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P systems with proteins on membranes are a class of bio-inspired computing models,
where the execution of each rule completes in exactly one time unit. However, in living
cells, the execution time of biochemical reactions is difficult to know precisely because of
various uncontrollable factors. In this work, we present a time-free uniform solution to
SAT problem by P systems with proteins on membranes in the sense that the correctness
of the solution is irrelevant to the times associated with the involved rules, and the P
systems are constructed from the sizes of instances.

1. Introduction

Membrane computing is an active branch of natural computing, which is inspired by the structure and the functioning
of living cells, abstracting computational ideas (e.g., computational models, data structure, data operation) from the way 
in which chemicals interact and cross cellular membranes. This computational model was initiated by Gh. Păun at the 
end of 1998 [15] and it has received great attention from computer scientists, biologists, formal linguists and complexity 
theoreticians. The computational models considered in the framework of membrane computing are called P systems, which 
are parallel and distributed computational models.

In general, three main types of P systems have been considered until now: cell-like P systems, which have a hierarchical 
arrangement of membranes delimiting compartments where multisets of chemicals (called objects) evolve according to given 
evolution rules [1,15,24]; tissue-like P systems, which have arbitrary graphs as underlying structures, with cells placed in 
the nodes while edges correspond to communication channels [3,8,9]; neural-like P systems, which are motivated by the 
neurophysiological behavior of neurons sending electrical impulses (spikes) along axons to other neurons [6,10,21]. A recent 
coverage of membrane computing can be found in [17], and for the most up-to-date information in this area, please refer 
to the P systems webpage: http://ppage.psystems.eu.

The present work deals with cell-like P systems with proteins on membranes (in what follows, when we say P systems 
with proteins on membranes, it means cell-like P systems with proteins on membranes), which can be viewed as a model 
combining membrane systems and brane calculi as introduced in [12]. P systems with proteins on membranes can have 
objects both in compartments/regions, as usual in P systems, and also on membranes (called proteins). In such P systems, 
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the proteins (which are always placed on the membranes) are used mainly to control the evolution of other objects. The 
evolution rules used in P systems with proteins on membranes are inspired by the symport/antiport rules [11], but the 
objects can evolve under the control of proteins placed on membranes (the protein can also change). Moreover, P systems 
with proteins on membranes deal with only one protein, one object inside the region and/or one object outside of it.

P systems with proteins on membranes were proved to be universal by combining several various types of rules [7,12,
14]. If we allow membrane division rules in this kind of P systems, then it can solve the computationally hard problems effi-
ciently. In [13], the SAT problem was solved by a uniform family of P systems with proteins on membranes and membrane 
division in a polynomial time. Recently, P systems with proteins on membranes were used to characterize PSPACE-complete 
problem, that is, the polynomial complexity class (semi-uniform version) associated with recognizer P systems with proteins 
on membranes coincides with the class of PSPACE-complete problems [27]. In the semantics of P systems with proteins on 
membranes, a global clock is assumed, marking time units for the whole system, all the rules are applied synchronously and 
the execution of each rule takes exactly one time unit (one step). Actually, in cell biology, different biochemical reactions 
may take different times to be completed because they are influenced by various uncontrollable factors, such as biological 
signals, catalyst, and medium temperature. Thus, the assumption that the execution of each rule takes exactly one time unit 
is not in conformity with the biological reality.

With this biological motivation, time-free P systems were formulated in [2], where such P systems generate (or accept) 
the same family of vectors of natural numbers, independent from the value assigned to the execution time of each rule, and 
by simulating non-synchronized P systems, time-free P systems were proved to be universal. Time-free solutions to com-
putational hard problems as open problems were formulated in [5]. In [19], a family of P systems with active membranes 
was designed for a time-free solution to SAT problem in the sense that the correctness of the solution is irrelevant to the 
execution time used by the involved rules. Since then, several variants of P systems were also considered to time-freely 
solve NP-complete problems [20,23,25,26].

In this work, we focus on timed P systems with proteins on membranes, and a time-free uniform solution to the SAT
problem by using such systems is present, where the correctness of the solution is irrelevant to the execution time used by 
the involved rules, and the P systems are constructed from the sizes of instances.

2. P systems with proteins on membranes

2.1. Preliminaries

In this subsection, we only introduce a few basic notions and notations from formal languages theory that will be used 
in what follows, the reader can refer to [18] for more details.

An alphabet � is a non-empty set and its elements are called symbols. A string u over � is a finite sequence of symbols 
from �. The number of occurrences in u of symbols from � is called the length of the string u, denoted by |u|. By |u|a
we denote the number of occurrences of symbol a in u. As usual, the empty string (with length 0) will be denoted by λ. 
The set of all strings over an alphabet � is denoted by �∗ and by �+ = �∗ \ {λ} we denote the set of non-empty strings. 
A language over � is a set of strings over �.

