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P systems are a class of distributed parallel computing devices inspired by some basic
behaviors of biological membranes, which have the restriction that each rule is executed
in exactly one time unit. However, it is natural to consider the systems without the time
restriction on each rule since biochemical reactions in biological systems are inherently
parallel and have different reaction rates, and the execution time of biochemical reactions
is unpredictably sensitive to environmental factors. In this work, we construct a family of
P systems with proteins on membranes and membrane division that are “robust” against
the execution time of rules. Specifically, we present a time-free uniform solution to the
QSAT problem by using P systems with proteins on membranes and membrane division in
the sense that the execution time of the involved rules has no influence on the correctness
of the solution.

1. Introduction

Membrane computing is a naturally inspired computational paradigm, abstracting computational ideas (e.g., computational 
models, data structures, data operations) from the structure and the functioning of living cells. The aim of membrane 
computing is to produce a family of coherent, robust and efficient computational models. This direction of research area 
was initiated in 1998 and it has developed quickly on both theoretical results [2,37,39,40,42] and application of solving real 
problems [29,30,43,44]. All classes of computational models considered in the framework of membrane computing are called 
P systems, which are parallel and distributed computational models. Three main types of P systems have been considered 
until now from the point of biological motivation: cell-like P systems (inspired by the living cell with its compartments 
arranged in a hierarchical structure) [26], tissue-like P systems (inspired by cell inter-communication in tissues and in 
certain environment) [15], neural-like P systems (inspired by the way the neurons communicate by means of electrical 
impulses of identical shape) [12]. One may refer to the handbook of membrane computing for general information [28], 
and the most up-to-date information for this area, please refer to the P systems webpage: http :/ /ppage .psystems .eu. In this 
work, we deal with a class of cell-like P systems: P systems with objects on membranes.
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P systems with objects (also called proteins) on membranes are motivated by the biological reality that some biochemical 
reactions taking place in a cell involve proteins bound on membranes such as transportation of substrates and even are 
regulated by proteins on membranes [1]. Membrane proteins can be divided into two major types with respect to the 
way they are associated to the lipid bilayer: peripheral proteins, placed on one side of a membrane, internal or external, 
and integral (also called transmembrane) proteins, which have parts of the molecule on both sides of the membrane (it is 
estimated that in the animal cells, the proteins constitute about half of the mass of the membranes [1]). In general, there are 
three main types of P systems with objects on membranes investigated: (1) (mem)brane systems (inspired by brane calculi), 
objects evolve together with membranes by operations of pino, exo, phago calculus and mate, drip, bud calculus [4,5,27]; 
(2) Ruston models, objects placed on membranes control the evolution of objects in the neighboring regions [13,22–25];
(3) Trento models, objects are placed both on membranes and in regions, and they can change their places [3,7–9].

The present work deals with P systems with proteins on membranes, specifically, Ruston models, which are the models
combining membrane systems and brane calculi as introduced in [23]. A P system with proteins on membranes consists 
of a hierarchical arrangement of membranes, each membrane delimiting a compartment (also called region). A membrane 
with no compartments inside is called elementary, otherwise it is called non-elementary. The outmost membrane is called 
a skin membrane, the space outside the skin membrane is called the environment. In such P systems, we have objects both
in compartments, as usual in P systems, and on membranes (called proteins), the proteins are fixed to the membranes and 
used mainly to control the evolution of other objects. The evolution rules used in P systems with proteins on membranes 
are inspired from the symport/antiport rules (symport rules move objects across a membrane together in one direction, 
whereas antiport rules move objects across a membrane in opposite directions) [20], but the objects can evolve under the 
control of proteins placed on membranes (the proteins can also change). Moreover, P systems with proteins on membranes 
always use minimal rules, that is, dealing with only one protein, one object inside the region and/or one object outside 
of it.

The computational power of P systems with proteins on membranes was investigated in [23], where many universal 
results of such P systems are obtained by combining several various types of rules. A particular class of P systems with 
proteins on membranes, called flip-flop membrane systems with proteins, was also investigated in [13,25], where each protein 
has at most two states, and flip-flop membrane systems with proteins are proved to be universal by simulating register 
machines. If membrane division is introduced in P systems with proteins on membranes, computationally hard problems 
can be solved in a feasible time by a time–space trade-off. In [24], the SAT problem was solved by a uniform family of 
P systems with proteins on membranes and membrane division in polynomial time. P systems with proteins on membranes 
were also used to solve PSPACE-complete problems. In [41], an efficient solution to the QSAT problem was given by a 
family of recognizer P systems with proteins on membranes in a semi-uniform way, moreover, it was shown that the 
polynomial complexity class (semi-uniform version) associated with recognizer P systems with proteins on membranes 
coincides with the class of PSPACE-complete problems. All the above mentioned P systems with proteins on membranes 
work in a synchronized and parallel way, that is, there exists a global clock which marks the time for the whole system, 
in each time unit, all the rules evolve synchronously and the execution time of each rule takes exactly one time unit 
(one step). From a biological point of view, a more realistic way is to consider the system without the time restriction on 
each rule, because the execution time of biochemical reactions is typically exponentially distributed, at least for well-mixed 
mass-action systems, and it is sensitive to environmental factors that could affect reaction rates in an unpredictable way.

With this biological motivation, P systems that use time as support for the computation are proposed (called timed 
P systems), in such P systems, a natural number (represented the execution time of the rule) is associated to each rule [6]. 
A particular class of timed P systems, called time-free P systems, was also formulated in [6], by simulating non-synchronized 
P systems, time-free P systems were proved Turing universal when using bi-stable catalysts and priority. Time-free solutions 
to computationally hard problems as open problems were formulated in [11]. The first attempt in this topic was done 
in [34], where a family of P systems with active membranes was designed for a time-free solution to the SAT problem in 
the sense that correctness of the solution does not depend on the execution time of the involved rules. Since then, several 
variants of P systems were used to solve NP-complete problems in a time-free manner [35,38]. However, it remains open 
whether PSPACE-complete problems can be solved by P systems with proteins on membranes in the time-free context.

In this work, we design a family of P systems with proteins on membranes and membrane division, which solves
PSPACE-complete problem, the QSAT problem, in a time-free uniform manner in the sense that a P system constructed 
can solve a family of instances with the same size and correctness of the solution does not depend on the execution time 
of the involved rules.

2. P systems with proteins on membranes and membrane division

2.1. P systems with proteins on membranes and membrane division

The P systems considered in this work use two types of objects: proteins and simple objects [23]. The proteins are placed
on the membranes, which never leave their places during the evolution process (but they can evolve) and are used mainly 
to control the evolution of other objects; the simple objects are placed in the regions delimited by membranes, which 
can leave from the regions to the neighboring regions during the evolution. If a protein p is placed on a membrane (with 
label) i and an object a is placed in the region delimited by that membrane, then it is denoted by [ p | a ]i (note that if 



a membrane is divided by a division rule, then the new membranes resulting from division have the same label with the 
divided membrane; that is, duplicate labels are possible; of course, membranes with a same label are subject to the same 
set of rules). The regions of a membrane structure and the membranes themselves can contain multisets of objects and of 
proteins, respectively.

