF CHAN-
NEL STATES s1 AND s2, AND THE REWRITING OF MULTISETS M1

AND M2 IN MEMBRANES 1 AND 2, RESPECTIVELY, DURING THE
SIMULATION OF A SUB INSTRUCTION li : (SUB(r), l j , lk) WITH

REGISTER r EMPTY, WHERE z IS A MULTISET OF OBJECTS

FROM THE SET {a1, . . ., am}

When the object lh appears in membrane 1, no rule can
be used in the system, and the computation halts. The
number of copies of object a1 in membrane 1 corresponds
to the result of the computation, hence N(M) = N(�).

Theorem 4.8: N O P2(state3, sym1, anti2) = N RE .

Proof: We only prove the inclusion N RE ⊆
N O P2(state3, sym1, anti2). The reverse inclusion fol-
lows from the Church-Turing thesis.

Let us consider a register machine M = (m, H, l0, lh, I).
We construct the cell-like P system with channel states
and symport/antiport rules � to simulate the machine M .

� = (�, K , E, μ,M1,M2, s, s,R1,R2, 1),

TABLE X

THE APPLICATION OF RULES IN R1 AND R2 , THE EVOLUTION OF CHANNEL STATES s1 AND s2 , AND THE REWRITING OF MULTISETS M1 AND M2 IN
MEMBRANES 1 AND 2, RESPECTIVELY, DURING THE SIMULATION OF AN ADD INSTRUCTION li : (ADD(r), l j , lk), WHERE z IS A MULTISET OF

OBJECTS FROM THE SET {a1, . . . , am }, AND u(H), v(H) ARE MULTISETS WHICH CONTAIN EACH b ∈ H,b′ ∈ H
EXACTLY ONCE, RESPECTIVELY

where

• � = {ai | 1 ≤ i ≤ m} ∪ {b, b′, l, l ′, l ′′ | b, l ∈ H },
• K = {s, s′, s′′},
• E = {ai | 1 ≤ i ≤ m} ∪ {l, l ′, l ′′ | l ∈ H },
• μ = [[]2]1,
• M1 = {l0}, M2 = {b, b′ | b ∈ H },

and the sets R1, R2 of rules are as follows:

• For each ADD instruction li : (ADD(r), l j , lk) of M,
• we consider the following rules in R1:

r1 : (s, (bi , out; ar , in), s′),
r2 : (s′, (li , out; l ′i , in), s),
r3 : (s, (bi , in), s′),
r4 : (s′, (l ′i , out; l j , in), s),
r5 : (s′, (l ′i , out; lk, in), s);

• and we consider the following rules in R2:
r6 : (s, (bi , out; li , in), s),
r7 : (s, (li , out), s′),
r8 : (s′, (bi , in), s)

An ADD instruction li is simulated by system � in the
following way: At step 1, rule r6 is used, object bi is sent out
of membrane 2. Subsequently, it is sent to the environment
and one copy of object ar is sent into membrane 1 by using
rule r1 (changing the channel state between membrane 1 and
the environment to s′); simultaneously, object li is sent into
membrane 2, which will be sent out of this membrane at
step 2 by applying rule r7 (changing the channel state between
membrane 2 and membrane 1 to s′). Under the control of
channel state s′ between membrane 1 and the environment,
rule r2 is used, object l ′i is sent into membrane 1, changing the
channel state to s, so rule r3 is enabled and applied, object bi

is sent into membrane 1, changing the channel state between
membrane 1 and the environment from s to s′. At step 5, one of
sets of rules {r4, r8} and {r5, r8} is used non-deterministically.
By applying rule r4 (resp., r5), instruction object l j (resp., lk)
is sent into membrane 1, changing the channel state between
membrane 1 and the environment to s; by using rule r8,
object bi is sent back to membrane 2, the channel state
between membrane 2 and membrane 1 is changed from s′
to s. Hence, the system starts to simulate the instruction with
label l j or lk . So the instruction li of M is correctly simulated
by � (see Table X).