For an alphabet �, a multiset over � is a pair (�, f ) where f : � → N is a mapping, N is the set of natural numbers. 
If m = (�, f ) is a multiset, then its support is defined as supp(m) = {x ∈ � | f (x) > 0}. If supp(m) = {a1, . . . , ak} then we 
denote m = {a f (a1)

1 , . . . , a f (ak)

k }. A multiset is finite if its support is a finite set. We denote by ∅ the empty multiset. We also
represent a multiset m over V as a string w ∈ V ∗ such that |w|ai = m(ai), 1 ≤ i ≤ n. All permutations of this string identify 
the same multiset m precisely. In what follows, we will not distinguish between the representation of multiset in mapping 
form or string form. If m1 = (�, f1), m2 = (�, f2) are multisets over �, then the union of m1 and m2, denoted by m1 + m2, 
is the multiset (�, g), where g(x) = f1(x) + f2(x) for each x ∈ �; the relative complement of m2 in m1, denoted by m1 \m2, 
is the multiset (�, g), where g(x) = f1(x) − f2(x) if f1(x) ≥ f2(x), and g(x) = 0 otherwise.

2.2. P systems with proteins on membranes and membrane division

In this subsection, we first introduce the notion of P systems with proteins on membranes and membrane division from 
[12], then the definition of recognizer P systems with proteins on membranes is given.

In this work, we consider P systems with two types of symbols: proteins and objects. Proteins are placed on the mem-
branes, which never leave their places during the evolution process (but they can evolve) and are used mainly to control 
the evolution of other objects, and the usual objects are placed in the regions delimited by membranes, which can leave 
the regions for the neighboring regions during the evolution. If a protein p is placed on a membrane (with label) i and an 
object a is placed in the region delimited by that membrane, it is denoted by [ p | a ] i . The regions of a membrane structure 
and the membranes themselves can contain multisets of objects and of proteins, respectively.

There are several types of rules for handling the proteins and the objects, in this work we consider the types of rules 
introduced in [12].

P systems can be used for solving decision problems by using the trade-off space for time. A P system solving such a 
problem demands that an exponential workspace can be generated in a polynomial (or linear) time, and membrane division 



rules can generate that workspace. This kind of rules can be introduced in membranes controlled by proteins on them in 
such manner that proteins will trigger these rules.

Definition 1. A P system with proteins on membranes and membrane division of degree m ≥ 1 is a tuple � =
(O , P , μ, w1/z1, . . . , wm/zm, E, R1, . . . , Rm, iout), where:

• O and P are finite non-empty alphabets such that O  ∩ P = ∅;
• μ is a rooted tree with m nodes labeled by 1, . . . , m;
• wi , 1 ≤ i ≤ m, are multisets over O ;
• zi , 1 ≤ i ≤ m, are multisets over P ;
• E ⊆ O is a finite alphabet;
• Ri , 1 ≤ i ≤ m, are finite sets of rules of the following types:

– Evolution rules of the types:
(a) [ p | a ] i → [ p′ | b ] i ,
(b) a [ p | ] i → b [ p′ | ] i ,
(c) [ p | a ] i → b [ p′ | ] i ,
(d) a [ p | ] i → [ p′ | b ] i ,
(e) a [ p | b ] i → c [ p′ | d ] i ,
where p, p′ ∈ P , a, b, c, d ∈ O and 1 ≤ i ≤ m.

– Division rules of the type [ p | ] i → [ p′ | ] i[ p′′ | ] i , where p, p′, p′′ ∈ P , 1 ≤ i ≤ m, i �= iout , and i cannot be the root
of the tree μ;

• iout ∈ {0, 1, . . . , m}.

A P system with proteins on membranes and membrane division of degree m ≥ 1 can be viewed as a set of m mem-
branes, labeled by 1, . . . , m, each of them delimiting regions (the space between a membrane and the immediately inner 
membranes) such that: (a) w1, . . . , wm represent the finite multisets of objects (symbols of the alphabet O ) initially placed 
in the m membranes of the system; (b) z1, . . . , zm represent the finite multisets of proteins (symbols of the alphabet P ) 
initially placed on the m membranes of the system; (c) E is the set of objects initially located in the environment of the 
system, all of them available in an arbitrary number of copies; and (d) iout represents a distinguished zone which will en-
code the output of the system. We use the term zone i (0 ≤ i ≤ m) to refer to membrane i in the case 1 ≤ i ≤ m and to refer 
to the environment in the case i = 0. The length of an evolution rule is the total number of proteins and objects involved 
in that rule.

A configuration of a P system with proteins on membranes and membrane division is described by the current membrane 
structure, together with all multisets of objects located in its regions, and multisets of proteins present on membranes. 
The initial configuration is given by (w1/z1, . . . , wm/zm, μ), that is, by the multisets of objects w1, . . . , wm placed in the 
membranes, the multisets of proteins z1, . . . , zm placed on the membranes and the initial membrane structure.

An evolution rule [ p | a ] i → [ p′ | b ] i is applicable to a configuration if membrane i belongs to that configuration, the 
object a is placed in membrane i and the protein p is placed on that membrane. When applying such a rule, in reaction 
with an object a and a protein p, in the membrane i, the object a is replaced by object b and the protein p is replaced by 
protein p′ . An evolution rule a [ p | ] i → b [ p′ | ] i applicable to a configuration if membrane i belongs to that configuration, 
the object a is placed in the father of membrane i (the environment in the case of membrane i is the root) and the protein 
p is placed on that membrane. When applying such a rule, in reaction with an object a and a protein p, in the father of 
the membrane i, the object a is replaced by object b and on the membrane i, the protein p is replaced by protein p′. An 
evolution rule [ p | a ] i → b [ p′ | ] i applicable to a configuration if membrane i belongs to that configuration, the object a
is placed in the membrane i and the protein p is placed on that membrane. When applying such a rule, in reaction with 
an object a and a protein p, in the father of the membrane i, the object a is replaced by object b and on the membrane i, 
the protein p is replaced by protein p′ . In a similar way is defined the semantics of the remaining rules.

