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Abstract Population Dynamics P systems (PDP systems, in short) provide a new 
formal bio-inspired modelling framework, which has been successfully used for 
modelling population dynamics on real ecosystems. The semantics of these systems 
is captured by the Direct distribution based on Consistent Blocks Algorithm (DCBA), 
which has been engineered into software simulation tools. In particular, MeCoSim 
(Membrane Computing Simulator) is a GUI developed in the framework of P-Lingua 
that can be used as a simulation environment for running virtual experiments. The 
parameters of each scenario to be simulated can be easily adjusted in a visual way, 
as well as the settings for the desired output format, thus facilitating the validation
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of the designed models against real data. The simulation of PDP systems is data
intensive for large models. Therefore, the development of efficient simulators for
this field is needed. In fact, the computational power of GPUs is currently being used
to accelerate simulations of PDP systems. We illustrate the modelling framework
presented with a case study concerning pandemics.

4.1 Introduction

Mathematical models are abstract representations of real–world complex systems
onto a mathematical/computational domain. They use symbolic notations and for-
malisms rather than physical devices to represent and analyse the relationships which
describe the system under study. Moreover, never do they contain all features of
their real–world counterpart, as they would be the real–world complex system itself.
Models highlight the relevant features while ignoring the irrelevant ones. Therefore,
a mathematical model should be regarded as a description of our current knowledge
about a phenomenon of interest, rather than an exact representation of the truth.

The use of models is inherent to any scientific activity. When examining a phe-
nomenon, scientists regularly use abstractions of reality such as diagrams, graphs,
laws, etc. with the aim of describing and understanding it. Designing a model for a
biological system is intrinsically a complicated task, since there is usually a large
number of important factors that need to be considered. Therefore, it is advisable
to make efforts to minimize the number of parameters, as well as the interactions
between them.

Nowadays, ordinary differential equations (ODEs) constitute the most widely
used approach for the study of complex systems, and in particular for population
dynamics. However, this approach has some drawbacks, since it has been reported
that the deterministic and continuous approach followed by ODEs is questionable
in some complex systems. Consequently, in recent years new models based on
the latest computational paradigms and technological advances have been adopted.
Some examples are Petri nets [1], process algebra (π-calculus [2], bioambients [3],
brane calculus [4], κ-calculus [5], etc.), state charts [6], agent based systems [7], and
viability models [8, 9]. Although each of these computational frameworks captures
some aspects regarding complex systems and their components, none of them fully
integrates their dynamics and structural details.

Membrane Computing is an emergent branch of Natural Computing introduced by
Păun in [10], inspired by the structure and functioning of living cells. This research
field was introduced with the purpose of defining unconventional distributed and
parallel computing devices, called P systems. The key differential feature of such
systems is the so–called membrane structure, which represents the compartmen-
talization in the structural organization of cells. One of the main advantages of P
systems, regarding their potential use as a modelling framework, is that their ele-
ments are more similar to those used in population dynamics than the abstractions
of other formalisms. In this work we show how to capture, in a natural way, some
features relevant to populations by using membrane structures.



We present P systems as a high level computational modelling framework which
integrates the structural and dynamical aspects of complex systems in a compre-
hensive and relevant way while providing the required formalisation to perform
mathematical and computational analysis. Rather than an alternative to more clas-
sical modelling frameworks, such as ODEs, P systems constitute a complementary
approach to be used in those cases where the previous approaches fail. Among the
most important properties of these models one can include their capacity to work in
parallel, as well as capture randomness. P systems explicitly represent the discrete
character of the quantity of components of a system by using rewriting rules on multi-
sets. Objects on these multisets represent relevant parameters, as well as individuals.
Although each complex system has its own important peculiarities, the vast majority
of them share some common aspects. Some of these aspects are: (a) large number of
individuals; (b) life cycle consisting of some basic processes; (c) periodic repetitions;
(d) the evolution often depends on the environment; and (e) the natural dynamics
suffers modifications due to human activities. These common features impose some
computational requirements on the models. Among them, one can shortlist the fol-
lowing: many processes take place simultaneously, there exists cooperation between
different individuals and elements, there exists partial synchronization among the
dynamic evolution sub-problems, and some stages are cyclically repeated.

These considerations led to the definition of a special-purpose type of P systems.
In particular, Population Dynamics P system models have been designed to study the
evolution of the habitats corresponding to three real case studies: the bearded vul-
ture (Gypaetus barbatus) in the Catalan Pyrenees (Spain) [11, 12], the zebra mussel
(Dreissena polymorpha) at the reservoir of Ribarroja (Spain) [13] and, recently, the
Pyrenean brook newt (Calotriton asper) in the river Segre (Serra del Cadí, Pyre-
nees) [14]. In the first case, the purpose of the obtained model is to study the evolu-
tion of the considered ecosystem under different scenarios in order to make the most
appropriate management decisions for the conservation of an endangered species.
The second case study corresponds to a completely different situation: Dreissena
polymorpha is an exotic invasive species that has displayed an excellent adaptation
following its introduction in the reservoir. Its uncontrolled reproduction causes sig-
nificant economic and ecological losses. Hence, the goal in this case is to learn how
to minimize the mussel population at the reservoir. In the latter case, the experts have
documented repeatedly dramatic population losses of the studied species caused by
severe floods. The goal is to evaluate whether there exists actual risk for the species
to become extinct in this area as a consequence of extreme rainfall. In all three cases
we have designed a simulator to validate the models. Actually, three different tools
have been released, enabling the corresponding users to perform virtual experiments
under different conditions.

This chapter is structured as follows: Sect. 4.2 is devoted to define concepts and
notations that we will use throughout the text. A P systems based probabilistic mod-
elling framework is considered in Sect. 4.3, and an inference engine capturing the
semantics of the model is presented in Sect. 4.4. Section 4.5 is devoted to the software
tools implementing the theoretical framework. Section 4.6 describes the modelling
of a case study about an outbreak of a pandemic disease, in order to illustrate the



theoretical and practical framework presented. To conclude the chapter, in Sect. 4.7
we present some final considerations and outline some future work on the topic.

4.2 Preliminaries

In this section we introduce some concepts and notations which we will use through-
out this chapter.

An alphabet, Γ , is a finite non–empty set whose elements are called symbols. A
multiset, w, over an alphabet, Γ , is a pair (Γ, f ) where f : Γ → N is a mapping. If
w = (Γ, f ) is a multiset then its support is defined as supp(w) = {x ∈ Γ | f (x) >

0}. We denote x ∈ w when x ∈ supp(m) and xn ∈ w when x ∈ w and f (x) = n.
A multiset is finite if its support is a finite set. If w = (Γ, f ) is a finite multiset over
Γ , and supp(w) = {a1, . . . , ak} then it will be denoted as w = a f (a1)

1 . . . a f (ak )
k

(here the order is irrelevant), and we say that f (a1) + · · · + f (ak) is the cardinality
of w, denoted by |w|. The empty multiset is denoted by ∅. We also denote by M f (Γ )

the set of all finite multisets over Γ .
If w1 = (Γ, f1), w2 = (Γ, f2) are multisets over Γ , then we define the union of

w1 and w2 as w1 + w2 = (Γ, g), where g = f1 + f2.
In what follows, we assume the reader is already familiar with the basic notions

and the terminology of P systems. For details, see [15].

4.3 A P Systems-Based Probabilistic Modelling Framework

Population Dynamics P systems are a variant of multienvironment P systems with
active membranes [16], a model with a network of environments, each of them con-
taining a P system with features such as electrical charges associated with membranes
to describe specific properties in a better way. All P systems share the same skeleton,
in the sense that they have the same working alphabet, the same membrane structure
and the same set of rules. Nevertheless, the probability functions associated with the
rules can vary among environments, and also the initial multisets are independent.

In what follows, the formal definition of PDP systems is introduced. To continue,
some additional definitions are given regarding to the rules of the systems. These
definitions will be specially useful within the scope of the Direct distribution based
on Consistent Blocks Algorithm (DCBA), an inference engine for PDP systems that
will be covered in Sect. 4.4. Finally, some desirable properties of the PDP systems
model are reviewed at the end of this section.