P systems with proteins on membranes and membrane division are used for solving decision problems, where an ex-
ponential workspace can be generated in polynomial or linear time, and computationally hard problems can be solved by 
trading off space for time (see [24,41]).

Before introducing the definition of P systems with proteins on membranes and membrane division, we first give some 
basic notions and notations from formal language theory [33].

An alphabet � is a finite and non-empty set of symbols. An ordered finite sequence of symbols form a string or word. 
A string over � is obtained by juxtaposing symbols of �. The empty string is denoted by λ. The set of all strings over an 
alphabet � is denoted by �∗ and by �+ = �∗ \ {λ} we denote the set of non-empty strings.

A multiset m over an alphabet � is a pair (�, f ) where f : � → N is a mapping, N is the set of non-negative integers. 
If m = (�, f ) is a multiset then its support is defined as supp(m) = {x ∈ � | f (x) > 0}. If m = (�, f ) is a finite multiset 
over �, and supp(m) = {a1, . . . , ak}, then it will be denoted as m = {a f (a1)

1 , . . . , a f (ak)

k }. We usually represent m by the string 
a f (a1)

1 . . .a f (ak)

k or by any permutation of this string.
The union and relative complement of two multisets are defined as follows. Let m1 = (�, f1), m2 = (�, f2) be multisets 

over �, then the union of m1 and m2, denoted by m1 + m2, is the multiset (�, g), where g(x) = f1(x) + f2(x) for each 
x ∈ �. The relative complement of m2 in m1, denoted by m1 \ m2, is the multiset (�, g), where g(x) = f1(x) − f2(x) if 
f1(x) ≥ f2(x), and g(x) = 0 otherwise.

Definition 1. A P system with proteins on membranes and membrane division of degree m ≥ 1 is a tuple Π = (O , P ,

μ, w1/z1, . . . , wm/zm, E, R1, . . . , Rm, iout), where:

• O and P are finite non-empty alphabets such that O  ∩ P = ∅.
• μ is a singly-rooted tree with m nodes labeled by 1, . . . , m.
• wi, 1 ≤ i ≤ m, are multisets over O .
• zi, 1 ≤ i ≤ m, are multisets over P .
• E ⊆ O is a finite alphabet.
• iout ∈ {0, 1, . . . , m} is the output region.
• Ri, 1 ≤ i ≤ m, are finite sets of rules of the following types:

– Evolution rules of the types:
(1) [ p | a ]i → [ p′ | b ]i , p, p′ ∈ P , a, b ∈ O , 1 ≤ i ≤ m;

(The rule is applicable when protein p is bounded on membrane i and object a appears in membrane i. The
application of the rule means that object a evolves to b under the control of the protein p, and at the same time
the protein p is modified to p′ . Other proteins on membrane i and other objects in membrane i keep unchanged.)

(2) a [ p | ]i → b [ p′ | ]i , p, p′ ∈ P , a, b ∈ O , 1 ≤ i ≤ m;
(The rule is applicable when protein p is bounded on membrane i and object a appears in the father of mem-
brane i. The application of the rule means that object a evolves to b under the control of the protein p, and at
the same time the protein p is modified to p′ .)

(3) [ p | a ]i → b [ p′ | ]i , p, p′ ∈ P , a, b ∈ O , 1 ≤ i ≤ m;
(The rule is applicable when protein p is bounded on membrane i and object a appears in membrane i. The
application of the rule means that object a is sent out of membrane i evolving to b under the control of the
protein p, and at the same time the protein p is modified to p′ .)

(4) a [ p | ]i → [ p′ | b ]i , p, p′ ∈ P , a, b ∈ O , 1 ≤ i ≤ m;
(The rule is applicable when protein p is bounded on membrane i and object a appears in the father of mem-
brane i. The application of the rule means that object a is sent into membrane i evolving to b under the control
of the protein p, and at the same time the protein p is modified to p′ .)

(5) a [ p | b ]i → c [ p′ | d ]i , p, p′ ∈ P , a, b, c, d ∈ O , 1 ≤ i ≤ m.

(The rule is applicable when protein p is bounded on membrane i and object a appears in the father of membrane
i and object b appears in membrane i. The application of the rule means that object a is sent into membrane i
evolving to d, object b is sent out of membrane i evolving to c, and at the same time the protein p is modified
to p′ .)

– Division rules:
(6) [ p | ]i → [ p′ | ]i[ p′′ | ]i , p, p′, p′′ ∈ P , 1 ≤ i ≤ m, i �= iout , and i cannot be the root of the tree μ.

(The rule is applicable when protein p is bounded on membrane i. The application of the rule means that mem-
brane i is divided into two copies of membrane with the same label and the same contents (except for p′ and p′′)
duplicated from the original membrane: objects, proteins and other possible embedded membranes. Note that
membrane i can be non-elementary, that is, membrane i may contain other membranes inside.)



The rules of P systems with proteins on membranes and membrane division are used in a non-deterministic maximally 
parallel way. There has only one restriction: when a membrane is divided, other membrane cannot be applied at that step. 
The new membranes resulting from division could participate in the interaction with other membranes or the environment 
by means of evolution rules at the next step if they are not divided once again. The label of a membrane identifies the rules 
which can be applied to it precisely.

A configuration of a P system with proteins on membranes and membrane division is described by the current membrane 
structure, together with all multisets of objects contained in all membranes, and all multisets of proteins presented on all 
membranes. The system passes from one configuration to another by a maximally parallel application of rules as described 
above. Each passage from a configuration to a next configuration is called a transition. A configuration is a halting one if 
no rule of the system is applicable to it. A computation is a (finite or infinite) sequence of transitions starting in the initial 
configuration. Only a halting computation gives a result, encoded by the multiset of objects present in the output region.

2.2. Recognizer P systems with proteins on membranes and membrane division

In this subsection, in order to investigate the computational efficiency of membrane systems, the notions from classical 
computational complexity theory are adapted for membrane computing. Recognizer P systems with proteins on membranes 
and membrane division are introduced for solving decision problems, which is slightly different from the usual recognizer 
P systems proposed in [31].

Definition 2. A recognizer P system with proteins on membranes and membrane division of degree m ≥ 1 is a tuple Π =
(O , P , �, μ, w1/z1, . . . , wm/zm, E, R1, . . . , Rm, iout, iin) such that:

• the tuple (O , P , μ, w1/z1, . . . , wm/zm, E, R1, . . . , Rm, iout), is a P system with proteins on membranes and membrane
division of degree m such that the output zone is the environment (iout = 0), and in this case, iout is usually omitted
from the tuple;

• � is an (input) alphabet strictly contained in O such that E ∩ � = ∅;
• the initial multisets w1, . . . , wm are over O  \ �;
• iin ∈ {1, . . . , m} is the label of a distinguished (input) membrane;
• the working alphabet contains two distinguished elements yes and no;
• for each multiset w over the input alphabet �, the computation of the system � with input w starts from the configu-

ration of the form (w1/z1, . . . , (wiin + w)/ziin , . . . , wm/zm, μ), when the system halts, then either object yes or object
no (but not both) must appear in the environment.