A division rule [ p | ] i → [ p′ | ] i[ p′′ | ] i is applicable to a configuration if membrane i belongs to that configuration, if 
the protein p is placed on membrane i. When applying such a rule, in reaction with the protein p, membrane i is divided 
into two membranes with the same label i; in the first copy, the protein p is replaced by protein p′ , in the second one, 
the protein p is replaced by protein p′′; all the other objects in membrane i and all the other proteins on membrane i
are replicated, and the copies of them are placed in and on the two new membranes, respectively. If iout ∈ {1, . . . , m}, then 
membrane iout cannot be divided. The root of the membrane structure cannot be divided.

The rules in a system are used in a non-deterministic maximally parallel manner as customary in membrane computing. 
At each step, all membranes which can evolve must evolve in a maximally parallel way (at each step we apply a multiset of 
rules which is maximal, no further rule can be added being applicable). This way of applying rules has only one restriction: 
when a membrane is divided, the division rule is the only one which is applied for that membrane at that step; thus, the 
proteins and objects in that membrane do not evolve by means of evolution rules. The new membranes resulting from 
division could participate in the interaction with other membranes or the environment by means of evolution rules at the 
next step, providing that they are not divided once again. The label of a membrane identifies the rules which can be applied 
to it precisely.



The system passes from one configuration to another one by a maximally parallel application of rules as described 
above. A computation is a (finite or infinite) sequence of configurations such that: the first term of the sequence is the initial 
configuration of the system; each non-initial configuration of the sequence is obtained from the previous configuration by 
applying rules of the system in a maximally parallel manner with the restrictions previously mentioned; if the sequence is 
finite (called halting computation), then the last term of the sequence is a halting configuration.

All the computations start from an initial configuration and proceed as stated above; only a halting computation gives a 
result, which is encoded by the objects present in the output zone iout in the halting configuration.

Definition 2. A recognizer P system with proteins on membranes of degree m ≥ 1 is a tuple � = (O , P , �, μ, w1/z1, . . . ,
wm/zm, E, R1, . . . , Rm, iout, iin) such that:

• The tuple (O , P , μ, w1/z1, . . . , wm/zm, E, R1, . . . , Rm, iout), is a P system with proteins on membranes of degree m
such that the output zone is the environment (iout = 0) and in this case, iout is usually omitted from the tuple;

• � is an (input) alphabet strictly contained in O such that E ∩ � = ∅;
• The initial multisets w1, . . . , wm are over O  \ �;
• iin ∈ {1, . . . , m} is the label of a distinguished (input) membrane;
• The working alphabet contains two distinguished elements yes and no;
• All the computations halt;
• If C is a computation of the system, then either object yes or object no (but not both) must appear in the environment

when the system halts.

For recognizer P systems with proteins on membranes, we say that a computation is an accepting computation (resp., 
rejecting computation) if the object yes (resp., no) appears in the environment associated with the corresponding halting 
configuration.

For each multiset w over the input alphabet �, the computation of the system � with input w starts from the configuration 
of the form

(w1/z1, . . . , (wiin + w)/ziin , . . . , wm/zm,μ),

that is, the input multiset w has been added to the contents of the input membrane iin . Therefore, we have an initial 
configuration associated with each input multiset w (over the input alphabet �) in this kind of systems.

We denote by CPE(k) the class of recognizer P systems with proteins on membranes with the length of evolution rules 
at most k.

2.3. Recognizer timed P systems with proteins on membranes

In this subsection, we first give the definition of timed P systems with proteins on membranes, and then introduce the 
notion of recognizer timed P systems with proteins on membranes.

Definition 3. A timed P system with proteins on membranes of degree m ≥ 1 is a pair (�, e), where � is a P system with 
proteins on membranes of degree m, and e is a computable time-mapping of �, that is, e is a mapping from the finite set 
of rules R1 ∪ · · · ∪Rm into the set of natural numbers N.

For each rule r, the natural number e(r) represents the execution time of rule r. We denote by �(e) the timed P system 
with proteins on membranes (�, e).

A timed P system with proteins on membranes �(e) works in the following way: an external clock is assumed, which 
marks time-units of equal length, starting from instant 0. According to this clock, the step t of a computation is defined 
by the period of time between instant t − 1 and instant t . If a membrane i contains a rule r (evolution rule or division 
rule) selected to be executed, then the execution of such rule takes e(r) time units to complete. Therefore, if the execution 
of a rule r is started at instant j, then the execution is completed at instant j + e(r) and the resulting objects, protein 
and membranes generated by the division rule become available only at the beginning of step j + e(r) + 1. If an evolution 
rule is started, then the occurrences of objects and protein subject to this rule cannot be subject to other rules until the 
implementation of the rule completes; if the division rule is started, then the occurrences of protein and membrane subject 
to this rule cannot be subject to other rules until the implementation of the rule completes.