4.3.1 PDP Systems

Definition 1 A Population Dynamics P system (PDP) of degree (q, m), q, m ≥ 1,
taking T ≥ 1 time units, is a tuple

Π =(G, Γ,Σ, T,RE , μ,R, { fr, j | r ∈ R, 1 ≤ j ≤ m},
{Mi j | 1 ≤ i ≤ q, 1 ≤ j ≤ m})

where:

• G = (V, S) is a directed graph with V = {e1, . . . , em}.
• Γ and Σ are alphabets such that Σ � Γ .
• T is a natural number.
• RE is a finite set of communication rules of the form (x)e j

pr−−−→(y1)e j1
· · ·

(yh)e jh
, where x, y1, . . . , yh ∈ Σ , (e j , e jl ) ∈ S f orall 1 ≤ l ≤ h, and

pr : {1, . . . , T } −→ [0, 1] is a computable function such that for each e j ∈
V and x ∈ Σ , the sum of functions associated with the rules of the type
(x)e j

pr−−−→(y1)e j1
· · · (yh)e jh

is the constant function 1.
• μ is a rooted tree injectively labelled by 1 ≤ i ≤ q, and by symbols from the set

{0, +, −}.
• R is a finite set of of evolution rules of the form u[v]αi → u′[v′]α′

i , where
u, v, u′, v′ ∈ M f (Γ ), u + v �= ∅, 1 ≤ i ≤ q and α, α′ ∈ {0, +, −}, such

that there is no rules (x)e j

pr−−−→(y1)e j1
· · · (yh)e jh

and u[v]αi → u′[v′]α′
i having

x ∈ u.
• For each r ∈ R and 1 ≤ j ≤ m, fr, j : {1, . . . , T } −→ [0, 1] is a computable

function such that for each u, v ∈ M f (Γ ), 1 ≤ i ≤ q, α, α′ ∈ {0,+,−} and
1 ≤ j ≤ m, the sum of functions fr, j with r ≡ u[v]αi → u′[v′]α′

i , is the constant
function 1.

• For each i, j (1 ≤ i ≤ q, 1 ≤ j ≤ m), Mi j ∈ M f (Γ ).

A Population Dynamics P system defined as above can be viewed as a set of
m environments e1, . . . , em interlinked by the edges from the directed graph G.
Each environment e j can only contain symbols from alphabet Σ and all of them
also contain a P system skeleton, Π j = (Γ, μ,M1, j , . . . ,Mq, j ,R), of degree q,
where:

(a) Γ is the working alphabet whose symbols are also called objects.
(b) μ is a rooted tree which describes a membrane structure consisting of q mem-

branes (nodes of the tree) injectively labelled by 1, . . . , q. The skin membrane
(the root of the tree) is labelled by 1 and its parent is the environment e j . We
also associate one with each membrane.

(c) M1, j , . . . ,Mq, j are finite multisets over Γ , describing the objects initially
associated to the q membranes of μ, within the environment e j .

(d) R is the set of evolution rules of each P system. Every rule r ∈ R in Π j has a
computable function fr, j associated with it. For each environment e j , we denote
by RΠ j the set of rules with probabilities obtained by coupling each r ∈ R with
the corresponding function fr, j .



Furthermore, there is a set RE of communication rules between environments,
and the natural number T represents the simulation time of the system. The set of
rules of the whole system is

⋃m
j=1 RΠ j ∪ RE .

The semantics of Population Dynamics P systems is defined through a non deter-
ministic and synchronous model, in the sense that a global clock is assumed. Next,
we describe some semantic aspects of these systems.

A communication rule r ∈ RE , of the form (x)e j

pr−−−→(y1)e j1
. . . (yh)e jh

is
applicable to environment e j if it contains object x . When such a rule is applied,
object x passes from e j to e j1 , . . . , e jh possibly transformed into objects y1, . . . , yh

respectively. At any moment t (1 ≤ t ≤ T ) for each object x in environment e j , if

there exist communication rules of type (x)e j

pr−−−→(y1)e j1
. . . (yh)e jh

, then one of
these rules will be applied. If more than one such a rule can be applied to an object
at a given instant, the system selects one randomly, according to their associated
functions.

In each Π j , an evolution rule r ∈ R, of the form u[ v ]αi → u′[ v′ ]α′
i , is applicable

to membrane i , whose electrical charge is α, and that contains multiset v, and whose
parent contains multiset u. When such a rule is applied, the objects of the multisets
v and u are removed from membrane i and from its parent membrane, respectively.
Simultaneously, objects in multiset u′ are introduced into the parent of membrane i ,
and objects of multiset v′ are introduced into membrane i . The application also
replaces the charge of membrane i with α′. In each environment e j , the rule r has
associated a probability function fr, j that provides an index of the applicability when
several rules compete for objects.

For each j (1 ≤ j ≤ m) there is just one further restriction, concerning the con-
sistency of charges: in order to apply several rules ofRΠ j simultaneously to the same
membrane, all the rules must have the same electrical charge on their right–hand side.

An instantaneous description or configuration of the system at any instant t is a
tuple of multisets specifying the objects associated to each environment and mem-
brane, with its polarization, of every Π j . We assume that all environments are ini-
tially empty and that all membranes have initially a neutral polarization. We assume
a global clock, synchronizing all membranes and the application of all the rules (from
RE and from RΠ j in all environments).

In each time unit a given configuration can be transformed into another by using
rules from the whole system as follows: the rules to be applied are selected in a non–
deterministic way according to the probabilities assigned to them, and all applicable
rules are simultaneously applied in a maximal way. In this way, we get transitions
from one configuration of the system to the next one.

A computation is a sequence of configurations such that the first term of the
sequence is the initial configuration of the system, and each non-initial configuration
is obtained from the previous one by applying rules of the system in a maximally
parallel manner with the restrictions previously mentioned.



Next, we define some concepts associated with the rules from the system that will
be used in the Sect. 4.3.3.

Definition 2 Given a rule r ∈ R of the form u[v]αi → u′[v′]α′
i where 1 ≤ i ≤ q,

α, α′ ∈ {0, +, −} and u, v, u′, v′ ∈ M f (Γ ):

• The left-hand side of r is L H S(r) = (i, α, u, v). The charge of L H S(r) is
charge(L H S(r)) = α.

• The right-hand side of r is RH S(r) = (i, α′, u′, v′). The charge of RH S(r) is
charge(RH S(r)) = α′.

Definition 3 Given a rule r ∈ RE of the form (x)e j

pr−−−→ (y1)e j1
· · · (yh)e jh

, the
left-hand side of r is L H S(r) = (e j , x), and the right-hand side of r is RH S(r) =
(e j1 , y1) · · · (e jh , yh).

Definition 4 A block of rules is a set of rules with the same left–hand side. We
say that a block of rules is consistent if any pair of its rules can be applied in a
simultaneous manner provided that there are enough objects.

Rules from RE can be classified into blocks in a natural way.

Definition 5 Given (e j , x), 1 ≤ j ≤ m, and x ∈ Σ , the block associated with
(e j , x) is the set:

Be j ,x = {r ∈ RE | L H S(r) = (e j , x)}

Extending left-hand side definition, L H S(Be j ,x ) = (e j , x).

Bearing in mind that the restriction concerning the consistency of charges only
applies to membranes, but not to environments, any block of rules from RE is
obviously a consistent block.

Let us then focus on the case of evolution rules fromR. Such rules can be classified
into consistent blocks according to the following definition.

Definition 6 Given (i, α, α′, u, v), 1 ≤ i ≤ q , α, α′ ∈ {0, +, −}, and u, v ∈
M f (Γ ), the consistent block associated with (i, α, α′, u, v) is the set:

Bi,α,α′,u,v = {r ∈ R | L H S(r) = (i, α, u, v) ∧ charge(RH S(r)) = α′}

Extending left-hand side definition, L H S(Bi,α,α′,u,v) = (i, α, u, v) and the charge
is α.



That is, the consistent block associated with (i, α, α′, u, v) is the set of rules
r ∈ R whose left-hand side is (i, α, u, v) and such that the electrical charge of the
membrane after their execution is the same: α′. Therefore, any pair of rules from
Bi,α,α′,u,v can be simultaneously applied provided that there are enough objects. In
that case, membrane i will modify its polarization from α to α′.

We recall that, according to the semantics of our model, the sum of probabilities of
all the rules belonging to the same block is always equal to 1; in particular, rules whose
probability is equal to 1 form individual blocks. Note that rules with overlapping (but
different) left–hand sides are classified into different blocks. The latter leads to object
competition, what is a critical aspect to manage with the simulation algorithms. This
suggests introducing the concept of mutual consistency among blocks.

Definition 7 Two blocks Bi1,α1,α
′
1,u1,v1

and Bi2,α2,α
′
2,u2,v2

are mutually consistent
with each other, if and only if (i1 = i2 ∧ α1 = α2) ⇒ (α′

1 = α′
2).

That is, for two blocks mutually consistent with each other and with the same
charge any rule of the first block can be simultaneously applied together with any
rule of the second block, provided that there are enough objects.