• For each SUB instruction li : (SUB(r), l j , lk) of M ,

• we consider the following rules in R1 :
r9 : (s, (b′

i , out; l ′′i , in), s),
r10 : (s, (ar , out; b′

i , in), s′),

r11 : (s′, (li , out), s′),
r12 : (s, (li , out; b′

i , in), s′′),
r13 : (s′, (l ′′i , out; l j , in), s),
r14 : (s′′, (l ′′i , out; lk, in), s);

• and we consider the following rules in R2:
r15 : (s, (b′

i , out; li , in), s),
r16 : (s, (li , out; l ′′i , in), s),
r17 : (s, (l ′′i , out), s′),
r18 : (s′, (b′

i , in), s)
A SUB instruction li is simulated by system � in the

following way: At step 1, rule r15 is used, object li is sent
into membrane 2, and object b′

i is sent to membrane 1, which
will be exchanged with object l ′′i from the environment at the
next step (by using rule r9). In what follows, we have two
cases:

• There is at least one copy of object ar in membrane 1.
In this case, at step 3, rule r10 is enabled and applied,
one copy of object ar is sent to the environment (one
copy of object ar in membrane 1 is consumed), and
object b′

i is sent into membrane 1, changing the channel
state between membrane 1 and the environment from s to
s′; simultaneously, by applying rule r16, object li is sent
out of membrane 2, which will be sent to the environment
at the next step; and object l ′′i is sent into membrane 2,
which will be sent out of this membrane at step 4
by applying rule r17 (which changes the channel state
between membrane 2 and membrane 1 to s′). Rule r13
can be used at step 5, instruction object l j is sent into
membrane 1, changing the channel state between mem-
brane 1 and the environment to s; by applying rule r18,
object b′

i is sent back to membrane 2, and the channel
state between membrane 2 and membrane 1 is changed
to s. In this case, one copy of object ar is consumed
in membrane 1, and the system starts to simulate the
instruction l j (see Table XI).

• There is no object ar in membrane 1. In this case, at
step 3, only rule r16 can be used, object li is sent to
membrane 1, which will be exchanged with object b′

i
from the environment at the next step by using rule r12
(the channel state between membrane 1 and the envi-
ronment is changed to s′′); and object l ′′i is sent into
membrane 2, which will be sent out of this membrane
at step 4 by using rule r17 (which changes the channel
state between membrane 2 and membrane 1 to s′). Note
that at the first step for simulating a SUB instruction,
there is no object b′

i in the environment, hence rule r12

TABLE XI

THE APPLICATION OF RULES IN R1 AND R2 , THE EVOLUTION OF CHANNEL STATES s1 AND s2 , AND THE REWRITING OF MULTISETS M1 AND M2 IN
MEMBRANES 1 AND 2, RESPECTIVELY, DURING THE SIMULATION OF A SUB INSTRUCTION li : (SUB(r), l j , lk) WITH REGISTER r NOT EMPTY,

WHERE z, z′ ARE MULTISETS OF OBJECTS FROM THE SET {a1, . . . , am}, z = z′ar , AND u(H), v(H) ARE MULTISETS WHICH CONTAIN

EACH b ∈ H, b′ ∈ H EXACTLY ONCE, RESPECTIVELY

TABLE XII

THE APPLICATION OF RULES IN R1 AND R2 , THE EVOLUTION OF CHANNEL STATES s1 AND s2 , AND THE REWRITING OF MULTISETS M1 AND M2 IN

MEMBRANES 1 AND 2, RESPECTIVELY, DURING THE SIMULATION OF A SUB INSTRUCTION li : (SUB(r), l j , lk) WITH REGISTER r EMPTY, WHERE

z IS A MULTISET OF OBJECTS FROM THE SET {a1, . . ., am}

cannot be used. At step 5, rule r14 is enabled and used,
instruction object lk is sent into membrane 1, changing
the state between membrane 1 and the environment to s;
by using rule r18, object b′

i is sent back to membrane 2,
changing the state between membrane 2 and membrane 1
to s. Hence, the system starts to simulate the instruction
lk (see Table XII).

Hence, the SUB instruction of M is correctly simulated by
system �.

When the object lh appears in membrane 1, no rule can be
used in the system, and the computation halts. The number of
copies of object a1 in membrane 1 corresponds to the result
of the computation, hence N(M) = N(�).

V. CONCLUSIONS AND DISCUSSIONS

In this work, states associated with the communication chan-
nels are considered in the framework of cell-like P systems
with symport/antiport rules, and the computational power of
such P systems has been investigated. Specifically, we have
proved that cell-like P systems with two states and only using
uniport rules, or with any number of states and only using
antiport rules of length two, are able to compute only finite
sets of non-negative integers. We further proved that cell-like
P systems with two membranes are Turing universal when
having any number of states and only uniport rules, or four
states and only symport rules of length two, or two states
and only symport rules of length three, or one state and only
antiport rules of length three, or three states and uniport rules
and antiport rules of length two.