Definition 4. A recognizer timed P system with proteins on membranes of degree m ≥ 1 is a tuple (�, e), where � is a 
recognizer P system with proteins on membranes of degree m and e is a computable time-mapping of �.

2.4. Time-free uniform solutions to decision problems by recognizer P systems with proteins on membranes

In a timed P systems with proteins on membranes, we use the rule starting step (RS-step, for short) to define the compu-
tation step, which was proposed in [19].



Definition 5. In timed P systems with proteins on membranes, a computation step is called an RS-step if at this step at 
least one rule starts its execution, that is, steps in which some objects and proteins “start” to evolve or membranes “start” 
to divide.

Let us recall that a decision problem, X , is a pair (I X , θX ) such that I X is a language over a finite alphabet (whose elements 
are called instances) and θX is a total Boolean function (that is, predicate) over I X .

Definition 6. We say that a decision problem X = (I X , θX ) is solvable in polynomial RS-steps by a family � = {�n | n ∈ N}
of recognizer P systems with proteins on membranes in a time-free manner, if the following holds:

• the family � is polynomially uniform by Turing machines, that is, there exists a deterministic Turing machine working
in polynomial time which constructs the system �n from n ∈N.

• there exists a pair (cod, s) of polynomial-time computable functions over I X such that:
– for each instance u ∈ I X , s(u) is a natural number and cod(u) is an input multiset of the system �s(u) .
– the family � is time-free sound with respect to (X, cod, s); that is, for any time-mapping e, the following property

holds: for each instance of the problem u ∈ I X such that there exists an accepting computation of �s(u)(e) with input
cod(u), we have �X (u) = 1.

– the family � is time-free complete with respect to (X, cod, s); that is, for any time-mapping e, the following property
holds: for each instance of the problem u ∈ I X such that �X (u) = 1, every computation of �s(u)(e) with input cod(u)

is an accepting computation.
– the family � is time-free polynomially bounded with respect to (X, cod, s); that is, there exists a polynomial function

p(n) such that for any time-mapping e and for each u ∈ I X , all the computations in �s(u)(e) with input cod(u) halt
in, at most, p(|u|) RS-steps.

We also say that the family � provides an efficient time-free solution to the decision problem X . We denote by PMCtf
CPE(k)

the family of problems that can be solved by recognizer P systems with proteins on membranes and the length of evolution 
rules at most k in a time-free manner.

3. A time-free uniform solution to SAT problem by using recognizer P systems with proteins on membranes

The SAT problem is the best known NP-complete problem [4], which is defined as follows: Given a Boolean formula in
conjunctive normal form (CNF), determine whether or not it is satisfiable, that is, whether there exists an assignment to its variables on 
which it evaluates to be true.

The following theorem provides a polynomial RS-steps solution to the SAT problem by a family of P systems with 
proteins on membranes in a time-free uniform manner.

Theorem 3.1. The SAT problem can be solved in polynomial RS-steps by a family of P systems with proteins on membranes in a 
time-free uniform manner, where the length of evolution rules is at most 6.

Proof. Consider a propositional formula ϕ = C1 ∧ C2 ∧ · · · ∧ Cm , with Ci = yi,1 ∨ · · · ∨ yi,pi , for some m ≥ 1, pi ≥ 1, and 
yi, j ∈ {xk, ¬xk | 1 ≤ k ≤ n}, for each 1 ≤ i ≤ m, 1 ≤ j ≤ pi , where ¬xk is the negation of a propositional variable xk , the two 
connections ∨, ∧ are or, and, respectively.

Let us consider the polynomial time computable function 〈m, n〉 = ((m + n)(m + n + 1)/2) + m. It is primitive recursive 
and bijective from N2 onto N. In what follows, we construct a family � = {�t | t ∈ N}, such that giving the appropriate 
input multisets, each system �t will solve all instances of SAT with n variables and m clauses, where t = 〈m, n〉.

We use the following notations to encode a propositional formula ϕ:

cod(ϕ) = α1,1 . . . α1,n α2,1 . . . α2,n . . . . . . αm,1 . . . αm,n,

where for 1 ≤ i ≤ m, 1 ≤ j ≤ n we have:

αi, j =

⎧⎪⎨
⎪⎩

bi, j if x j appears in Ci;

b′
i, j if ¬x j appears in Ci;

b′′
i, j if x j and ¬x j do not appear in Ci .

For each m, n ∈N, we construct the recognizer P system with proteins on membranes

�〈m,n〉 = (O , P ,�,μ, w1/z1, . . . , w4/z4,∅,R1, . . . ,R4, iin),

with the following components:

• O  = � ∪ {a j, a
(1)

, a(2)
, a(3)

, t j, f j | 1 ≤ i ≤ n} ∪ {di | 1 ≤ i ≤ m} ∪ {an+1, c, yes, no} is the set of objects,
j j j



• P = {p+
j , p−

j , q j, q′
j, rm+1, j | 1 ≤ j ≤ n} ∪ {pk | 1 ≤ k ≤ n + m + 1} ∪ {ri, j | 1 ≤ i ≤ m, 1 ≤ j ≤ n} ∪ {r1,n+1, qn+1, s, s′, s′′} is

the set of proteins,
• � = {bi, j, b′

i, j, b
′′
i, j | 1 ≤ i ≤ m, 1 ≤ j ≤ n} is the input alphabet,

• μ = [ [ [ ]3 ]2[ ]4 ]1 is the initial membrane structure,
• w1 = no, w2 = a1, w3 = λ and w4 = λ are the initial multisets contained in membranes,
• z1 = s, z2 = p1, z3 = r1,1, z4 = q1 are the initial proteins placed on membranes 1, 2, 3, 4, respectively,
• iin = 3 is the input membrane,

and R = ⋃
1≤i≤4 Ri is a finite set of rules of the following:

G1, j : [ p j | ]2 → [ p+
j | ]2[ p−

j | ]2, 1 ≤ j ≤ n.