Since rules in RE (communication between environments) do not affect the elec-
trical charge of any membrane and they do not interfere at all with the applicability
of the rest of the rules, a block Be j1,x1 is always mutually consistent with any other
Be j2,x2 , as well as with any block Bi,α,α′,u,v of evolution rules.

Definition 8 Given x ∈ Γ , l ∈ H , and r ∈ R such that L H S(r) = (i, α, u, v), we
say that (x, l) appears in L H S(r) with multiplicity k in any of the following cases:

• l = i , and x appears in multiset v with multiplicity k
• l is the label of the parent of membrane i , and x appears in multiset u with

multiplicity k

4.3.3 Some Properties of PDP Systems Models

The following four properties [2] are desirable for any computational model:

• Relevance: A computational model must capture some essential features of the
system investigated.
It should present a unifying specification of its physical structure and the different
components that constitute the system, the interaction between them and their
dynamical behaviour.
PDP systems are able to successfully capture the relevance of the underlying
system by associating objects to individuals or other significant elements, and the
interaction between them by means of evolution rules.



• Computability: It should be possible to implement or simulate a model in a com-
puter, so that one can run simulations to study the dynamics of the system by
manipulating experimental conditions in the model. In this manner, the model can
be experimentally validated, and moreover the behaviour of the system under dif-
ferent scenarios of interest can be studied. The computability of the model also
allows us to perform model checking and similar techniques to infer and to study
qualitative and quantitative properties of the system in an automatic way. In this
respect, the model should be mathematically tractable. That is, it should be possible
to perform mathematical analysis on it.
Since P systems are computing devices, the computability of PDP systems is an
inherent property. Moreover, the inference engine (as detailed in Sect. 4.4) captures
the semantics of the studied dynamics models.

• Understandability: The abstract formalism used should correspond well to the
informal concepts and ideas which are used by the experts in the population under
study.
As PDP systems objects and rules capture in a simple manner the behaviour and
dynamical interaction of the relevant elements in the modelled system, they are
easy to be understood by experts in the problem domain.

• Extensibility: It should be easy to identify the different components and charac-
teristics of the systems that are essential in the context of the management or
scientific problem to be solved or comprehended [17], so they can be rearranged,
duplicated, composed, etc. in an easy way to produce other models. Models of
complex systems should also be extensible to higher levels of organizations.
PDP system rule design is module-oriented, favouring low coupling between them.
This approach allows a mostly independent modules development while enabling
the addition, removal and/or reuse of them to the system. As modules are designed
in a separate way, different levels of complexity can be achieved in each one.

4.4 An Inference Engine: The DCBA Algorithm

Within the framework of Membrane Computing the goal of a simulation algorithm
is to select and execute, for each time unit, an applicable multiset of rules. The Direct
distribution based on Consistent Blocks Algorithm (DCBA) follows this approach,
paying special attention to the proportional distribution of objects among competing
blocks (with overlapping LHS), thus determining the number of times that each rule
in

⋃m
j=1 RΠ j ∪RE is applied. See [18] for a more detailed explanation and examples

of how this algorithm works.
Algorithm 1 describes the main loop of the DCBA. It follows the same general

scheme as its predecessors, DNDP and BBB [19] where the simulation of a transition
step is structured in two stages: selection and execution. The firststage (selection)



selects which rules are to be applied (and how many times) on each environment. The
second stage (execution) implements the effects of applying the previously selected
rules, yielding the next configuration of the PDP system. Note that, although every
Π j shares the same set of rules R, the probability functions may differ for each
environment.

As shown in Algorithm 1, the selection stage consists of three phases: Phase 1
distributes objects to the blocks in a proportional way, as it will be explained later on;
Phase 2 assures the maximality by assigning to some of the blocks the objects still
unassigned after Phase 1; and finally, Phase 3 translates block applications into rule
applications by computing random numbers following the multinomial distribution
with the corresponding probabilities.

Algorithm 1 DCBA MAIN PROCEDURE
Require: A Population Dynamics P system of degree (q, m), T ≥ 1, and A ≥ 1
1: C0 ← Initial configuration
2: INITIALIZATION � (Algorithm 2)
3: for t ← 1 to T do
4: Calculate probability functions fr, j (t) and pr (t)
5: C ′

t ← Ct−1
6: SELECTION of rules:

– PHASE 1: Distribution � (Algorithm 3)
– PHASE 2: Maximality � (Algorithm 4)
– PHASE 3: Probabilities � (Algorithm 5)

7: EXECUTION of rules. � (Algorithm 6)
8: Ct ← C ′

t
9: end for

The INITIALIZATION procedure (Algorithm 2) constructs a static distribution
table T j for each environment. Two variables, B j

sel and R j
sel , are also initialized, in

order to store the selected multisets of blocks and rules, respectively.

Observation 1 Each column label of the tables T j contains the information of the
corresponding block left–hand side.

Observation 2 Each row of the tables T j contains the information related to the
object competitions: for a given object, its row indicates which blocks are competing
for it (those columns having non–null values).



Algorithm 2 INITIALIZATION
1: Construction of the static distribution table T :

• Column labels: consistent blocks Bi,α,α′,u,v of rules from R.
• Row labels: pairs (o, i) and (x, 0), for all objects o ∈ Γ , x ∈ Σ and membrane label i ,

being 0 the identifier of the environment.
• For each cell of the table: place 1

k if its row label (o, i) appears with multiplicity k > 0 in
the LHS of its column label Bi,α,α′,u,v.

2: for j = 1 to m do � (Construct the static expanded tables T j )
3: T j ← T . � (Initialize the table with the original T )
4: For each rule block Be j ,x from RE , add a column labelled by Be j ,x to the table

T j ; place the value 1 at row (x, 0) for that column

5: Initialize the multisets B j
sel ← ∅ and R j

sel ← ∅
6: end for

The distribution of objects among the blocks with overlapping LHS (compet-
ing blocks) is performed in selection Phase 1 (Algorithm 3). The expanded static
tables T j are used for this purpose in each environment, together with three differ-
ent filter procedures. Filter 1 discards the columns of the table corresponding to
non-applicable blocks due to mismatch charges in the LHS and in the configuration
C ′

t . Then, Filter 2 discards the columns with objects in the LHS not appearing in
C ′

t . Finally, in order to save space in the table, Filter 3 discards empty rows. These
three filters are applied at the beginning of Phase 1, and the result is a dynamic table
T t

j (for the environment j and time step t).
The semantics of the modelling framework requires a set of mutually consis-

tent blocks before distributing objects to the blocks. For this reason, after applying
Filters 1 and 2, the mutual consistency is checked. Note that this checking can be
easily implemented by a loop over the blocks. If it fails, meaning that an inconsistency
was encountered, the simulation process is halted, providing a warning message to
the user. Nevertheless, it could be interesting to find a way to continue the execution
by non-deterministically constructing a subset of mutually consistent blocks. Since
this method can be exponentially expensive in time, it is optional for the user whether
to activate it or not.

Once the columns of the dynamic table T t
j represent a set of mutually consistent

blocks, the distribution process starts. This is carried out by creating a temporal copy
of T t

j , called T V t
j , which stores the following products:

• The normalized value with respect to the row: this is a way to proportionally
distribute the corresponding object along the blocks. Since it depends on the mul-
tiplicities in the LHS of the blocks, the distribution, in fact, penalizes the blocks
requiring more copies of the same object. This is inspired in the amount of energy
required to gather individuals from the same species.

• The value in the dynamic table (i.e. 1
k ): this indicates the number of possible

applications of the block with the corresponding object.
• The multiplicity of the object in the configuration C ′

t : this performs the distribution
of the number of copies of the object along the blocks.