The number of cells, the number of states and the length
of communication rules were taken for the descriptional
complexity of cell-like P systems with channel states and
symport/antiport rules. In Theorem 4.3, it was proved that
cell-like P systems with one membrane are able to characterize
the family of sets of positive integers generated by matrix

grammars without appearance checking when having one state,
and using antiport rules of length 4 or any number of states and
using symport rules of length 1 and antiport rules of length 2.
It is interesting to optimize the number of states or the length
of communication rules used in Theorem 4.3.

The rules of the P systems constructed in Section IV are
used in a sequential way. It remains open whether cell-like
P systems with channel states and symport/antiport rules have
the same computational power that use rules in other strategies,
for instance, asynchronous (an enabled rule can evolve or
not) [30]–[32], time-free (a P system that generates the same
family of natural numbers, independently from the value
assigned to the execution time of each rule) [33]–[35].

The descriptional complexity of P systems with sym-
port/antiport rules with respect to the number of objects was
considered in [18], [36], [37]. It is of interest to construct
universal cell-like P systems with channel states and sym-
port/antiport rules with a small number of objects.

The computational efficiency of P systems with sym-
port/antiport rules and membrane division has been considered
in [38]–[40], where membrane division provides a way to
obtain exponential membranes in linear time. It would be
interesting to introduce a variant of cell-like P systems with
symport/antiport rules that can have exponential channel states
in linear time, thus solving NP-complete problems by using
the exponential channel states instead of the exponential
membranes generated by membrane division.

The length of symport/antiport rules is one of the essential
parameters for the computational power, which has already
been investigated in tissue-like P systems with cell separation
and cell-like P systems with symport/antiport rules and mem-
brane separation [41]–[44]. It remains open whether cell-like
P systems with channel states and membrane separation can
solve NP-complete problems if rules are used in a sequential
way. If the answer is negative, it is interesting to give a
characterization of tractability as in [45], [46].

Recently, time-free solutions to NP-complete problems by
various P systems have been investigated [47]–[50]. It is
of interest to investigate whether we can construct cell-like
P systems with channel states and membrane division (or
membrane separation) to solve NP-complete problems in the
context of time-freeness.

REFERENCES

[1] G. Păun, “Computing with membranes,” J. Comput. Syst. Sci., vol. 61,
no. 1, pp. 108–143, Aug. 2000.

[2] A. Alhazov and R. Freund, “Variants of small universal P systems with
catalysts,” Fundam. Informat., vol. 138, nos. 1–2, pp. 227–250, 2015.

[3] T. Song, J. Xu, and L. Pan, “On the universality and non-universality
of spiking neural P systems with rules on synapses,” IEEE Trans.
NanoBiosci., vol. 14, no. 8, pp. 960–966, Dec. 2015.

[4] T. Song and L. Pan, “Spiking neural P systems with request rules,”
Neurocomputing, vol. 193, pp. 193–200, Jun. 2016.

[5] X. Zhang, L. Pan, and A. Păun, “On the universality of axon P systems,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 11, pp. 2816–2829,
Nov. 2015.

[6] H. Peng, J. Wang, and M. J. Pérez-Jiménez, and A. Riscos-Núñez, “An
unsupervised learning algorithm for membrane computing,” Inf. Sci.,
vol. 304, pp. 80–91, May 2015.

[7] H. Peng, J. Wang, and M. J. Pérez-Jiménez, H. Wang, J. Shao, and
T. Wang, “Fuzzy reasoning spiking neural P system for fault diagnosis,”
Inf. Sci., vol. 235, pp. 106–116, Jun. 2013.

[8] G. Zhang, M. Gheorghe, L. Pan, and M. J. Pérez-Jiménez, “Evolutionary
membrane computing: A comprehensive survey and new results,” Inf.
Sci., vol. 279, pp. 528–551, Sep. 2014.

[9] G. Zhang, H. Rong, F. Neri, and M. J. Pérez-Jiménez, “An optimiza-
tion spiking neural P system for approximately solving combinatorial
optimization problems,” Int. J. Neural Syst., vol. 24, no. 5, pp. 1–16,
2014.

[10] A. M. Colomer, A. Margalida, L. Valencia, and A. Palau, “Application of
a computational model for complex fluvial ecosystems: The population
dynamics of zebra mussel Dreissena polymorpha as a case study,” Ecol.
Complex., vol. 20, pp. 116–126, Dec. 2014.