2.3. Recognizer timed P systems with proteins on membranes and membrane division

In this subsection, we start by giving the definition of timed P systems with proteins on membranes and membrane divi-
sion, and then the notion of recognizer timed P systems with proteins on membranes and membrane division is introduced.

Definition 3. A timed P system with proteins on membranes and membrane division of degree m ≥ 1 is a pair (Π, e), where 
Π is a P system with proteins on membranes and membrane division of degree m, and e is a time-mapping of Π , that 
is, e is a mapping from the finite set of rules R1 ∪ · · · ∪ Rm into the set of natural numbers N, where the numbers in 
N represent the execution time for the rules. We denote by Π(e) the timed P system with proteins on membranes and 
membrane division.

A timed P system with proteins on membranes and membrane division Π(e) works in the following way: an external 
clock is assumed, which marks time-units of equal length, starting from instant 0. According to this clock, the step t of 
computation is defined by the period of time between instant t − 1 and instant t . If a membrane i contains a rule r
(evolution rule or division rule) selected to be executed, then the execution of such rule takes e(r) time units to complete. 
Therefore, if the execution of a rule r is started at instant j, then such rule is completed at instant j + e(r) and the resulting 
objects, proteins and membranes (generated by the division rule) become available only at the beginning of step j +e(r) +1. 
If an evolution rule is started, then the occurrences of objects and proteins subject to this rule cannot be subject to other 
rules until the implementation of the rule completes; if the division rule is started, then the occurrences of proteins and 
membranes subject to this rule cannot be subject to other rules until the implementation of the rule completes.

Definition 4. A recognizer timed P system with proteins on membranes and membrane division of degree m ≥ 1 is a tuple 
(Π, e) where Π is a recognizer P system with proteins on membranes and membrane division of degree m and e is a 
time-mapping of Π .



2.4. Time-free uniform solutions to decision problems by P systems with proteins on membranes and membrane division

P systems with active membranes have been used to solve the SAT problem in a time-free manner, where rule starting 
steps (RS-steps, for short) are considered as the computation steps [34], and the number of RS-steps is used to characterize 
how “fast” a timed P system with active membranes solves a decision problem. In this work, the notion of rule starting 
steps is also used in timed P systems with proteins on membranes and membrane division.

Definition 5. In timed P systems with proteins on membranes and membrane division, a computation step is called an 
RS-step if at this step at least one rule starts its execution, that is, steps in which some objects and proteins “start” to 
evolve or membranes “start” to divide.

A decision problem, X , is a pair (I X , �X ) such that I X is a language over a finite alphabet (whose elements are called 
instances) and �X is a total Boolean function (that is, predicate) over I X .

Definition 6. [35] A decision problem X = (I X , �X ) is solvable in polynomial RS-steps by a family � = {Πn | n ∈ N} of 
recognizer P systems with proteins on membranes and membrane division in a time-free manner, if the following holds:

• the family � is polynomially uniform by Turing machines;
• there exists a pair (cod, s) of polynomial-time computable functions over I X such that:

– for each instance u ∈ I X , s(u) is a natural number and cod(u) is an input multiset of the system Πs(u);
– the family � is time-free sound, time-free complete and time-free polynomially bounded with respect to (X, cod, s).

We also say that the family � provides an efficient time-free uniform solution to the decision problem X .

3. An efficient time-free solution to QSAT problem using P systems with proteins on membranes and membrane division

The QSAT problem (satisfiability of quantified propositional formulas) is a well-known PSPACE-complete problem [19], it
is defined as follows: Given the fully quantified formula ϕ∗ associated with a Boolean formula ϕ(x1, . . . , xn) in conjunctive normal 
form, determine whether or not ϕ∗ is satisfiable.

A formula as above is of the form

ϕ∗ = Q 1x1 Q 2x2 . . . Q nxn(C1 ∧ C2 ∧ · · · ∧ Cm),

where each Q j , 1 ≤ j ≤ n, is either ∀ or ∃, and each Ci , 1 ≤ i ≤ m, is a clause of the form of a disjunction

C j = y1 ∨ y2 ∨ · · · ∨ yr,

with each yk being either a propositional variable, xs , or its negation, ¬xs . For example, let us consider the propositional 
formula

ϕ∗ = Q 1x1 Q 2x2[(x1 ∨ x2) ∧ (¬x1 ∨ ¬x2)].
It is easy to check that formula ϕ is true when Q 1 = ∀ and Q 2 = ∃, but it is false when Q 1 = ∃ and Q 2 = ∀.

Theorem 3.1. QSAT problem can be solved in polynomial RS-steps by a family of P systems with proteins on membranes and membrane 
division with rules of types (a), (c), (d), (e), (f) in a time-free uniform manner, that is, a P system constructed can solve a family of 
instances with the same size and correctness of the solution does not depend on the execution time of the involved rules.

Proof. Let a propositional formula ϕ∗ = Q 1x1 Q 2x2 . . . Q nxn(C1 ∧ C2 ∧· · ·∧ Cm), Ci = yi,1 ∨· · ·∨ yi,pi , for some m ≥ 1, pi ≥ 1, 
where yi, j ∈ {xk, ¬xk | 1 ≤ k ≤ n}, for each 1 ≤ i ≤ m, 1 ≤ j ≤ pi ; Q k ∈ {∀, ∃}, for each 1 ≤ k ≤ n; ¬xk is the negation of a 
propositional variable xk , the two connections ∨, ∧ are or, and, respectively.

Let us consider the polynomial time computable function 〈m, n〉 = ((m +n)(m +n +1)/2) +n. It is primitive recursive and 
bijective from N2 onto N. In what follows, we construct a family � = {Πt | t ∈ N}, and give the appropriate input multisets, 
then each system Πt will solve all instances of QSAT with n variables and m clauses, where t = 〈m, n〉.

We use the following notations to encode the propositional formula ϕ∗: cod(ϕ∗) = α1,1 . . . α1,nα2,1 . . . α2,n . . . αm,1 . . . αm,n , 
where for 1 ≤ i ≤ m, 1 ≤ j ≤ n we have:

αi, j =

⎧⎪⎨
⎪⎩

bi, j if x j appears in Ci;

b′
i, j if ¬x j appears in Ci;

b′′
i, j if x j and ¬x j do not appear in Ci .