G2, j : [ p+
j | a j ]2 → [ p+

j | t j ]2, 1 ≤ j ≤ n.

G3, j : [ p−
j | a j ]2 → [ p−

j | f j ]2, 1 ≤ j ≤ n.

G4,i, j : {t j[ ri, j | bi, j ]3 → di[ ri+1, j | t j ]3,

t j[ ri, j | b′
i, j ]3 → c[ ri+1, j | t j ]3,

t j[ ri, j | b′′
i, j ]3 → c[ ri+1, j | t j ]3 | 1 ≤ i ≤ m,1 ≤ j ≤ n}.

G5,i, j : { f j[ ri, j | bi, j ]3 → c[ ri+1, j | f j ]3,

f j[ ri, j | b′
i, j ]3 → di[ ri+1, j | f j ]3,

f j[ ri, j | b′′
i, j ]3 → c[ ri+1, j | f j ]3 | 1 ≤ i ≤ m,1 ≤ j ≤ n}.

G6,i, j : [ ri, j | t j ]3 → t j[ ri, j | ]3, 2 ≤ i ≤ m, 1 ≤ j ≤ n.
G7,i, j : [ ri, j | f j ]3 → f j[ ri, j | ]3, 2 ≤ i ≤ m, 1 ≤ j ≤ n.

G8, j : [ rm+1, j | t j ]3 → a(1)
j [ r1, j+1 | ]3, 1 ≤ j ≤ n.

G9, j : [ rm+1, j | f j ]3 → a(2)
j [ r1, j+1 | ]3, 1 ≤ j ≤ n.

G10, j : [ p+
j | a(1)

j ]2 → a(1)
j [ p−

j | ]2, 1 ≤ j ≤ n.

G11, j : [ p−
j | a(2)

j ]2 → a(2)
j [ p+

j | ]2, 1 ≤ j ≤ n.

G12, j : a(2)
j [ p−

j | ]2 → [ p−
j | a(3)

j ]2, 1 ≤ j ≤ n.

G13, j : [ p−
j | a(3)

j ]2 → a(3)
j [ p+

j | ]2, 1 ≤ j ≤ n.

G14, j : a(3)
j [ q j | ]4 → [ q′

j | a j+1 ]4, 1 ≤ j ≤ n.
G15, j : [ q′

j | ]4 → [ q j+1 | ]4[ q j+1 | ]4, 1 ≤ j ≤ n.
G16, j : [ q j | a j ]4 → a j[ q j | ]4, 2 ≤ j ≤ n + 1.
G17, j : a j+1[ p+

j | ]2 → [ p j+1 | a j+1 ]2, 1 ≤ j ≤ n.
C1,i : [ pn+i | di ]2 → di[ pn+i+1 | ]2, 1 ≤ i ≤ m.
O 1 : [ pn+m+1 | an+1 ]2 → yes[ pn+m+1 | ]2.
O 2 : [ s′ | yes ]1 → yes[ s′′ | ]1.
O 3 : no[ s′′ | ]1 → [ s′′ | no ]1.
O 4 : [ s | no ]1 → no[ s′ | ]1.

In what follows, we give the overview of a computation to show how the propositional formula ϕ with n variables and 
m clauses is solved by the system �〈m,n〉 with input cod(ϕ).

The solution is proposed via a brute force algorithm, which consists in the following phases.

• Generation phase: the membrane with label 2 is divided for n time, all truth-assignments for the n variables are
produced, and the clauses which are satisfiable by the corresponding truth-assignment are checked.

• Checking phase: checking whether there is a truth-assignment that makes the boolean formula evaluate to be true.
• Output phase: the system sends the right answer to the environment according to the results of the previous phase.

Let e be any time-mapping from R to N, which represents the execution times for the rules from R. In what follows,
we will check how the above constructed system works in each phase.

Generation phase.
In the initial configuration of the system, we have object no in membrane 1 and protein s on membrane 1, object a1 in 

membrane 2 and protein p1 on membrane 2, input multiset cod(ϕ) in membrane 3 and protein r1,1 on membrane 3, and 
protein q1 is placed on membrane 4, where there is no object initially.

At step 1, under the influence of the protein p1 on membrane 2, division rule G1,1 is applied, membrane 2 is divided 
into two copies of membrane 2, with the protein p1 replaced by p+

1 and p−
1 , respectively. For any given time-mapping e,

the execution of rule G1,1 completes in e(G1,1) steps. At step 1, except for the application of rule G1,1, under the influence 
of the protein s on membrane 1, the application of rule O 4 also starts; and from step 2 to step e(G1,1), there is no rule 



starting. So, during the execution of rule G1,1 (i.e., from step 1 to step e(G1,1)), there is one RS-step. Note that the number 
of RS-steps during the execution of rule G1,1 is independent on the time-mapping e.