[11] M. Ionescu, G. Păun, and T. Yokomori, “Spiking neural P systems,”
Fund. Informat., vol. 71, nos. 2–3, pp. 279–308, Aug. 2006.

[12] C. Martín-Vide, J. Pazos, G. Păun, and A. Rodríguez-Patón, “Tissue
P systems,” Theor. Comput. Sci., vol. 296, no. 2, pp. 295–326,
Mar. 2003.

[13] G. Păun, Membrane Computing: An Introduction. Berlin, Germany:
Springer, 2002.

[14] G. Păun, G. Rozenberg, and A. Salomaa, Eds., The Oxford Handbook
of Membrane Computing. New York: Oxford Univ. Press, 2010.

[15] A. Păun and G. Păun, “The power of communication: P systems with
symport/antiport,” New Generat. Comput., vol. 20, no. 3, pp. 295–305,
Sep. 2002.

[16] A. Păun, G. Păun, and G. Rozenberg, “Computing by communication
in networks of membranes,” Int. J. Found. Comput. Sci., vol. 13, no. 6,
pp. 779–798, Dec. 2002.

[17] G. Ciobanu, L. Pan, Gh. Păun, and M. J. Pérez-Jiménez, “P systems with
minimal parallelism,” Theor. Comput. Sci., vol. 378, no. 1, pp. 117–129,
Jun. 2007.

[18] A. Alhazov and R. Freund, “P systems with one membrane and sym-
port/antiport rules of five symbols are computationally complete,” in
Proc. 3rd Brainstorming Week Membrane Comput., 2005, pp. 19–28.

[19] A. Alhazov and Y. Rogozhin, “Towards a characterization of P systems
with minimal symport/antiport and two membranes,” in Membrane
Computing. Berlin, Germany: Springer, 2006, pp. 135–153.

[20] F. Bernardini and M. Gheorghe, “On the power of minimal sym-
port/antiport,” in Proc. 3rd Workshop Membrane Comput., 2003,
pp. 72–83.

[21] E. Csuhaj-Varjú, M. Margenstern, G. Vaszil, and S. Verlan, “On small
universal antiport P systems,” Theor. Comput. Sci., vol. 372, nos. 2–3,
pp. 152–164, Mar. 2007.

[22] R. Freund and M. Oswald, “P systems with activated/prohibited mem-
brane channels,” in Membrane Computing. Berlin, Germany: Springer,
2003, pp. 261–269.

[23] R. Freund and A. Păun, “Membrane systems with symport/antiport
rules: Universality results,” in Membrane Computing. Berlin, Germany:
Springer, 2003, pp. 270–287.

[24] P. Frisco and H. J. Hoogeboom, “P systems with symport/antiport sim-
ulating counter automata,” Acta Informat., vol. 41, no. 2, pp. 145–170,
Dec. 2004.

[25] R. Freund, G. Păun, and M. J. Pérez-Jiménez, “Tissue P systems with
channel states,” Theor. Comput. Sci., vol. 330, no. 1, pp. 101–116,
Jan. 2005.

[26] G. Rozenberg and A. Salomaa, Eds., Handbook of Formal Languages,
vol. 3, Berlin, Germany: Springer, 1997.

[27] R. Freund, O. H. Ibarra, G. Păun, and H.-C. Yen, “Matrix languages,
register machines, vector addition systems,” in Proc. 3rd Brainstorming
Week Membrane Comput., 2005, pp. 155–168.

[28] I. Korec, “Small universal register machines,” Theor. Comput. Sci.,
vol. 168, no. 2, pp. 267–301, Nov. 1996.

[29] M. L. Minsky, Computation: Finite and Infinite Machines. Englewood
Cliffs, NJ, USA: Prentice-Hall, 1967.

[30] P. Frisco, G. Govan, and A. Leporati, “Asynchronous P systems with
active membranes,” Theor. Comput. Sci., vol. 429, pp. 74–86, Apr. 2012.

[31] L. Pan, J. Wang, and H. J. Hoogeboom, “Limited asynchronous spiking
neural P systems,” Fundam. Informat., vol. 110, nos. 1–4, pp. 271–293,
2011.

[32] T. Song, L. Pan, and G. Păun, “Asynchronous spiking neural P systems
with local synchronization,” Inf. Sci., vol. 219, pp. 197–207, Jan. 2013.