For each m, n ∈N, we construct the recognizer P system with proteins on membranes and membrane division

Π〈m,n〉 = (O , P ,�,μ, w1/z1, . . . , w2n+3/z2n+3,∅, R1, . . . , R2n+3, iin),



Fig. 1. The initial membrane structure of the P system.

with the following components:

O = � ∪ {a j,a(1)
j ,a(2)

j ,a(3)
j , t j, f j | 1 ≤ i ≤ n}

∪ {di | 1 ≤ i ≤ m} ∪ {an+1,an+2, c, t, t0, u,yes,no},
P = {p+

j , p−
j ,q j,q′

j,q′′
j , rm+1, j | 1 ≤ j ≤ n} ∪ {pk | 0 ≤ k ≤ n + m + 1}

∪ {ri, j | 1 ≤ i ≤ m,1 ≤ j ≤ n} ∪ {p̃0, p̄0, pt, r1,n+1, s, s′, s′′},
μ = [ [ [ [ . . . [ [ [ ]2n+1 ]n[ ]2n ]n−1[ ]2n−1 . . . ]2[ ]n+2 ]1[ ]n+1 ]2n+2 ]2n+3

(each membrane with label i (1 ≤ i ≤ n − 1) contains a membrane

with label i + 1 and a membrane with label n + i + 1, see Fig. 1),

w1 = a1, w2n+3 = no, wi = λ,2 ≤ i ≤ 2n + 2,

z1 = p1, z2n+1 = r1,1, z2n+2 = p0, z2n+3 = s, zi = p0,2 ≤ i ≤ n,

zn+i = qi,1 ≤ i ≤ n,

iin = 2n + 1 (objects bi, j,b′
i, j,b′′

i, j are added into this membrane),

and the rules contained in the set R = ⋃
1≤i≤2n+3 Ri are defined as follows. We divide the computation process into the 

following four phases: generation phase (G1, j–G22, j), checking phase (C1–C3), quantifier phase (Q 1,1–Q 2, j), output phase 
(O 1–O 4). We also give explanations about the role of these rules in the computation of solving the QSAT problem.

Let e be an arbitrary time-mapping from R to N, where the numbers represent the execution time of the rules from R .

Generation phase.
In generation phase, the system assigns truth-assignment of each variable x j (1 ≤ j ≤ n) as well as looking for the clauses 

satisfied by the truth-assignment of this variable x j . Specifically, the computation process of assigning truth-assignment of 
variable x j as well as looking for the clauses satisfied of this variable is described as follows. The protein p j (1 ≤ j ≤ n) on 
membrane j corresponds to variable xi . With the appearance of protein p j on membrane j, a non-elementary membrane 
with label j is divided into two membranes with the same label, the truth values true (represented by t j) and false (repre-
sented by f j) assigned to variable x j are produced in two separate copies of membrane j. The objects t j and f j are sent 
to membrane n, the clauses which are satisfiable by the corresponding truth-assignment are checked in membranes with 
label 2n + 1. After that, objects a(1)

j and a(2)
j are produced and sent to membrane j + 1, and the protein p j+1 is produced 

on membrane j + 1. Hence the system starts to assign truth-assignment of variable x j+1 as well as looking for the clauses 
satisfied by the truth-assignment of variable x j+1.

In the initial configuration of the system, there is object a1 in membrane 1 and protein p1 on membrane 1; protein p0
on membrane 2n + 2 and on membranes i (2 ≤ i ≤ n), protein qi on membrane n + i (1 ≤ i ≤ n); input multiset cod(ϕ) in 
membrane 2n + 1 and protein r1,1 on membrane 2n + 1, object no in membrane 2n + 3 and protein s on membrane 2n + 3.

Rules G1, j–G5, j,k are used to generate 2n copies of membrane with label n, object ti (resp., f i ) is sent into membrane n.

G1, j : [ p j | ] j → [ p+
j | ] j[ p−

j | ] j, 1 ≤ j ≤ n.

G2, j : [ p+ | a j ] j → [ p+ | t j ] j, 1 ≤ j ≤ n.
j j



G3, j : [ p−
j | a j ] j → [ p−

j | f j ] j, 1 ≤ j ≤ n.

G4, j,k : t j[ p0 | ]k → [ p0 | t j ]k, 1 ≤ j ≤ n − 1, j + 1 ≤ k ≤ n.

G5, j,k : f j[ p0 | ]k → [ p0 | f j ]k, 1 ≤ j ≤ n − 1, j + 1 ≤ k ≤ n.

At step 1, division rule G1,1 is applied, under the influence of protein p1, membrane 1 is divided into two copies of 
membrane 1, with protein p1 replaced by p+

1 and p−
1 , respectively. For any given time-mapping e, the execution of rule

G1,1 completes in e(G1,1) steps. Exception for the application of rule G1,1, at step 1, rule O 2 is also used, where object
no is sent out of membrane 2n + 3, and changing the protein from s to s′ . From step 2 to step e(G1,1), there is no rule 
starting. So, during the execution of rule G1,1 (i.e., from step 1 to step e(G1,1)), there is one RS-step. Note that the number 
of RS-steps during the execution of rule G1,1 is independent on the time-mapping e.

After the execution of rule G1,1 finishes, under the control of proteins p+
1 and p−

1 placed on two separate copies of
membrane 1, the applications of rules G2,1 and G3,1 start at the same step, but they may complete at different steps due 
to the fact that the execution time associated with rules G2,1 and G3,1 can be different. By applying rule G2,1 (resp., G3,1), 
object a1 is evolved to t1 (resp., f1).

With the object t1 (resp., f1) in membrane 1 and the protein p0 on membrane 2, rule G4,1,2 (resp., G5,1,2) is enabled 
and used, object t1 (resp., f1) is sent into membrane 2. When the execution of rule G4,1,2 (resp., G5,1,2) finishes, under 
the control of protein p0 on membrane 3, the application of rule G4,1,3 (resp., G5,1,3) starts, object t1 (resp., f1) is sent 
into membrane 3. In this way, under the influence of protein p0 on membranes i (2 ≤ i ≤ n), rules G4,1,k (resp., G5,1,k) 
(2 ≤ k ≤ n) are applied one by one, where object t1 is transferred into the membrane n. Note that the executions of rules 
G4,1,2 and G5,1,2 may start at different steps since rules G2,1 and G3,1 may complete at different steps; rules G4,1,k and 
G5,1,k (3 ≤ k ≤ n) may start at different steps because the executions of rules G4,1,k−1 and G5,1,k−1 may finish at different 
steps.

Rules G6,i, j–G9,i, j are used to check the clauses which are satisfiable by the corresponding truth-assignment.

G6,i, j : {t j[ ri, j | bi, j ]2n+1 → di[ ri+1, j | t j ]2n+1,

t j[ ri, j | b′
i, j ]2n+1 → c[ ri+1, j | t j ]2n+1,

t j[ ri, j | b′′
i, j ]2n+1 → c[ ri+1, j | t j ]2n+1 | 1 ≤ i ≤ m,1 ≤ j ≤ n}.