Algorithm 3 SELECTION PHASE 1: DISTRIBUTION
1: for j = 1 to m do � (For each environment e j )
2: Apply filters to table T j using C ′

t , obtaining T t
j , as follows:

a. T t
j ← T j

b. Filter 1 (T t
j , C ′

t )

c. Filter 2 (T t
j , C ′

t )

d. Check mutual consistency for the blocks remaining in T t
j . If there is at least one

inconsistency then report the information about the error, and optionally halt the
execution (in case of not activating step 3)

e. Filter 3 (T t
j , C ′

t )

3: (OPTIONAL) Generate a set St
j of sub-tables from T t

j , formed by sets of

mutually consistent blocks, in a maximal way in T t
j (by the inclusion

relationship). Replace T t
j with a randomly selected table from St

j .
4: a ← 1
5: repeat
6: for all rows X in T t

j do
7: RowSum X,t, j ← total sum of the non-null values in the row X
8: end for
9: T V t

j ← T t
j � (A temporal copy of the dynamic table)

10: for all non-null positions (X, Y ) in T t
j do

11: multX,t, j ← multiplicity in C ′
t at e j of the object at row X

12: T V t
j (X, Y ) ← �multX,t, j · (T t

j (X,Y ))2

RowSum X,t, j
�

13: end for
14: for all not filtered column, labelled by block B, in T t

j do
15: NB ← minX∈rows(T t

j )(T V t
j (X, B)) � (The minimum of the column)

16: B j
sel ← B j

sel + {B NB } � (Accumulate the value to the total)
17: C ′

t ← C ′
t − L H S(B) · NB � (Delete the LHS of the block)

18: end for
19: Filter 2 (T t

j , C ′
t )

20: Filter 3 (T t
j , C ′

t )
21: a ← a + 1
22: until (a > A) ∨ (all the selected minimums at step 15 are 0)
23: end for

Algorithm 4 SELECTION PHASE 2: MAXIMALITY
1: for j = 1 to m do � (For each environment e j )
2: Set a random order to the blocks remaining in the last updated table T t

j
3: for all block B, following the previous random order do
4: NB ← number of possible applications of B in C ′

t

5: B j
sel ← B j

sel + {B NB } � (Accumulate the value to the total)
6: C ′

t ← C ′
t − L H S(B) · NB � (Delete the LHS of block B, NB times)

7: end for
8: end for



After the object distribution process, the number of applications for each block is
calculated by selecting the minimum value in each column. This number is then used
for consuming the LHS from the configuration. However, this application could be
non–maximal. The distribution process can eventually deliver objects to blocks that
are restricted by other objects. As this situation may occur frequently, the distribu-
tion and the configuration update process is performed A times, where A is an input
parameter referring to accuracy. The more the process is repeated, the more accu-
rate the distribution becomes at the expense of simulation performance. We have
experimentally checked that A = 2 gives the best accuracy/performance ratio. In
order to efficiently repeat the loop for A, and also before going to the next phase
(maximality), it is interesting to apply Filters 2 and 3 again.

After Phase 1, it may be the case that some blocks are still applicable to the
remaining objects. This may be caused by a low A value or by rounding artefacts in the
distribution process. Due to the requirements of P systems semantics, a maximality
phase is now applied (Algorithm 4). Following a random order, a maximal number
of applications is calculated for each block which is still applicable.

After the application of Phases 1 and 2, a maximal multiset of selected (mutually
consistent) blocks has been computed. The output of the selection stage has to be,
however, a maximal multiset of selected rules. Hence, Phase 3 (Algorithm 5) passes
from blocks to rules, by applying the corresponding probabilities (at the local level
of blocks). The rules belonging to a block are selected according to a multinomial
distribution M(N , g1, . . . , gl), where N is the number of applications of the block,
and g1, . . . , gl are the probabilities associated with the rules r1, . . . , rl within the
block, respectively.

Algorithm 5 SELECTION PHASE 3: PROBABILITY
1: for j = 1 to m do � (For each environment e j )

2: for all block B NB ∈ B j
sel do

3: Calculate {n1, . . . , nl }, a random multinomial M(NB , g1, . . . , gl ) with
respect to the probabilities of the rules r1, . . . , rl within the block.

4: for k = 1 to l do
5: R j

sel ← R j
sel + {rnk

k }.
6: end for
7: end for
8: Delete the multiset of selected blocks B j

sel ← ∅. � (Useful for the next step)
9: end for

Finally, the execution stage (Algorithm 6) is applied. This stage consists on adding
the RHS of the previously selected multiset of rules, as the objects present on the
LHS of these rules have already been consumed. Moreover, the indicated membrane
charge is set.



Algorithm 6 EXECUTION
1: for j = 1 to m do � (For each environment e j )

2: for all rule rn ∈ R j
sel do � (Apply the RHS of selected rules)

3: C ′
t ← C ′

t + n · R H S(r)

4: Update the electrical charges of C ′
t from R H S(r).

5: end for
6: Delete the multiset of selected rules R j

sel ← ∅. � (Useful for the next step)
7: end for

4.5 Simulation of PDP Systems

As already mentioned in Sect. 4.1, computational models (and, in particular, P
system–based models) are assumed to rely on software simulators that carry out
virtual experiments in order to evaluate the usefulness of the formal model defined.
At the current stage, multiple software tools have been developed in the Membrane
Computing field (see e.g. [20]), most of them specifically tailored for a single type
of P systems.

This section describes a set of software tools providing the needed infrastructure
to define, simulate and virtually experiment with PDP systems.

4.5.1 P-Lingua, and the pLinguaCore Library

Each P system model features characteristic semantic constraints that determine not
only the type of rules allowed, but also the way in which rules are applied. This
general information is embedded in the simulator engine, but in order to perform
simulations, we need additional information regarding the P system to be simulated.
The term simulator input will be used to refer to this initial data which provides the
formal specification of the P system.

One possible approach to implement the simulator input could be to require a
specific input file for each simulator, or directly insert the data into the source code.
This approach imposes a specific format for the input, given by the data structures
used in the design of each software simulator. Moreover, if we wanted to run many
different experiments, a great redundant effort would be required. An alternative
approach could be to standardize the simulator input by establishing a common
format. These two approaches raise a trade–off. On the one hand, specific simulator
inputs could be defined in a more straightforward way, as the used format is closer
to the P system features to simulate. On the other hand, although the latter approach
involves analysing different P system models to develop a standard format, there is
no need to develop completely a new simulator every time a new P system should
be simulated, as it is possible to use a common software library in order to parse
the standard input format. Moreover, users would no longer be obliged to learn a



new input format every time they use a different simulator, and they would not need
to rewrite the specification of P systems which are going to be simulated every
time they move on to another model. This second approach is the one considered in
P-Lingua [21, 22], a specification language to define P systems within several P
system models.

The P–Lingua project also provides free software tools under GNU GPL license
[23] for compilation, simulation and debugging tasks. The main tools are inte-
grated in a Java library called pLinguaCore. These tools include a parser to handle
P-Lingua input files and check possible programming errors (both lexical/syntax and
semantics). They also include several built-in sequential simulators to generate P sys-
tem computations for the supported models. Furthermore, these tools can export the
P–Lingua definition file into other file formats in order to get interoperability between
different software environments. The approach to define the simulator input by using
the P-Lingua framework is illustrated in Fig. 4.1 where we can see how P system
definitions in P-Lingua format can be translated into other file formats by using
pLinguaCore, eventually becoming the input for different simulator environments
and gaining interoperability. Moreover, such input is free of programming errors,
since the parser inside pLinguaCore has already checked them.

Since the initial release version, each new update of P-Lingua and pLinguaCore
includes new supported models and implements new simulation algorithms, while
in parallel fixing some bugs found. The current release (pLinguaCore 3.0, available
for download at the P-Lingua website [22]), covers the following P system models:

• (Cell-like) Transition P systems.
• (Cell-like) Symport/antiport P systems.
• (Cell-like) Active membranes with division rules.
• (Cell-like) Active membranes with creation rules.
• (Cell-like) Probabilistic P systems.
• Tissue-like P systems with division rules.
• Population Dynamics P systems (PDP systems)

P-Lingua
File

XML
file

Binary
file

Another
format

Simulator

Compiler Simulator

Simulator

The input

Fig. 4.1 The P-Lingua approach to define simulators input



As mentioned above, pLinguaCore includes at least one built–in simulator for
each supported model. In particular, a sequential implementation of the algorithm
discussed in this chapter for PDP systems (DCBA) is included, along with some
alternatives (e.g. DNDP).

P-Lingua and pLinguaCore 3.0 can be used to assist in the design of PDP systems.
It can also be used as simulation core for other software tools such as MeCoSim, as
it will be explained below.

4.5.2 The Visual Environment MeCoSim

The availability of a general language, P-Lingua, to define P systems, along with
a set of tools to parse, simulate and debug models based on this kind of systems,
enables the designer to work with P systems in a high level of abstraction. In this
context, an abstract problem is defined in P-Lingua format, but a number of scenarios
(instances of the problem) can be analysed and simulated for that abstract problem.
As the variety and size of the problems to model and simulate with this framework
increase, the need for visual tools for modelling and simulation arises—in such a
way that a P-Lingua model for a family of problems can be specified by a designer
user, while the information about each specific scenario can be included by an end
user in a visual way.

This need leads to software developments for providing Graphical User Interfaces
(GUI) to introduce the input data for a specific scenario, both for the description of the
initial configuration and for some variable parameters for the model. Moreover, such
GUIs also take care of rendering some outputs showing the required information,
possibly including tables and charts. Some examples of these applications were
successfully used to model and simulate ecosystems [11, 13, 24].