[33] M. Cavaliere and D. Sburlan, “Time–independent P systems,” in Mem-
brane Computing. Berlin, Germany: Springer, 2005, pp. 239–258.

[34] M. Cavaliere and V. Deufemia, “Further results on time-free P systems,”
Int. J. Found. Comput. Sci., vol. 17, no. 1, pp. 69–89, Feb. 2006.

[35] A. Alhazov, “Number of protons/bi-stable catalysts and membranes in
P systems. Time-freeness,” in Membrane Computing. Berlin, Germany:
Springer, 2006, pp. 79–95.

[36] A. Alhazov, R. Freund, and M. Oswald, “Symbol/membrane complexity
of P systems with symport/antiport rules,” in Membrane Computing.
Berlin, Germany: Springer, 2006, pp. 96–113.

[37] G. Păun, J. Pazos, M. J. Pérez-Jiménez, and A. Rodríguez-Patón,
“Symport/antiport P systems with three objects are universal,” Fundam.
Informat., vol. 64, nos. 1–4, pp. 353–367, Jul. 2004.

[38] L. F. Macías-Ramos, L. Valencia-Cabrera, B. Song, T. Song, L. Pan, and
M. J. Pérez-Jiménez, “A P_Lingua based simulator for P systems with
symport/antiport rules,” Fundam. Informat., vol. 139, no. 2, pp. 211–227,
2015.

[39] B. Song, M. J. Pérez-Jiménez, and L. Pan, “Efficient solutions to hard
computational problems by P systems with symport/antiport rules and
membrane division,” BioSystems, vol. 130, pp. 51–58, Apr. 2015.

[40] L. V. Cabrera, B. Song, and L. F. Macías-Ramos, L. Pan, A. R. Núñez,
and M. J. P. Jiménez, “Opened access minimal cooperation in P systems
with symport/antiport: A complexity approach,” in Proc. 13th Brain-
storming Week Membrane Comput., 2015, pp. 301–324.

[41] L. F. Macías-Ramos, B. Song, L. Valencia-Cabrera, L. Pan, and
M. J. Pérez-Jiménez, “Membrane fission: A computational complexity
perspective,” Complexity, vol. 21, no. 6, pp. 321–334, Jul./Aug. 2016.

[42] L. Pan and M. J. Pérez-Jiménez, “Computational complexity of tissue-
like P systems,” J. Complex., vol. 26, no. 3, pp. 296–315, Jun. 2010.

[43] L. F. Macías-Ramos, M. J. Pérez-Jiménez, A. Riscos-Núñez, and
L. Valencia-Cabrera, “Membrane fission versus cell division: When
membrane proliferation is not enough,” Theor. Comput. Sci., vol. 608,
pp. 57–65, Dec. 2015.

[44] M. J. Pérez-Jiménez and P. Sosík, “An optimal frontier of the efficiency
of tissue P systems with cell separation,” Fundam. Informat., vol. 138,
nos. 1–2, pp. 45–60, 2015.

[45] R. Gutiérrez-Escudero, M. J. Pérez-Jiménez, and M. Rius-Font, “Charac-
terizing tractability by tissue-like P systems,” in Membrane Computing.
Berlin, Germany: Springer, 2009, pp. 289–300.

[46] G. Mauri, M. J. Pérez-Jiménez, and C. Zandron, “On a Păun’s conjecture
in membrane systems,” in Bio-Inspired Modeling of Cognitive Tasks.
Berlin, Germany: Springer, 2007, pp. 180–192.

[47] T. Song, L. F. Macías-Ramos, L. Pan, and M. J. Pérez-Jiménez, “Time-
free solution to SAT problem using P systems with active membranes,”
Theor. Comput. Sci., vol. 529, pp. 61–68, Apr. 2014.

[48] B. Song and L. Pan, “Computational efficiency and universality of
timed P systems with active membranes,” Theor. Comput. Sci., vol. 567,
pp. 74–86, Feb. 2015.

[49] B. Song, M. J. Pérez-Jiménez, and L. Pan, “Computational efficiency and
universality of timed P systems with membrane creation,” Soft Comput.,
vol. 19, no. 11, pp. 3043–3053, Nov. 2015.

[50] X. Liu, J. Suo, S. C. H. Leung, J. Liu, and X. Zeng, “The power of
time-free tissue P systems: Attacking NP-complete problems,” Neuro-
computing, vol. 159, pp. 151–156, Jul. 2015.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