G7,i, j : { f j[ ri, j | bi, j ]2n+1 → c[ ri+1, j | f j ]2n+1,

f j[ ri, j | b′
i, j ]2n+1 → di[ ri+1, j | f j ]2n+1,

f j[ ri, j | b′′
i, j ]2n+1 → c[ ri+1, j | f j ]2n+1 | 1 ≤ i ≤ m,1 ≤ j ≤ n}.

G8,i, j : [ ri, j | t j ]2n+1 → t j[ ri, j | ]2n+1, 2 ≤ i ≤ m,1 ≤ j ≤ n.

G9,i, j : [ ri, j | f j ]2n+1 → f j[ ri, j | ]2n+1, 2 ≤ i ≤ m,1 ≤ j ≤ n.

When the execution of rule G4,1,n (resp., G5,1,n) completes, and with protein r1,1 on membrane 2n + 1, one of rules in 
G6,1,1 (resp., G7,1,1) is enabled, which corresponds to checking whether the first clause is satisfied by the truth-assignment 
true (resp., false) of variable x1. By using one of rules in G6,1,1 (resp., G7,1,1), object d1 can be generated in membrane n
if object b1,1 (resp., b′

1,1) appears in membrane 2n + 1, otherwise, object c presents in membrane n. Meanwhile, protein
r1,1 placed on membrane 2n + 1 is changed to r2,1. If object t1 (resp., f1) appears in membrane 2n + 1, and with protein 
r2,1 on membrane 2n + 1, the application of rule G8,2,1 (resp., G9,2,1) starts, object t1 (resp., f1) is sent out of membrane 
2n + 1. After the execution of rule G8,2,1 (resp., G9,2,1) completes, under the control of protein r2,1 on membrane 2n + 1, 
one of rules in G6,2,1 (resp., G7,2,1) is enabled, which corresponds to check whether the second clause is satisfied by the 
truth-assignment true (resp., false) of variable x1. By applying one of rules in G6,2,1 (resp., G7,2,1), object d2 can be generated 
in membrane n if object b2,1 (resp., b′

2,1) presents in membrane 2n + 1, otherwise, object c appears in membrane n; protein
r2,1 placed on membrane 2n + 1 is changed to r3,1. With object t1 (resp., f1) in membrane 2n + 1 and protein r3,1 on 
this membrane, the application of rule G8,3,1 (resp., G9,3,1) starts, object t1 (resp., f1) is sent out of membrane 2n + 1. 
When the execution of rule G8,3,1 (resp., G9,3,1) finishes, and with protein r3,1 on membrane 2n + 1, one of rules in G6,3,1
(resp., G7,3,1) is enabled, the system starts to check whether the third clause is satisfied by the truth-assignment true (resp., 
false) of variable x1. In this way, rules G6,i,1 (1 ≤ i ≤ m) and G8,i+1,1 (1 ≤ i ≤ m − 1) (resp., G7,i,1 (1 ≤ i ≤ m) and G9,i+1,1
(1 ≤ i ≤ m − 1)) are applied one by one until the protein rm+1,1 presents on membranes 2n + 1. Rules G6,1,1 and G7,1,1 may 
start at different steps since the executions of rules G4,1,n and G5,1,n may finish at different steps; rules G6,i,1 and G7,i,1
(2 ≤ i ≤ m) may start at different steps since the executions of rules G8,i,1 and G9,i,1 may finish at different steps.

Rules G10, j–G13, j,k are used to send object a(1)
j (resp., a(2)

j ) to membrane j.

G10, j : [ rm+1, j | t j ]2n+1 → a(1)
j [ r1, j+1 | ]2n+1, 1 ≤ j ≤ n.

G11, j : [ rm+1, j | f j ]2n+1 → a(2)[ r1, j+1 | ]2n+1, 1 ≤ j ≤ n.
j



G12, j,k : [ p0 | a(1)
j ]k → a(1)

j [ p0 | ]k, 1 ≤ j ≤ n − 1, j + 1 ≤ k ≤ n.

G13, j,k : [ p0 | a(2)
j ]k → a(2)

j [ p0 | ]k, 1 ≤ j ≤ n − 1, j + 1 ≤ k ≤ n.

With the appearance of protein rm+1,1 on membrane 2n + 1, rule G10,1 (resp., G11,1) is enabled and used, object t1

(resp., f1) is evolved to a(1)
1 (resp., a(2)

1 ), and a(1)
1 (resp., a(2)

1 ) is sent out of membrane 2n + 1, changing the protein from

rm+1,1 to r1,2. If object a(1)
1 (resp., a(2)

1 ) presents in membrane n, under the control of protein p0 on membrane n, the appli-

cation of rule G12,1,n (resp., G13,1,n) starts, object a(1)
1 (resp., a(2)

1 ) is sent out of membrane n. With object a(1)
1 (resp., a(2)

1 )

in membrane n − 1 and protein p0 on membrane n − 1, rule G12,1,n−1 (resp., G13,1,n−1) is enabled and applied, object a(1)
1

(resp., a(2)
1 ) is sent out of membrane n − 1. In this way, rules G12,1,k (resp., G13,1,k) (2 ≤ k ≤ n) are used one by one, ob-

ject a(1)
1 (resp., a(2)

1 ) is transferred to the membrane 1. Rules G10,1 and G11,1 may start at different steps since the executions
of rules G6,m,1 and G7,m,1 may finish at different steps; rules G12,1,n and G13,1,n may start at different steps since the exe-
cutions of rules G10,1 and G11,1 may finish at different steps; the executions of rules G12,1,k and G13,1,k (2 ≤ k ≤ n − 1) may 
start at different steps since rules G12,1,k+1 and G13,1,k+1 may finish at different steps.

Rules G14, j–G16, j are used to make the system synchronization.

G14, j : [ p+
j | a(1)

j ] j → a(1)
j [ p−

j | ] j, 1 ≤ j ≤ n.

G15, j : [ p−
j | a(2)

j ] j → a(2)
j [ p+

j | ] j, 1 ≤ j ≤ n.

G16, j : a(2)
j [ p−

j | ] j → [ p−
j | a(3)

j ] j, 1 ≤ j ≤ n.

When the execution of rule G12,1,2 (resp., G13,1,2) finishes, with protein p+
1 (resp., p−

1 ) on membrane 1, the application

of rule G14,1 (resp., G15,1) starts, object a(1)
1 (resp., a(2)

1 ) is sent out of membrane 1, changing protein from p+
1 (resp., p−

1 )
to p−

1 (resp., p+
1 ). The executions of rules G14,1 and G15,1 may start at different steps due to the fact that rules G12,1,2 and

G13,1,2 may finish at different steps. Rule G16,1 is enabled only when object a(2)
1 appears in membrane 2n + 2 and there is

a membrane 1 having protein p−
1 on membrane 1, that is, rule G16,1 can be used only when the applications of both rules

G14,1 and G15,1 have completed. By using rule G16,1, object a(2)
1 evolves to a(3)

1 , and object a(3)
1 is sent into membrane 1.