With the proteins p+
1 and p−

1 present on two separate copies of membrane 2, rules G2,1 and G3,1 are enabled and
applied at the same step, but the executions of rules G2,1 and G3,1 may complete at different steps due to the fact that the 
execution time associated with rules G2,1 and G3,1 can be different. By applying the rule G2,1, the object a1 evolves to t1
(representing the truth value true); by using the rule G3,1, the object a1 evolves to f1 (representing the truth value false).

When the object t1 (resp. f1) appears in membrane 2, and the protein r1,1 placed on membrane 3, one of rules in G4,1,1
(resp. G5,1,1) is enabled, which corresponds to check whether the first clause is satisfied by the truth-assignment true (resp. 
false) of variable x1. By using one of rules in G4,1,1 (resp. G5,1,1), the object d1 appears in membrane 2 only when the 
object b1,1 (resp. b′

1,1) is present in membrane 3; meanwhile, the protein r1,1 placed on membrane 3 is changed to r2,1. If
membrane 3 contains the object b′

1,1 or b′′
1,1 (resp. b1,1 or b′′

1,1), one copy of the object c will appear in membrane 2, and
the protein placed on membrane 3 changed from r1,1 to r2,1. Note that the rule in G4,1,1 and the rule in G5,1,1 may start 
at different steps since the executions of rules G2,1 and G3,1 may finish at different steps.

If the object t1 (resp. f1) appears in membrane 3, under the influence of the protein r2,1 on membrane 3, the application 
of rule G6,2,1 (resp. G7,2,1) starts, the object t1 (resp. f1) exits the membrane 3. With the object t1 (resp. f1) in membrane 2 
and the protein r2,1 on membrane 3, the execution of one of rules in G4,2,1 (resp. G5,2,1) starts, which corresponds to check 
whether the second clause is satisfied by the truth-assignment true (resp. false) of variable x1. The object t1 (resp. f1) enters 
the membrane 3, and the object d2 appears in membrane 2 if there exists object b2,1 (resp. b′

2,1) in membrane 3, otherwise,
the object c appears in membrane 2. If the object t2 (resp. f2) presents in membrane 3, under the influence of the protein 
r3,1 on membrane 3, rule G6,3,1 (resp. G7,3,1) is enabled and applied, the object t2 (resp. f2) exits the membrane 3. In 
this way, rules in G4,i,1 (1 ≤ i ≤ m) and rules G6,i,1 (2 ≤ i ≤ m) (resp. rules in G5,i,1 and rule G7,i,1) can be applied one 
by one. All the clauses are checked that whether they are satisfied by the truth-assignment true (resp. false) of variable x1. 
Rules G4,i,1 and G5,i,1 (2 ≤ i ≤ m) may start at different steps since the executions of rules G6,i,1 and G7,i,1 may complete 
at different steps, rules G6,i,1 and G7,i,1 (2 ≤ i ≤ m) may start at different steps since the executions of rules G4,i−1,1 and 
G5,i−1,1 may complete at different steps.

If the protein rm+1,1 is present on membrane 3, which contains the object t1 (resp. f1), the application of rule G8,1

(resp. G9,1) starts, the object t1 (resp. f1) evolves to a(1)
1 (resp. a(2)

1 ), and the object a(1)
1 (resp. a(2)

1 ) exits the membrane 3,

changing the protein from rm+1,1 to r1,2. With the object a(1)
1 (resp. a(2)

1 ) in membrane 2 and the protein p+
1 (resp. p−

1 ) on

membrane 2, rule G10,1 (resp. G11,1) is enabled and used, the object a(1)
1 (resp. a(2)

1 ) exits membrane 2 and the protein p+
1

(resp. p−
1 ) placed on membrane 2 is changed to p−

1 (resp. p+
1 ). Note that rules G8,1 and G9,1 may start at different steps

since the executions of rules G4,m,1 and G5,m,1 may complete at different steps, rules G10,1 and G11,1 may start at different 
steps due to the fact that the executions of rules G8,1 and G9,1 may complete at different steps.

Rule G12,1 is enabled only when the object a(2)
1 appears in membrane 1 and there is a membrane 2 having the protein

p−
1 placed on it, that is, rule G12,1 can be used only when the executions of both rules G10,1 and G11,1 have completed.

Thus, rule G12,1 plays a synchronization function because e(G2,1) + �1≤i≤me(G4,i,1) + �2≤i≤me(G6,i,1) + e(G8,1) + e(G10,1)

may not equal to e(G3,1) +�1≤i≤me(G5,i,1) +�2≤i≤me(G7,i,1) + e(G9,1) + e(G11,1). Anyway, when the execution of rule G12,1
completes, the computation takes at most 4m + 5 RS-steps, which is independent on any time-mapping e.