While P-Lingua framework provided a general mechanism to define, simulate
and debug P systems, each family of problems implied the design, development and
maintenance of different ad-hoc GUIs. MeCoSim [25, 26], Membrane Computing
Simulator, arises to solve the need of developing ad-hoc applications, by providing
a general solution for defining custom GUIs adapted for each problem. The user can
define a custom structure of tabs, input and output tables, charts, graphs, etc. for
each given family of problems, so MeCoSim can be viewed as a new layer above
P-Lingua framework, complementing its functionality.

The initial goal has been extended to provide a general integrated environment
to work with P systems, including functionalities for modelling, simulation, debug-
ging, analysis, properties extraction and verification of models based on P systems.
MeCoSim platform provides a plugins architecture to extend the initial functionality
with external programs.



4.5.3 Accelerating PDP Systems Simulations

Previous sections have introduced a simulation algorithm, DCBA, along with a
sequential implementation inside pLinguaCore. However, the simulations were rel-
atively slow, since pLinguaCore library is not performance-oriented.

In order to overcome this limitation, a more efficient implementation based on
C++ and OpenMP was presented in [27], taking advantage of modern multicore
architectures (e.g. 4-core Intel I5 and I7 microprocessors). These simulators save on
memory by avoiding the creation of the static distribution table required in Phase 1.
This feature (called virtual table solution) is carried out by translating the operations
over the table to operations directly to rule blocks information. Only the row sums
and the column minimums are stored in auxiliary data structure together with flags
denoting that a column has been filtered. Concerning the parallelism implementation,
simulations and environments were distributed along the cores. Runtime gains of up
to 2.5× were achieved, so these preliminary results indicate that the simulation of
PDP systems are memory bound.

Furthermore, since GPU computing [28] has been successfully used to implement
other P systems simulators [29–31], the simulation of PDP systems on this technol-
ogy was a natural step. NVIDIA’s CUDA (Compute Unified Device Architecture)
[32, 33] provides developers with a high-level programming model that allows them
to take advantage of the NVIDIA’s GPU parallel architecture. Most recent NVIDIA’s
GPUs (with Kepler architecture) provide thousands of cores, and a fast memory
access. However, programs must fit data parallelism to achieve best performance.

The CUDA-based simulator for PDP systems [34] distributes simulations and
environments along the multiprocessors of the GPU, and the rule blocks are paral-
lelized within each multiprocessor. It has been benchmarked against a set of randomly
generated PDP systems (without biological meaning), achieving speedups of 7x for
large sizes (PDP systems with 50,000 rule blocks, 20 environments and running 50
simulations) on a NVIDIA Tesla C1060 GPU (240 cores and 4 GBytes of memory)
in comparison to the multi–core CPU version. The source code is available under
GPLv3 license, within the PMCGPU project [35], codenamed as ABCD-GPU.

4.6 A Case Study: Pandemics

A pandemic is an outbreak of a disease that occurs over a wide geographic area and
affects an exceptionally high proportion of the population.

In this section, we present a SIR computational model based on Population
Dynamics P systems. SIR is an acronyms: S stands for the susceptible population,
those who are not yet infected, but may become infected; I stands for the infected
population, those who are ill and can transmit the disease, and R stands for the dead
or recovered individuals that are removed from the infected population and cannot
transmit the disease. The SIR mathematical model for pandemics is an ODEs based



model that has been used to understand the spatial-temporal transmission dynamics
of influenza. This model refers to systems where no human interaction is considered
(e.g. vaccination campaigns, declarations of quarantine, prophylactic actions, etc.).

Our case study will be restricted to three physically separated communities (e.g.
in different cities). Each community is formed by four neighbourhoods, where basic
facilities for daily life are available: schools, work places, shops, etc. Individuals in
a neighbourhood are organized in families (families may have different structure or
number of members). In addition, seven groups will be considered, according to their
age: Daycares/Playgroups, Elementary schools, Middle schools, High schools, and
two groups for Adults (19–53 years old, and over 53 years old). A susceptible person
can be infected either in the bosom of the family, at work, or in leisure time (at the
neighbourhood or when travelling). Figure 4.2 displays the network corresponding
to breeding grounds for each age group.

4.6.1 Design of a PDP Modelling Pandemics

In this section, the model for the exposed case study by using PDP systems is pre-
sented. The model is composed by seven modules of rules. The first one of them
(initial infection) will only be executed when the model is initialized choosing ran-
domly infected people within the population. The execution of the remaining six

Fig. 4.2 A network of the infection flow



modules will be interpreted as the evolution of the pandemic scenario during one
day.

The model consists of a PDP system of degree (2, 3) taking T ≥ 1 time units,

Π = (G, Γ,Σ, T,RE , μ,R, { fr, j | r ∈ R, 1 ≤ j ≤ 3}, {M1, j ,M2, j , 1 ≤ j ≤ 3})

where:

• G = (V, S) is a complete directed graph, with V = {e1, e2, e3} and S =
{(ei , e j ) | 1 ≤ i, j ≤ 3} (Fig. 4.3 shows the graph, including the P system
inside each environment).

Fig. 4.3 Modules correspponding to the SIR model



• The working alphabet, Γ is the set
{an | 1 ≤ n ≤ 4} ∪ {Ci | 0 ≤ i ≤ 18}∪
{X f,g, X f,g, Y f,g, Z f,g, V f,g, A f,g, S f,g,

R f,g | 1 ≤ f ≤ 4F, 1 ≤ g ≤ 7}∪
{A f,g,i , S f,g,i |

1 ≤ f ≤ 4F, 1 ≤ g ≤ 7, 2 ≤ i ≤ 5}∪
{A′

f,g, j , X
′
f,g, j , X ′

f,g, j V ′
f,g, j , W f,g, j , W ′

f,g, j |
1 ≤ f ≤ 4F, 1 ≤ g ≤ 7, 1 ≤ j ≤ 3}∪

{ Â, X̃ , Ỹ , Z̃ , Ṽ , W̃ } ∪ {M̃ ′
j | 1 ≤ j ≤ 3}

Symbols an (1 ≤ n ≤ 4) are used to represent in the initial configuration the
individuals initially infected in each neighbourhood. The uninfected individu-
als are represented by symbols X f,g , X ′

f,g, j , Y f,g , Z f,g , V f,g , V ′
f,g, j , W f,g, j ,

W ′
f,g, j (index f is associated with the families, index g is associated with the

age groups, and index j is associated with the environments representing com-
munities); the infected individuals are represented by symbols X f,g and X

′
f,g, j ;

symbols S f,g,i and A f,g,i represent symptomatic and asymptomatic individuals,
respectively (index i is associated with the stage of illness, indicating days since
infection); symbols X̃ , Ỹ , Z̃ , Ṽ , W̃ are used to model the interactions of indi-
viduals infected by others represented by symbols S f,g and A f,g (symptomatic
and asymptomatic, respectively); Ṽ ′

j , A′
f,g, j and Â are auxiliary symbols used

for travelling among communities; R f,g represent individuals who were infected
but have been able to recover. A global clock, Ci , controls the evolution of the P
system and the charge changes of membrane 2 along a cycle (that is, a day).

• Σ = {A′
f,g, j , V ′

f,g, j | 1 ≤ f ≤ 4F, 1 ≤ g ≤ 7, 1 ≤ j ≤ 3}∪
{Ṽ ′

j | 1 ≤ j ≤ 3}∪
{X ′

f,g,i, j | 1 ≤ f ≤ 4F, 1 ≤ g ≤ 7, 0 ≤ i ≤ 1, 1 ≤ j ≤ 3}
• T = 18 · Days, where Days is the number of days to simulate. Each day in the

real scenario is simulated by 18 computational steps.

• RE = {re1, f,g, j,i , re2, f,g, j,i | 1 ≤ f ≤ 4F, 1 ≤ g ≤ 7, 1 ≤ i, j ≤ 3}∪
{re3, j,i | 1 ≤ i, j ≤ 3}∪
{re4, f,g,i, j,p | 1 ≤ f ≤ 4F, 1 ≤ g ≤ 7, 0 ≤ i ≤ 1, 1 ≤ j, p ≤ 3, j �= p}∪
{re5, f,g,i, j | 1 ≤ f ≤ 4F, 1 ≤ g ≤ 7, 0 ≤ i ≤ 1, 1 ≤ j ≤ 3}

• μ = [ [ ]2 ]1 is the membrane structure, and the corresponding initial multisets in
the environment j are:

– M1, j = ∅
– M2, j = { X

q f,g, j
f,g | 1 ≤ f ≤ 4F, 1 ≤ g ≤ 7, 1 ≤ j ≤ 3}∪

{aln, j
n | 1 ≤ n ≤ 4, 1 ≤ j ≤ 3} ∪ {C0}

Objects X f,g represent individuals in step 0, for families f from 1 to 4F , with
F the number of families per neighbourhood; they are divided by index g
in 7 age groups as explained before. Objects an , as mentioned before, repre-



sent individuals initially infected at the beginning of the simulated period. The
amount of objects depends, for each environment, on parameters q f,g, j and ln, j ,
that should be specified by the user.