Note that rule G16,1 has a synchronization function because e(G2,1) +�2≤k≤ne(G4,1,k) +�1≤i≤me(G6,i,1) +�2≤i≤me(G8,i,1) +
e(G10,1) + �2≤k≤ne(G12,1,k) + e(G14,1) may not equal to e(G3,1) + �2≤k≤ne(G5,1,k) + �1≤i≤me(G7,i,1) + �2≤i≤me(G9,i,1) +
e(G11,1) + �2≤k≤ne(G13,1,k) + e(G15,1). In any case, when the execution of rule G16,1 completes, the computation takes at 
most 4n + 4m + 1 RS-steps, which is independent on any time-mapping e.

Rules G17, j–G22, j are used to generate object a j+1 in membrane j + 1.

G17, j : [ p−
j | a(3)

j ] j → a(3)
j [ p+

j | ] j, 1 ≤ j ≤ n.

G18, j : a(3)
j [ q j | ]n+ j → [ q′

j | a j+1 ]n+ j, 1 ≤ j ≤ n.

G19, j : [ q′
j | ]n+ j → [ q′′

j | ]n+ j[ q′′
j | ]n+ j, 1 ≤ j ≤ n.

G20, j : [ q′′
j | a j+1 ]n+ j → a j+1[ q′′

j | ]n+ j, 1 ≤ j ≤ n.

G21, j : a j+1[ p+
j | ] j → [ p0 | a j+1 ] j, 1 ≤ j ≤ n.

G22, j : a j[ p0 | ] j → [ p j | a j ] j, 2 ≤ j ≤ n.

With object a(3)
1 in membrane 1 and protein p−

1 on membrane 1, rule G17,1 is enabled and applied, object a(3)
1 is sent

out of membrane 1, changing protein from p−
1 to p+

1 . When the execution of rule G17,1 finishes and with protein q1 on

membrane n + 1, the application of rule G18,1 starts, object a(3)
1 is evolved to a2, and object a2 is sent into membrane n + 1,

changing protein from q1 to q′
1. With the appearance of protein q′

1 on membrane n + 1, rule G19,1 is enabled and applied,
membrane n + 1 is divided into two copies of membrane n + 1, protein q′

1 is replaced by q′′
1 on each copy of membrane

n + 1. The function of rule G19,1 is used to double the number of object a2. If protein q′′
1 presents on membrane n + 1, the

application of rule G20,1 in all membranes n + 1 starts at the same time and completes at the same time due to the fact 
that the execution of rule G20,1 in all membranes n + 1 takes the same time e(G20,1) for a given time-mapping e. By using 
rule G20,1, object a2 is sent out of membrane n + 1. When the execution of rule G20,1 finishes, with object a2 in membrane 
2n + 2 and protein p+

1 on membrane 1, the application of rule G21,1 starts, each object a2 is sent into a membrane with
label 1, changing protein from p+

1 to p0 (there are two copies of object a2 in membrane 2n + 2 and two membranes 1 with
protein p+

1 placed on, and the system works in a maximally parallel manner). With object a2 in membrane 1 and protein
p0 on membrane 2, rule G22,2 is enabled and applied, object a2 is sent into membrane 2, changing protein from p0 to p2. 
Note that the application of rule G22,2 in all membranes 2 starts and completes at the same time due to the fact that the 
execution of rule G22,2 in all membranes 2 takes the same time e(G22,2) for a given time-mapping e.



Fig. 2. The membrane structure at the moment when protein p2 appears on membrane 2.

In general, when protein p2 presents on membrane 2 (the object a2 appears in membrane 2), the computation takes at 
most 4n + 4m + 7 RS-steps (see Fig. 2).

With protein p2 presents on membrane 2, rule G1,2 is enabled, which means that the system starts to assign truth-
assignment of variable x2, and look for the clauses satisfied by the truth-assignment of variable x2. Note that the application 
of rule G1,2 in all membranes 2 starts at the same time and completes at the same time since the execution of rule G1,2
in all membranes 2 takes the same time e(G1,2) for a given time-mapping e. The executions of rules G2,2 and G3,2 start at 
the same step, but they may complete at different steps. Furthermore, the applications of rules G4,2,k, G5,2,k, G12,2,k, G13,2,k
(3 ≤ k ≤ n), G6,i,2 (1 ≤ i ≤ m), G7,i,2 (1 ≤ i ≤ m), G8,i,2 (2 ≤ i ≤ m), G9,i,2 (2 ≤ i ≤ m), G10,2, G11,2, G14,2, G15,2 may start 
and complete at different steps. However, rule G16,2 is enabled only when all rules that have started and completed their 
executions. Similar with the case of variable x1, the processes of assigning truth-assignment of variable x2 as well as look-
ing for the clauses satisfied by the truth-assignment of variable x2 take at most 4n + 4m + 3 RS-steps. Comparing with the 
processes of assigning truth-assignment of variable x1 as well as looking for the clauses satisfied by the truth-assignment of 
variable x1, where the computation takes at most 4n + 4m + 7 RS-steps, this is because during the computation, objects t1

and f1 enter the membranes from membrane 1 to membrane n, and objects a(1)
1 and a(2)

1 are sent out of membranes from
membrane n to membrane 1; however, the processes of assigning truth-assignment of variable x2 as well as looking for 
the clauses satisfied by the truth-assignment of variable x2, objects t2 and f2 are sent into membranes from membrane 2 
to membrane n, and objects a(1)

2 and a(2)
2 are sent out of membranes from membrane n to membrane 2. Analogously, we

can deduce that if we consider the processes of assigning truth-assignment as well as looking for the clauses satisfied by 
the truth-assignment of variables x1, x2, . . . , xn in the worse case, then with the increasing of the system assigns truth-
assignment as well as looks for the clauses satisfied by the truth-assignment of variable from xi to xi+1 (1 ≤ i ≤ n − 1), the 
number of RS-steps decreases by 4. Hence, it is easy to see that the processes of assigning truth-assignment of variable xn
as well as looking for the clauses satisfied by the truth-assignment of variable xn take at most 4m + 11 RS-steps.

Therefore, after at most 2n2 +4nm +9n RS-steps, 2n separate copies of membrane with label n are generated, each mem-
brane with label n contains a membrane with label 2n + 1. Moreover, membrane 2n + 2 contains two copies of membrane 
with label n + 1 and each membrane with label j (1 ≤ j ≤ n − 1) contains two copies of membrane with label n + j + 1
(these membranes with labels n + j (1 ≤ j ≤ n) are idle in the subsequent phases, thus, we do not show them in Fig. 3). All 
the membranes are placed in the membrane with label 2n + 3 (see Fig. 3 for the main membrane structure at the moment 
when the generation phase completes).