By applying rule G12,1, the object a(2)
1 evolves to a(3)

1 and the object a(3)
1 enters membrane 2. When the execution of

rule G12,1 finishes, under the influence of the protein p−
1 placed on membrane 2, the application of rule G13,1 starts, the

object a(3)
1 exits membrane 2 changing the protein from p−

1 to p+
1 . With the object a(3)

1 in membrane 1 and the protein

q1 on membrane 4, rule G14,1 is enabled and applied, the object a(3)
1 evolves to a2, and the object a2 enters membrane 4,

changing the protein from q1 to q′
1. When the protein q′

1 is present on membrane 4, rule G15,1 is enabled and applied,
membrane 4 is divided into two copies of membranes with the same label, and the protein q′

1 is replaced by q2 on each
membrane. The division rule G15,1 has a copy function, which makes the number of the object a2 doubled. When the 
protein q2 appears on membrane 4, the application of rule G16,2 in all membranes 4 starts and completes at the same step 
(the execution of rule G16,2 in all membranes 4 takes the same time e(G15,1) for a given time-mapping e). By using rule 
G16,2, the object a2 exits membrane 4. With the object a2 in membrane 1 and the protein p+

1 on membrane 2, rule G17,1

is enabled and used, each object a2 enters a membrane 2, changing the protein from p+
1 to p2 (there are two copies of

object a2 in membrane 1 and two membranes 2 with protein p+
1 placed on, and the system works in a maximally parallel

manner).
In general, when the object a2 appears in membrane 2, the computation takes at most 4m + 10 RS-steps.
The appearance of object a2 in membrane 2 (or the protein p2 appears on membrane 2) means that the system com-

pletes the following processes: assigning truth-assignment of variable x1, and looking for the clauses satisfied by the 
truth-assignment of variable x1; and the system starts the following processes: assigning truth-assignment of variable x2, 
and looking for the clauses satisfied by the truth-assignment of variable x2.

When the protein p2 appears on membrane 2, rule G1,2 is enabled and applied. Note that the application of rule G1,2 in 
all membranes 2 starts at the same step and completes at the same step, since the execution of rule G1,2 in all membranes 2 
takes the same time e(G1,2) for a given time-mapping e. The application of rules G2,2 and G3,2 starts at the same step, but 
may complete at different steps. Furthermore, the application of rules G4,i,2 (1 ≤ i ≤ m), G5,i,2 (1 ≤ i ≤ m), G6,i,2 (2 ≤ i ≤ m), 



Fig. 1. The membrane structure at the moment when generation phase completes.

G7,i,2 (2 ≤ i ≤ m), G8,2, G9,2, G10,2 and G11,2 may start and complete at different steps. However, rule G12,2 is enabled only 
when all rules that have started and completed their executions. Similar to the case of variable x1, the processes of assigning 
truth-assignment of variable x2 as well as looking for the clauses satisfied by the truth-assignment of variable x2 take at 
most 4m + 10 RS-steps.

The system continues to assign the truth-assignment of variables x3, x4, . . . , xn and look for the clauses satisfied by the 
truth-assignment of variables. In general, after 4mn + 10n RS-steps, 2n copies of membrane with label 2 and 2n copies of 
membrane with label 4 are generated, all of which are placed in membrane 1, and in each copy of membrane 2, there exists 
a membrane 3 (see Fig. 1 for the membrane structure at the moment when generation phase completes).

Checking phase.
When the generation phase completes, each membrane with label 2 contains some of objects from the set {d1, d2, . . . ,

dm}, whose elements denote the corresponding clauses satisfied by the truth assignments of the variables. If there is at least 
one membrane with label 2 that contains all the objects d1, d2, . . . , dm , which means the corresponding truth assignment 
in that membrane satisfies all clauses, hence formula ϕ is satisfiable; if there is no membrane with label 2 that contains all 
the objects d1, d2, . . . , dm , the formula ϕ is not satisfiable.

At the last of the generation phase, under the influence of the protein p+
n on membrane 2, all the objects an+1 enter 

membranes 2, changing the protein from p+
n to pn+1 at the same step (there are 2n copies of object an+1 and 2n copies of 

membrane 2, each object an+1 enters a membrane 2 by applying the rule G17,n in a maximally parallel manner). Thus, the 
protein pn+1 placed on each membrane with label 2 appears at the same step.

When the execution of rule G17,n completes, the system starts to check whether the object d1 presents in each mem-
brane 2 (i.e., checking whether the corresponding true assignment satisfies the clause C1). If the object d1 appears in a 
membrane 2, with the protein pn+1 on membrane 2, rule C1,1 is enabled and applied, the object d1 exits membrane 2, 
changing the protein from pn+1 to pn+2 on membrane 2. When the execution of rule C1,1 finishes, the system starts to 
check whether the object d2 appears in a membrane 2 (i.e., checking whether the corresponding true assignment satisfies 
the clause C2). The proteins pn+3 appear only when the corresponding membranes 2 contain the objects d2.

The system continues to check whether the objects d3, d4, . . . , dm appear in membranes 2. For any membrane 2 that 
does not contain the object di , i = 1, 2, . . . , m, then the computation in this membrane stops at the time when C1,i is 
supposed to be applied. In general, the checking phase takes at most m RS-steps (if there is a membrane 2 contains all 
objects d1, d2, . . . , dm , the process takes m RS-steps).

Output phase.
In the initial configuration of the system, membrane 1 contains the object no. At step 1, with the protein s on mem-

brane 1, rule O 4 is applied, where the object no exits membrane 1, changing the protein from s to s′ . When checking phase 
finishes, we have the following two cases.

• If no protein pn+m+1 is present on any membrane with label 2, then rules O 1, O 2, O 3 cannot be applied. In this case,
when the system halts, the object no remains in the environment, which means that the formula is not satisfiable.