• In what follows we enumerate the rules in R ∪ RE along with some comments
on their functioning:

Initial infection

These rules take care of generating the initial scenario, randomly distributing symp-
tomatic and asymptomatic individuals along the system, according to the parameters
ln, j . These parameters are provided by the user before starting the simulation, and
they indicate the initial amount of infected individuals on each environment e j (rep-
resented by the multiplicity of objects an).

These rules are only applied in the first step of the computation, they are not part
of the loop that represents a day (see Fig. 4.4).

Each infected individual is estimated to interact with 20 other individuals dur-
ing one day, and thus 20 copies of S f,g (A f,g , respectively) are generated for each
symptomatic (asymptomatic, respectively) individual.

Generate symptomatic individuals

r1, f,g,i,n ≡ [an X f,g
ps/4−−−→ S f,g,i S20

f,g]2

{
(n − 1)F < f ≤ nF,

1 ≤ g ≤ 7,

2 ≤ i ≤ 5,

1 ≤ n ≤ 4

Generate asymptomatic individuals

Fig. 4.4 Structure of the
environment graph of the PDP
system defined



r2, f,g,i,n ≡ [an X f,g
(1−ps)/4−−−→ A f,g,i X̃ A20

f,g]2

{
(n − 1)F < f ≤ nF,

1 ≤ g ≤ 7,

2 ≤ i ≤ 5,

1 ≤ n ≤ 4

Clock advance

r3 ≡ [C0 −−−→ C1]2

Infection inside the family (first step)

As we said before, any infected individual can spread the disease by interacting with
other individuals. However, we distinguish two types of behaviour: symptomatic
individuals are supposed to stay at home, hence only interacting with their relatives,
while asymptomatic individuals are supposed to be unaware of their infection. In this
module, rules r4, f,g,g′ and r5, f,g,g′ deal with the possible infection within the family.
The rest of modules will cover different reasons for interaction between susceptible
individuals and asymptomatic infected individuals.

The model also has special rules (see r6, f,g and r7, f,g) to deal with the fact that
two infected people, when interacting, cannot get infected again. Please note that
these rules compete for objects A f,g and S f,g against rules r4, f,g,g′ and r5, f,g,g′ .

Infection of susceptible individuals

r4, f,g,g′ ≡ [S f,g X f,g′ ]2 −−−→[S f,g X f,g′ X̃ ]−2
{

1 ≤ f ≤ 4F,

1 ≤ g, g′ ≤ 7

r5, f,g,g′ ≡ [A f,g X f,g′ ]2 −−−→[A f,g X f,g′ X̃ ]−2
{

1 ≤ f ≤ 4F,

1 ≤ g, g′ ≤ 7

Interaction between infected individuals

r6, f,g ≡ [S f,g X̃ ]2 −−−→[S f,g X̃ ]−2
{

1 ≤ f ≤ 4F,

1 ≤ g ≤ 7

r7, f,g ≡ [A f,g X̃ ]2 −−−→[A f,g X̃ ]−2
{

1 ≤ f ≤ 4F,

1 ≤ g ≤ 7

Clock advance with charge change

r8 ≡ [C1]2 −−−→[C2]−2

Infection inside the family (last step)

We need to avoid that rules for infection inside the family are applicable in more
steps. Note that by changing the charge we guarantee that all symbols are renamed
by means of the following rules:

Renaming of susceptible (X ) and infected (X̃ ) individuals

r9, f,g ≡ [X f,g]−2 −−−→[Y f,g]2

{
1 ≤ f ≤ 4F,

1 ≤ g ≤ 7

r10 ≡ [X̃ ]−2 −−−→[Ỹ ]2



Removal of the possibility of infection by symptomatic individuals

r11, f,g ≡ [S f,g]−2 −−−→[#]2

{
1 ≤ f ≤ 4F,

1 ≤ g ≤ 7

Clock advance with charge change

r12 ≡ [C2]−2 −−−→[C3]2

Infection inside the neighborhood (first step)

The following four blocks of rules represent the probability of infection by
interacting with a “neighbour”. The set of 4F families living in each community
is divided into four intervals, representing four neighbourhoods. Thus, two individu-
als A f,g and Y f ′,g′ live in the same neighbourhood if their family indexes ( f and f ′)
belong to the same interval.

This module includes, like discussed above, rules to deal with the interaction
between two infected people (see r17, f,g).

Asymptomatic individuals affecting susceptible ones

r13, f, f ′,g,g′ ≡ [A f,g Y f ′,g′ ]2 −−−→[A f,g X f ′,g′ Ỹ ]−2
{

1 ≤ f, f ′ ≤ F,

1 ≤ g, g′ ≤ 7

r14, f, f ′,g,g′ ≡ [A f,g Y f ′,g′ ]2 −−−→[A f,g X f ′,g′ Ỹ ]−2
{

F < f, f ′ ≤ 2F,

1 ≤ g, g′ ≤ 7

r15, f, f ′,g,g′ ≡ [A f,g Y f ′,g′ ]2 −−−→[A f,g X f ′,g′ Ỹ ]−2
{

2F < f, f ′ ≤ 3F,

1 ≤ g, g′ ≤ 7

r16, f, f ′,g,g′ ≡ [A f,g Y f ′,g′ ]2 −−−→[A f,g X f ′,g′ Ỹ ]−2
{

3F < f, f ′ ≤ 4F,

1 ≤ g, g′ ≤ 7

Interaction between infected individuals

r17, f,g ≡ [A f,g Ỹ ]2 −−−→[A f,g Ỹ ]−2
{

3F < f, f ′ ≤ 4F,

1 ≤ g, g′ ≤ 7

Clock advance with charge change

r18 ≡ [C3]2 −−−→[C4]−2
Infection inside the neighborhood (last step)

Following the same strategy as in the previous module (infection inside the
family), we include now the corresponding renaming rules.

Renaming of susceptible (Y ) and infected (Ỹ ) individuals

r19, f,g ≡ [Y f,g]−2 −−−→[Z f,g]2

{
1 ≤ f ≤ 4F,

1 ≤ g ≤ 7

r20 ≡ [Ỹ ]−2 −−−→[Z̃ ]2

Clock advance with charge change



r21 ≡ [C4]−2 −−−→[C5]2

Infection inside the community (first step)

This module of rules represents the probability of infection by interacting with an
individual living in the same community. No conditions are imposed on the indexes
of the symbols, if they are in the same membrane (within the same environment)
then they can interact.

Rules to deal with the interaction between two infected people are included here
as well (see r23, f,g).

Evolution of susceptible (Z ) and previously affected (Z̃ ) individuals

r22, f, f ′,g,g′ ≡ [A f,g Z f ′,g′ ]2 −−−→[A f,g X f ′,g′ Z̃ ]−2
{

1 ≤ f, f ′ ≤ 4F,

1 ≤ g, g′ ≤ 7

r23, f,g ≡ [A f,g Z̃ ]2 −−−→[A f,g Z̃ ]−2
{

1 ≤ f ≤ 4F,

1 ≤ g ≤ 7

Clock advance with charge change

r24 ≡ [C5]2 −−−→[C6]−2
Infection inside the community (last step)

Following the same strategy as in the previous modules, we include now the corre-
sponding renaming rules.

Renaming of susceptible (Z ) and infected (Z̃ ) individuals

r25, f,g ≡ [Z f,g]−2 −−−→[V f,g]2

{
1 ≤ f ≤ 4F,

1 ≤ g ≤ 7

r26 ≡ [Z̃ ]−2 −−−→[Ṽ ]2

Clock advance with charge change

r27 ≡ [C6]−2 −−−→[C7]2

Infection in workplace/daycare/school...

In this part of the day cycle, we consider the interactions which take place at work.
More precisely, the individuals can now be infected by interacting with other indi-
viduals of the same age group (since they will both be studying at school, or both
working, etc.).

The renaming step is not needed in this module. By giving a positive charge
to membrane 2 (in the previous modules only 0 and − are used), the module for
travelling among communities is initiated in the next step.

An asymptomatic individual may meet susceptible ones (Vk,g), or another infected
individual (Ṽ )



r28, f, f ′,g ≡ [A f,g V f ′,g]2 −−−→[A f,g X f ′,g Ṽ ]+2
{

1 ≤ f, f ′ ≤ 4F,

1 ≤ g ≤ 7

r29, f,g ≡ [A f,g Ṽ ]2 −−−→[A f,g Ṽ ]+2
{

1 ≤ f ≤ 4F,

1 ≤ g ≤ 7

Clock advance with charge change

r30 ≡ [C7]2 −−−→[C8]+2

Infection among communities

This is the last possibility included in our model for spreading the disease. It considers
the case of asymptomatic individuals traveling outside their communities.