Checking phase.
When the generation phase completes, each membrane with label n contains some of the objects from the set 

{d1, d2, . . . , dm} whose elements denote the corresponding clauses satisfied by the truth assignment of the variables. If 
there is at least one membrane with label n that contains all the objects d1, d2, . . . , dm , which means the formula ϕ without 
quantifiers is satisfied by the corresponding truth assignment in that membrane; if there are no membranes with label n
that contain all the objects d1, d2, . . . , dm , the formula ϕ without quantifiers is not satisfied.

C1 : [ p0 | an+1 ]n → [ pn+1 | an+2 ]n.

C2,i : [ pn+i | di ]n → di[ pn+i+1 | ]n, 1 ≤ i ≤ m.

C3 : [ pn+m+1 | an+2 ]n → [ p̃0 | t ]n.

When the execution of rule G20,n completes, with protein p+
n on membrane n, all objects an+1 in each membrane n − 1

are sent into membrane n, changing protein from p+
n to p0 at the same step (there are two copies of object an+1 and two 



Fig. 3. The main membrane structure of the system when the generation phase completes. The symbols at nodes indicate the proteins placed on membranes,
depth levels 2n + 3, 2n + 2, 1, . . . , n, 2n + 1 correspond to labels of membranes.

copies of membrane with label n in each membrane n − 1; each object an+1 is sent into a membrane n by using rule G21,n
in a maximally parallel manner). So, object an+1 appears in each membrane with label n at the same step. By applying 
rule C1, object an+1 is evolved to an+2, and protein p0 placed on membrane n is changed to pn+1. After the execution of 
rule C1 completes, the system starts to check whether object d1 appears in each membrane with label n.

With protein pn+1 on membrane n, if object d1 appears in membrane n, the application of rule C2,1 starts, object d1 is 
sent out of membrane n, and changing protein from pn+1 to pn+2. When the execution of rule C2,1 finishes, the system 
starts to check whether object d2 appears in a membrane n (i.e., checking whether the corresponding true assignment 
satisfies the clause C2). The proteins pn+3 appear only when the corresponding membranes n contain object d2.

The system continues to check whether objects d3, d4, . . . , dm appear in membranes n. For any membrane n that does 
not contain object di , i = 1, 2, . . . , m, then the computation in this membrane stops at the time when C2,i is supposed to 
be applied. If protein pn+m+1 appears on membrane with label n, rule C3 is enabled and used, object an+2 is evolved to t , 
protein pn+m+1 placed on membrane n is changed to p̃0.

In general, the checking phase takes at most m + 2 RS-steps.

Quantifier phase.
A membrane with label j corresponds to the quantifier Q j , where 1 ≤ i ≤ n. If Q j = ∀, 2 ≤ j ≤ n (resp., j = 1) a single 

object t will appear in membrane j − 1 (resp., 2n + 2) only when two copies of object t0 (each lower level membrane 
provides one copy of object t0) appear in membrane j − 1 (resp., 2n + 2), that is, the respective clauses are satisfied for 
both truth values of x j . If Q j = ∃, 2 ≤ j ≤ n (resp., j = 1) a single object t0 appeared in membrane j − 1 (resp., 2n + 2) is 
enough, and one copy of object t will appear in membrane j − 1 (resp., 2n + 2).

Note that the rules designed for quantifier phase are suitable for any cases of quantifier Q j (1 ≤ i ≤ n). However, for 
a specific QSAT problem, each variable x j corresponds to a specific quantifier Q j , that is, for checking whether variable 
x j with the quantifier Q j is satisfied, only one multiset of rules ((o1, j,1, o1, j,2, o1, j,3) or (o2, j,1, o2, j,2)) is assigned to the 
corresponding membranes.

If Q 1 = ∀, we have rules:

o1,1,1 : [ p̃0 | t ]1 → t0[ pt | ]1,

o1,1,2 : [ p0 | t0 ]2n+2 → [ p̄0 | u ]2n+2,

o1,1,3 : [ p̄0 | t0 ]2n+2 → [ p̃0 | t ]2n+2.

If Q j = ∀ (2 ≤ j ≤ n), we have rules:

o1, j,1 : [ p̃0 | t ] j → t0[ pt | ] j,

o1, j,2 : [ p0 | t0 ] j−1 → [ p̄0 | u ] j−1,

o1, j,3 : [ p̄0 | t0 ] j−1 → [ p̃0 | t ] j−1.

If Q 1 = ∃, we have rules:

o2,1,1 : [ p̃0 | t ]1 → t0[ pt | ]1,

o2,1,2 : [ p0 | t0 ]2n+2 → [ p̃0 | t ]2n+2.

If Q j = ∃ (2 ≤ j ≤ n), we have rules:

o2, j,1 : [ p̃0 | t ] j → t0[ pt | ] j,

o2, j,2 : [ p0 | t0 ] j−1 → [ p̃0 | t ] j−1.



The appearance of object t in membrane n means that the checking phase finishes and the quantifier phase starts. In 
what follows, we describe how the system simulates quantifiers ∀ and ∃.

If Q j = ∀ (2 ≤ j ≤ n), then we simulate the quantifier ∀ by using the rules o1, j,1, o1, j,2, o1, j,3. Specifically, when the 
object t appears in membrane j and the protein p̃0 on membrane j, rule o1, j,1 is enabled and used, object t is sent out 
of membrane j and evolved to object t0, changing the protein from p̃0 to pt . Note that the application of rule o1, j,1 in 
membranes j starts and completes at the same step due to the fact that the execution of such rule in membranes j takes 
the same time for a given time-mapping e. When object t0 presents in a membrane j − 1 and protein p0 appears on this 
membrane, the application of rule o1, j,2 starts, object t0 is evolved to the “dummy” object u, changing the protein from p0
to p̄0. With the protein p̄0 presents on membrane j − 1, rule o1, j,3 is enabled and used, object t0 is evolved to t , changing 
the protein from p̄0 to p̃0. Note that the object t presents in membranes j − 1 at the same time since the executions of 
rules o1, j,2 and o1, j,3 in membranes j − 1 take the same time for a given time-mapping e. If Q 1 = ∀, it can be simulated 
by using the rules o1,1,1, o1,1,2, o1,1,3, one copy of object t will appear in membrane 2n + 2 only when two copies of object 
t0 appear in membrane 2n + 2. The simulation process is similar to the case of Q j = ∀ (2 ≤ j ≤ n).