• If there exits at least one membrane 2 with the protein pn+m+1 on it, then rule O 1 will be used, the object an+1 evolves
to yes, and the object yes exits membrane 2. When the execution of rule O 1 finishes, at this moment, if the execution
of rule O 4 is not yet finished, then no rule can be started in the system. Only when the execution of rule O 4 completes,
the protein on membrane 1 is changed to s′ , rule O 2 will be enabled. By applying rule O 2, the object yes exits to the
environment, changing the protein from s′ to s′′ (it ensures that only one copy of object yes exits to the environment
if there exists more than one copy of object yes in membrane 1). When the protein s′′ presents on membrane 1, rule
O 3 will be applied, the object no enters membrane 1. In this case, when the system halts, one copy of object yes
remains in the environment, which means that the formula is satisfiable. This process takes three RS-steps.



According to the analysis above, it is obvious that for any time-mapping e : R → N, the object yes appears in the 
environment when the computation halts if and only if the formula ϕ is satisfiable; and the object no presents in the 
environment when the computation halts if and only if the formula ϕ is not satisfiable. Thus, the system �〈m,n〉 is time-free 
sound and time-free complete.

For any time-mapping e : R → N, if the formula ϕ is satisfiable, the computation takes at most 4mn + 10n + m + 3
RS-steps: it takes at most 4mn +10n RS-steps to generate 2n copies of membranes with label 2 and 2n copies of membranes 
with label 4; it takes m RS-steps to check whether all clauses are satisfied by an assignment; the output phase takes three 
RS-steps, and the system halts. If the formula ϕ is not satisfiable, the computation takes at most 4mn + 10n +m RS-steps (it 
takes no RS-step at the output phase), and the system halts. Therefore, the family of P systems with proteins on membranes 
is time-free polynomially bounded.

The family � = {�〈m,n〉 | m, n ∈ N} defined above is polynomially uniform by Turing machines because the construction 
of P system is built in a polynomial time with respect to the size parameters n and m, and necessary resources are as 
follows:

– size of the set O : 3mn + 6n + m + 4;
– size of the set P : mn + 6n + m + 6;
– initial number of membranes: 4;
– total size of initial multisets of objects: mn + 2;
– initial number of proteins on membranes: 4;
– number of rules: 8mn + 11n + m + 4;
– the maximal length of a rule including proteins: 6.

We omit the detailed construction due to the fact that it is straightforward but cumbersome as explained in the proof
of Theorem 7.2.3 in [16].

Therefore, the SAT problem can be solved in polynomial RS-steps by a family of recognizer P systems with proteins on 
membranes in a time-free uniform manner, and the length of evolution rules is at most 6. That is, we have shown that 
SAT ∈ PMCtf

CPE(6) . �
4. Conclusions and further works

In this work, we investigate the computational efficiency of timed P systems with proteins on membranes. Specifically, 
we construct a family of P systems with proteins on membranes, which solves SAT problem in a time-free uniform manner, 
where the correctness of the solution is irrelevant to the time used by the involved rules, and the P systems are constructed 
from the sizes of instances.

The solution to SAT problem given in Section 3 uses the division rules for elementary and non-elementary membranes. 
It remains open how we construct P systems with proteins on membranes and only elementary membrane division rules to 
time-freely solve the NP-complete problem.

The P system constructed in the proof of Theorem 3.1 has the maximum length of evolution rules 6. It remains open 
whether the SAT problem can be efficiently solved by P systems with maximum length of evolution rules 4, that is, avoiding 
evolution rules of type (e).

Flip-flop membrane systems with proteins are a particular class of P systems with proteins on membranes [12]. In such 
P systems, each protein has at most two states: p and p̄, and the rules are used either without changing the protein or 
changing the protein from p to p̄ and back. It is of interest to investigate whether we can give a time-free uniform solution 
to SAT problem by using flip-flop membrane systems with proteins.

Proteins that used to control evolution rules are also investigated in tissue-like P systems [22], where there is one and 
only one copy of protein placed on each cell, and multisets of objects together with proteins between cells are exchanged 
if a symport/antiport rule is used between these cells in a computation step. It remains open whether we can construct 
tissue-like P systems with protein on cells and cell division to solve NP-complete problems in the context of time-freeness.

Recently, cell-like spiking neural P systems have been proposed in [28], where only one kind of objects (i.e., spikes) is 
considered. It is proved that cell-like spiking neural P systems as number generating devices are Turing universal [28]. It is 
interesting to construct cell-like spiking neural P systems with cell division to solve NP-complete problems.

It is interesting to consider a more general variant of P systems with proteins on membranes where each application of 
a rule has an execution time and study if there exists clock-free uniform solution to SAT.
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[6] M. Ionescu, Gh. Păun, T. Yokomori, Spiking neural P systems, Fundam. Inform. 71 (2–3) (2006) 279–308.
[7] S. Krishna, On the computational power of flip-flop proteins on membranes, in: Third Conference on Computability in Europe, CiE 2007, in: Lect. Notes

in Comput. Sci., vol. 4497, Springer, 2007, pp. 695–704.
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[16] Gh. Păun, Membrane Computing: An Introduction, Springer-Verlag, Berlin, 2002.
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