In order to represent such “travels”, objects are sent out of membrane 2, and then
out of membrane 1 into their environment. Then, communication rules are applied,
possibly moving to a different environment, and after that the objects representing
the travellers move into membrane 1 and into membrane 2, and then they are ready
for the infection rules (see r52, f,g, j ). Rule r53 has a double role: on one hand they
are equivalent to rules for interaction between two infected people used in previous
modules, but on the other hand, together with rules r55 and r56 they also take care of
eliminating objects involved in infection rules, so that they will not interfere in the
development of the next cycle.

Movement to skin membrane

r31, f,g ≡ [V f,g]+2 −−−→ V f,g[ ]2

{
1 ≤ f ≤ 4F,

1 ≤ g ≤ 7

r32 ≡ [Ṽ ]+2 −−−→ Ṽ [ ]2

r33, f,g ≡ [A f,g]+2 −−−→ A f,g[ ]2

{
1 ≤ f ≤ 4F,

1 ≤ g ≤ 7

r34, f,g ≡ [X f,g]+2 −−−→ X f,g[ ]2

{
1 ≤ f ≤ 4F,

1 ≤ g ≤ 7

r35, f,g,i ≡ [A f,g,i ]+2 −−−→ A f,g,i [ ]2

{
1 ≤ f ≤ 4F,

1 ≤ g ≤ 7,

2 ≤ i ≤ 5

r36, f,g,i ≡ [S f,g,i ]+2 −−−→ S f,g,i [ ]2

{
1 ≤ f ≤ 4F,

1 ≤ g ≤ 7,

2 ≤ i ≤ 5

r37, f,g ≡ [R f,g]+2 −−−→ R f,g[ ]2

{
1 ≤ f ≤ 4F,

1 ≤ g ≤ 7

Clock advance with charge change

r38 ≡ [C8]+2 −−−→[C9]2



Movement to the environment

r39, f,g, j ≡ [A f,g]1
1/3−−−→ A′

f,g, j [ ]1

{
1 ≤ f ≤ 4F,

1 ≤ g ≤ 7,

1 ≤ j ≤ 3

r40, f,g, j ≡ [V f,g]1
1/3−−−→ V ′

f,g, j [ ]1

{
1 ≤ f ≤ 4F,

1 ≤ g ≤ 7,

1 ≤ j ≤ 3

r41, j ≡ [Ṽ ]1
1/3−−−→ Ṽ ′

j [ ]1 1 ≤ j ≤ 3

Clock advance

r42 ≡ [C9 −−−→ C10]2

Communication rules among environments

re1, f,g, j,i ≡ (A′
f,g,i )e j −−−→( Â)ei

{
1 ≤ f ≤ 4F,

1 ≤ g ≤ 7,

1 ≤ i, j ≤ 3

re2, f,g, j,i ≡ (V ′
f,g,i )e j −−−→(W f,g, j )ei

{
1 ≤ f ≤ 4F,

1 ≤ g ≤ 7,

1 ≤ i, j ≤ 3

re3, j,i ≡ (Ṽ ′
i )e j −−−→(W̃ )ei 1 ≤ i, j ≤ 3

Clock advance

r43 ≡ [C10 −−−→ C11]2

Input into membrane 1

r44 ≡ Â[ ]1 −−−→[ Â]1

r45, f,g, j ≡ W f,g, j [ ]1 −−−→[W f,g, j ]1

{
1 ≤ f ≤ 4F,

1 ≤ g ≤ 7,

1 ≤ j ≤ 3

r46 ≡ W̃ [ ]1 −−−→[W̃ ]1

Clock advance

r47 ≡ [C11 −−−→ C12]2

Input into membrane 2

r48 ≡ Â[ ]2 −−−→[ Â]2

r49, f,g, j ≡ W f,g, j [ ]2 −−−→[W f,g, j ]2

{
1 ≤ f ≤ 4F,

1 ≤ g ≤ 7,

1 ≤ j ≤ 3

r50 ≡ W̃ [ ]2 −−−→[W̃ ]2



Clock advance

r51 ≡ [C12 −−−→ C13]2

An asymptomatic traveller may meet a susceptible individual (W f,g, j ), or another
infected individual (W̃ )

r52, f,g, j ≡ [ Â W f,g, j ]2 −−−→[X
′
f,g, j ]−2

{
1 ≤ f ≤ 4F,

1 ≤ g ≤ 7,

1 ≤ j ≤ 3

r53 ≡ [ Â W̃ ]2 −−−→[#]−2
Clock advance with charge change

r54 ≡ [C13]2 −−−→[C14]−2
Start the reverse trip to return home (movement to skin membrane)

r55 ≡ [ Â]−2 −−−→[#]2

r56 ≡ [W̃ ]−2 −−−→[#]2

r57, f,g, j ≡ [W f,g, j ]−2 −−−→ W ′
f,g, j [ ]2

{
1 ≤ f ≤ 4F,

1 ≤ g ≤ 7,

1 ≤ j ≤ 3

r58, f,g, j ≡ [X
′
f,g, j ]−2 −−−→ X

′
f,g, j [ ]2

{
1 ≤ f ≤ 4F,

1 ≤ g ≤ 7,

1 ≤ j ≤ 3

Clock advance with charge change

r59 ≡ [C14]−2 −−−→[C15]2

Next step of the trip back (movement to the environment)

r60, f,g, j ≡ [W ′
f,g, j ]1 −−−→ X ′

f,g, j [ ]1

{
1 ≤ f ≤ 4F,

1 ≤ g ≤ 7,

1 ≤ j ≤ 3

r61, f,g, j ≡ [X
′
f,g, j ]1 −−−→ X

′
f,g, j [ ]1

{
1 ≤ f ≤ 4F,

1 ≤ g ≤ 7,

1 ≤ j ≤ 3

Clock advance

r62 ≡ [C15 −−−→ C16]2

Next step of the trip back (communication rules among environments)

re4, f,g, j,i ≡ (X ′
f,g, j )ei −−−→(X f,g)e j

{
1 ≤ f ≤ 4F,

1 ≤ g ≤ 7,

1 ≤ j, i ≤ 3

re5, f,g, j,i ≡ (X
′
f,g, j )ei −−−→(X f,g)e j

{
1 ≤ f ≤ 4F,

1 ≤ g ≤ 7,

1 ≤ j, i ≤ 3



Clock advance

r63 ≡ [C16 −−−→ C17]2

Next step of the trip back (going into membrane 1)

r64, f,g ≡ X f,g[ ]1 −−−→[X f,g]1

{
1 ≤ f ≤ 4F,

1 ≤ g ≤ 7

r65, f,g ≡ X f,g[ ]1 −−−→[X f,g]1

{
1 ≤ f ≤ 4F,

1 ≤ g ≤ 7

Clock advance with charge change

r66 ≡ [C17]2 −−−→[C18]+2

Restore configuration

The last step of the “trip back” is slightly modified to be used as a restoring mecha-
nism, so that a new day cycle can start (if the maximum number of steps T has not
yet been reached).

There are three possibilities for individuals who have been marked as infected
during this cycle: either they are considered not actually infected, eventhough they
have been exposed (see r70, f,g); or they become infected and symptomatic (see
r68, f,g); or they become infected and asymptomatic (see r69, f,g).

A third index is considered for symbols representing previously infected individ-
uals. It represents the days since they became infected. We assume that after 5 days,
asymptomatic individuals will change status to recovered. For symptomatic individ-
uals, on the other hand, we have to take into account the probability of recovery,
which is a parameter that may get different values for each age group.