If Q j = ∃ (2 ≤ j ≤ n), then we simulate the quantifier ∃ by using rules o2, j,1, o2, j,2. Specifically, with object t in mem-
brane j and protein p̃0 on membrane j, rule o2, j,1 is enabled and used, object t is evolved to t0, and object t0 is sent 
out of membrane j − 1, changing protein from p̃0 to pt . Note that the application of rule o2, j,1 in membranes j starts 
and completes at the same step due to the fact that the execution of such rule in membranes j takes the same time for 
a given time-mapping e. With object t0 in membrane j − 1 and protein p0 on membrane j − 1, the application of rule 
o2, j,2 starts, object t0 is evolved to t , changing protein from p0 to p̃0. The execution of rule o2, j,2 in membranes j − 1
starts and completes at the same step since the execution of such rule in membranes j − 1 takes the same time for a given 
time-mapping e. If Q 1 = ∃, it can be simulated by using rules o2,1,1, o2,1,2, one copy of object t0 presented in membrane 
with label 2n + 2 is enough. The simulation process is similar to the case of Q j = ∃ (2 ≤ j ≤ n).

Supposed that the number of quantifier ∀ of formula ϕ∗ is k, and the simulation of each quantifier ∀ (resp., quantifier ∃) 
of the formula takes three (resp., two) RS-steps, thus, the simulation of all quantifiers ∀ (resp., quantifier ∃) of the formula 
takes 3k RS-steps (resp., 2(n − k) RS-steps).

Output phase.
The system sends to the environment the right answer. If formula ϕ∗ is satisfiable, object yes appears in the envi-

ronment when the system halts; if formula ϕ∗ is not satisfiable, object no appears in the environment when the system 
halts.

O 1 : [ p̃0 | t ]2n+2 → t[ pt | ]2n+2.

O 2 : [ s | no ]2n+3 → no[ s′ | ]2n+3.

O 3 : [ s′ | t ]2n+3 → yes[ s′′ | ]2n+3.

O 4 : no[ s′′ | ]2n+3 → [ s′′ | no ]2n+3.

In the initial configuration of the system, membrane 2n + 3 contains object no. At step 1, rule O 2 is applied, where 
object no is sent out of the membrane 2n + 3, and changing protein from s to s′ . Note that the application of rule O 2 takes 
no RS-step. When the quantifier phase finishes, we have the following two cases.

• If no object t presents in membrane with label 2n + 2, then rules O 1, O 3, O 4 can not be applied. In this case, when the
system halts, object no remains in the environment, which means that the formula is not satisfiable.

• If object t appears in membrane 2n + 2, under the influence of protein p̃0, rule O 1 is enabled and used, object t is
sent out of membrane 2n + 2, and changing its protein from p̃0 to pt . When the execution of rule O 1 finishes, at this
moment, if the execution of rule O 2 is not yet finished, then no rule can be started in the system. Only when the
execution of rule O 2 completes, protein on membrane 2n + 3 is changed to s′ , rule O 3 will be enabled. By applying
rule O 3, object t is evolved to yes, and object yes is sent out of membrane 2n +3, changing protein from s′ to s′′ . With
the appearance of protein s′′ on membrane 2n + 3, the application of rule O 4 starts, object no is sent into membrane
2n + 3. In this case, when the system halts, object yes remains in the environment, which means that the formula is
satisfiable. This process takes three RS-steps.

According to the explanation of the P system as above mentioned, it is easy to see that for any time-mapping e : R →N,
when the computation halts, object yes presents in the environment if and only if the formula ϕ∗ is satisfiable; and when 
the computation halts, object no presents in the environment if and only if the formula ϕ∗ is not satisfiable. Hence the 
system Π〈m,n〉 is time-free sound and time-free complete.

For any time-mapping e : R → N, if the formula ϕ∗ is satisfiable, the computation takes at most 2n2 + 4nm + 11n +
m + k + 5 RS-steps: it takes at most 2n2 + 4nm + 9n RS-steps to generate 2n membranes with label n (2n different 
truth-assignments); it takes at most m + 2 RS-steps to check whether all clauses without quantifiers are satisfied by a 
truth-assignment; the quantifier phase takes 2n +k RS-steps; and the output phase takes three RS-steps, the system halts. If 
the formula ϕ∗ is not satisfiable, the computation takes at most 2n2 + 4nm + 11n + m + k + 2 RS-steps (it takes no RS-step 



at the output phrase), and the system halts. Therefore, the family of P systems with proteins on membranes is time-free 
polynomially bounded.

The family � = {Π〈m,n〉 | m, n ∈ N} defined above is polynomially uniform by Turing machines because the construction 
of P system is built in polynomial time with respect to the size parameters n and m, and necessary resources are as follows:

• size of the object set: 3nm + 6n + m + 8;
• size of the protein set: nm + 7n + m + 9;
• initial number of membranes: 2n + 3;
• total size of initial multisets of objects: nm + 2;
• initial number of proteins on membranes: 2n + 3;
• number of rules: 2n2 + 8nm + 15n + m + 5;
• the maximal length of a rule including proteins: 6.

Therefore, the QSAT problem can be solved in polynomial RS-steps by a family of recognizer P systems with proteins on
membranes and membrane division in a time-free uniform manner. �
4. Conclusions and further works

In this work, inspired by the fact that biochemical reactions in biological systems are inherently parallel and have dif-
ferent reaction rates, and the execution time of biochemical reactions is sensitive to environmental factors that could affect 
reaction rates in an unpredictable way, we investigate the computational efficiency of timed P systems with proteins on 
membranes. Specifically, we construct a family of P systems proteins on membranes and membrane division, which solves
QSAT problem in a time-free uniform manner, where a P system constructed can solve a family of instances with the same 
size and correctness of the solution does not depend on the execution time of the involved rules.

The P system constructed in the proof of Theorem 3.1 has the rules of types (a), (c), (d), (e), ( f ). It is interesting to design 
P systems with fewer types of rules for efficiently solving the QSAT problem. Moreover, division rules for non-elementary 
membranes are used in Theorem 3.1, it remains open whether the QSAT problem can be solved by P systems with proteins 
on membranes and using division rules for elementary membranes in a time-free manner.

Flip-flop membrane systems with proteins are a particular class of P systems with proteins on membranes [23]. In such 
P systems, each protein has at most two states: p and p̄, and the rules are used either without changing the protein or 
changing the protein from p to p̄ and back. It remains open whether we can give a time-free uniform solution to the QSAT
problem by using flip-flop membrane systems with proteins.

Small universal P systems have been widely studied [10,18,21]. In P systems with proteins on membranes, small universal 
P systems working in a maximally parallel manner have also been studied in subsection 5.5 [32]. It is of interest to construct 
small universal P systems with proteins on membranes in the context of time-freeness.

Recently, a strategy of using rules, called flat maximal parallelism was considered in [16,36], where in each step, a max-
imal set of applicable rules is chosen and each rule in the set is applied exactly once in each membrane. It is of interest to 
investigate the computational power of P systems with protein on membranes by using rules in a minimally parallel way or 
in a flat maximally parallel way in the context of time-freeness.

The biological phenomenon of membrane fission process (also called membrane separation) was incorporated in mem-
brane computing, which has been investigated in the framework of P system [14,17]. It is interesting to investigate the 
computational power of P systems with protein on cells and cell separation in a time-free manner.
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