Last step to complete the “one-day” cycle, renaming the symbols to start over
again

r67, f,g ≡ X f,g[ ]+2 −−−→[X f,g]2

{
1 ≤ f ≤ 4F,

1 ≤ g ≤ 7

r68, f,g ≡ X f,g[ ]+2
ps·pg−−−→[S f,g,2 S20

f,g]2

{
1 ≤ f ≤ 4F,

1 ≤ g ≤ 7

r69, f,g ≡ X f,g[ ]+2
pg ·(1−ps)−−−→[A f,g,2 A20

f,g X̃ ]2

{
1 ≤ f ≤ 4F,

1 ≤ g ≤ 7

r70, f,g ≡ X f,g[ ]+2
1−pg−−−→[X f,g]2

{
1 ≤ f ≤ 4F,

1 ≤ g ≤ 7

r71, f,g,i ≡ S f,g,i [ ]+2 −−−→[S f,g,i+1 S20
f,g]2

{
1 ≤ f ≤ 4F,

1 ≤ g ≤ 7,

2 ≤ i ≤ 4

r72, f,g,i ≡ A f,g,i [ ]+2 −−−→[A f,g,i+1 A20
f,g X̃ ]2

{
1 ≤ f ≤ 4F,

1 ≤ g ≤ 7,

2 ≤ i ≤ 4



r73, f,g ≡ A f,g,5[ ]+2 −−−→[R f,g X̃ ]2

{
1 ≤ f ≤ 4F,

1 ≤ g ≤ 7

r74, f,g ≡ S f,g,5[ ]+2
prg−−−→[R f,g X̃ ]2

{
1 ≤ f ≤ 4F,

1 ≤ g ≤ 7

r75, f,g ≡ S f,g,5[ ]+2
1−prg−−−→[#]2

{
1 ≤ f ≤ 4F,

1 ≤ g ≤ 7

r76, f,g ≡ R f,g[ ]+2 −−−→[R f,g X̃ ]2

{
1 ≤ f ≤ 4F,

1 ≤ g ≤ 7

Clock reset with charge change

r77 ≡ [C18]+2 −−−→[C1]2

The constants associated with the rules have the following meaning:

• q f,g, j : Number of individuals in family f , in age group g inside community j .
• ln, j : Infected individuals in neighbourhood n of community j .
• pg: Probability for a person in age group g in contact with the virus to become

infected.
• prg: Probability for an infected person in age group g to recover.
• ps: Probability for an infected person to be symptomatic.

The proposed model consists of seven modules of rules. The first module (infection
of people) will only be executed when the model is initialized. The six remaining
modules will be executed in a loop. Each cycle of the loop is interpreted as one day
in the scenario.

In this chapter, a SIR model has been presented. In this model, the population is
structured in age groups. Moreover, different contact spaces have been defined. The
basic SIR model groups all individuals who are in a common location in a single age
group. The features of PDP models permits the introduction of features for a more
accurate reflection of reality in a straightforward manner.

4.6.2 Results

In the previous section, a SIR computational model based on Population Dynamics
P systems has been presented. In order to evaluate the accuracy of the model with
respect to the phenomenon under study, a validation process has been performed.
The inherent randomness in complex systems like the one presented makes it infea-
sible the formal validation of models that attempt to reproduce their behaviour. It is
therefore necessary an experimental validation by comparison of results generated
by simulation tools with experimental data obtained directly from the real system.
For this purpose, several software simulations have been performed, making use of



Fig. 4.5 MeCoSim Pandemic custom app—Input parameters tabs

the tools presented in Sect. 4.5; that is, P-Lingua and the pLinguaCore library [21],
providing a standard language to define P systems and a Java library to manage
P-Lingua files and simulate P system computations, and MeCoSim [25], providing
a visual environment to perform the simulations.



An application for SIR (called Pandemic) has been supplied with MeCoSim by
customization. Thus, by simply defining a configuration file, a visual GUI has been
provided, adapted to the parameters required for the presented model. The interested
reader can find in [36] the MeCoSim application files which define the model and
instructions to reproduce the experiments.

A number of virtual experiments has been performed by providing the general
model for SIR in P-Lingua format, and then introducing the appropriate values for
the data corresponding to different scenarios in the input tables of the MeCoSim
window (see Fig. 4.5). The process for each given scenario is as follows: the input
data are introduced, the corresponding parameters q f,g, j , ln, j , pg , prg and ps are
generated, and then the computation is performed with Simulate! option, which calls
DCBA-based simulation engine in pLinguaCore library. The simulation results have
been obtained in the form of output tables and charts, as shown in Fig. 4.6.

A first scenario was simulated for the presented model. The detailed description of
the scenario is what follows. The number of communities and families has been given
as input parameters. These parameters have been obtained from [37]. The example
depicted in Fig. 4.2 consists of 3 communities and 20 families for each community. At
the initial stage, there are six infected people both in communities 1 and 3. In contrast,
there are no infected people in community 2. The probability for a susceptible person

Fig. 4.6 Pandemic—Output table and chart. Number of healthy, asymptomatic, symptomatic and
recovered individuals by zone



Fig. 4.7 Evolution of individuals—Original scenario

in contact with an infected one to become infected is 5 %. There is a 30 % probability
for an infected person to manifest symptoms, whereas in the rest of the cases the
symptoms are not manifested. Those who manifest symptoms are solely breeding
grounds inside their family. On the other hand, those who do not manifest symptoms
might infect people in other families and communities. There is a 5 % probability for
a symptomatic person to recover. In contrast, asymptomatic people always recover.
There exist no observable differences in the pandemic dynamics among the three
communities due to the quick spreading of the disease. The designed simulator
supports tuning of the parameters in the model. This feature provides a friendly way
to study the behaviour of the disease under different scenarios. The presented model

Fig. 4.8 Evolution of individuals—First alternative case



Fig. 4.9 Evolution of individuals—Second alternative case

does not take into account human interventions, such as vaccination campaigns,
prophylactic actions, etc. These kind of measures are usually undertaken in the event
of a pandemic outbreak. The results for this first scenario are shown in Fig. 4.7.

A number of other virtual experiments have been performed. Two of them
are shown below. Both of them have similar input parameters; in particular, the
probability for an individual to become infected is 10 %, and the probability of
recovery is 30 % (the same for each age group). The only difference is the probabil-
ity for an infected individual to be symptomatic. This probability is 30 % in the first
case (see Fig. 4.8), whereas it is 10 % in the second case (see Fig. 4.9). As it can be
seen, the second scenario presents a bigger number of recovered individuals, given
the fact that asymptomatic individuals always recover.

Although the experiments carried out in this chapter refer to a virtual population,
the results obtained by our simulations match the tendencies reported in the literature
using classical SIR models [37–39].

4.7 Conclusions and Perspectives

Population Dynamics P systems (PDP systems) provide a new formal bio–inspired
modelling framework. This is a novel and expressive approach that overcomes some
limitations of classical mathematical models while keeping the most important fea-
tures of the studied phenomena.

We illustrate the modelling/simulating workflow by means of a SIR computa-
tional model. First of all comes the design of the model, capturing complex social
networks and interactions between individuals by means of the hierarchical structure
of membranes (and the graph of connections between environments) along with their
associated rules.



The model is then described in P–Lingua and given as input to the pLinguaCore
library, which parses the model description and checks for errors. It is worth noting
that such a description does not include data related to specific scenarios, only the
initial structure and the rules. In order to input scenario–specific data related to a
virtual experiment, MeCoSim generates a custom GUI. This GUI defines data fields
specifically related to the problem at hand for the user to input the data.

In order to simulate the scenario, an algorithm capturing the semantics of PDP
systems is required (e.g. MeCoSim calls pLinguaCore to perform this task relying on
its built-in simulators). In this chapter we have explained the Direct distribution based
on Consistent Blocks Algorithm (DCBA), which performs a proportional distribution
of objects among rules in accordance to their associated probabilities. The algorithm
grants a fair distribution in the case of competition among rules (i.e. rules having
overlapping left-hand sides). Finally, simulation results are displayed by means of
data tables and charts.

One of the drawbacks of sequential simulators is the time they spend to simulate
considerably large instances. Nevertheless, the parallel structure of DCBA algorithm
(and of PDP systems) appoints it suitable for its implementation on parallel hard-
ware architectures, such as computer grids and graphic cards. In this sense, we have
introduced an existing CUDA-based simulator which takes advantage of the com-
putational parallel power of GPU computing in order to accelerate PDP systems
simulations.

As regards to perspectives, the ultimate goal of these models is to serve as auto-
matic assistants on management decision taking. That is, to give information about
the effects of plausible measures by simulating presumed scenarios derived from
undertaking these measures. In this sense, it is essential that future versions of the
model consider and assess the effects of human measures. They will also need to
analyse and foresee future trends on the studied populations. This goal calls for tight
collaboration between experts and model designers, so as to define virtual experi-
ments leading to feasible hypothesis to be verified by means of field work and live
experiments.

When it comes to software development, the main work lines have to do with
the improvement of the existing simulators, to reach higher performance and match
even better the experimental results. As a short-term perspective, it is required to
defined and implement efficient communication protocols to connect the mentioned
parallel simulators from PMCGPU with the framework pLinguaCore. The addition
of new functionalities to the interfaces is another important task which concerns
software development. As a result, future versions of MeCoSim should permit a
more exhaustive analysis on the results and augment the degree of automation of the
design and simulation workflow from an end-user perspective.
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