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Nature-inspired computing is a type of human-designed computing motivated by nature, which is based on 
the employ of paradigms, mechanisms, and principles underlying natural systems. In this article, a versatile 
and vigorous bio-inspired branch of natural computing, named membrane computing is discussed. This com-
puting paradigm is aroused by the internal membrane function and the structure of biological cells. We first 
introduce some basic concepts and formalisms of membrane computing, and then some basic types or vari-
ants of P systems (also named membrane systems) are presented. The state-of-the-art computability theory 
and a pioneering computational complexity theory are presented with P system frameworks and numerous 
solutions to hard computational problems (especially NP-complete problems) via P systems with membrane 
division are reported. Finally, a number of applications and open problems of P systems are briefly described.
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1 INTRODUCTION

Natural sciences are influencing the area of information sciences, and the meaning of computa-
tion is modified. Up to now, there are many computing paradigms inspired by a large number of
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natural phenomena, such as the functioning of the brain, group behavior, cell membranes, and
the immune system. Natural computing is a highly interdisciplinary area, which primarily encom-
passes computer science and natural sciences along with an indirect association with all other
possible scientific fields.

A key component of natural computing is to explore suitable physical substrates for implement-
ing computations. Two prime instances of nature-inspired paradigms are quantum computing
and molecular computing. Quantum computing exploits the amazing laws of quantum mechanics
to process information, and computations are achieved by using physical methods such as
superconductors, nuclear magnetic resonance techniques, and ion-traps [64]; while in molecular
computing, a large amount of information can be encoded with biomolecules (for instance, DNA
strands), and various bio-operations, such as splicing, self-assembly, are employed to implement
computations [1].

The most established “classical” nature-inspired computing models are cellular automata,
aroused by self-reproducing/self-replicating biological organisms; neural computation, the goal of
this paradigm is to understand and compute, motivated by the function and nature of the brain
[127]; and evolutionary computation, which proposes a strategy for finding optimal or near-optimal
solutions inspired by natural evolution and adaptation [34]. Some recent computing paradigms
motivated from natural phenomena include artificial life, which is a cutting-edge research disci-
pline that links the field of computational intelligence with the study of living systems [59]; swarm

intelligence, motivated by the behavioral models of social animals [54], for instance, bees, fish, ants,
or birds; artificial immune systems, which are motivated by the processes and principles of the bio-
logical immune systems [18]; membrane computing, abstracted from the partition of cell structure,
and the cooperation of cells in organs and tissues to investigate the computing power, computing
efficiency, applications, and implementations [78].

In this article, we focus on an active branch of nature-inspired computing paradigm: membrane
computing, which is motivated from the function and structure of biological cells, abstracting from
biological processes of chemicals interact and cross membranes, in other words, by the action of
membranes in domain of cells into “reactors”. All computational models studied in membrane
computing framework are named P systems. In view of the difference of the underlying structure,
P systems are classified into two types: neural-like P systems [49] or tissue-like P systems [61] (an
arbitrary graph structure), and cell-like P systems [78] (a tree structure). A representative mono-
graph of membrane computing is consulted in [80] and [84], and the state-of-the-art additional
information of this research field is available on http://ppage.psystems.eu.

2 ELEMENTS OF MEMBRANE COMPUTING

2.1 Elements of Formal Language Theory

In this subsection, some elements from languages theory are presented in the classic form, dealing
with strings, and also in the multiset form [101].

An alphabet Γ is defined by a non-empty set of symbols, and then the set of all strings generated
by concatenating arbitrary number of symbols is indicated as Γ∗. Γ∗ \ {λ}, denoted by Γ+, is a set
of string excluding empty string λ (there is no symbol in a string). We indicate as |u | the length of
u, which is defined by all symbols in u.

A multiset M over Γ is designed by two tuples (Γ, f ), where a function f is defined from an
alphabet Γ to the natural numbers set. In addition,M+ (Γ) (respectively,M (Γ)) indicates the set
of all non-empty multisets (respectively, the set of all multisets). If Γ = {a1, . . . ,ak }, then multiset

M is represented by {af (a1 )
1 , . . . ,a

f (ak )
k
}. For instance, let M1 = (Γ, f1), M2 = (Γ, f2) be two

multisets, so the union of these two multisets is represented byM1 +M2, which is indicated as

http://ppage.psystems.eu


Fig. 1. A membrane structure.

(Γ, f1 (x ) + f2 (x )) such that every x ∈ Γ; besides, the relative complement of M2 = (Γ, f2) in
M1 = (Γ, f1) is indicated as M1\M2 = (Γ, f1 (x ) − f2 (x )) if M2 is included in M1; otherwise,
M1\M2 = 0.

2.2 Membrane Structure

Motivated from the function and structure of a biological cell, we consider hierarchical arrange-
ments of a finite number of membranes; that is, membranes nested within other membranes. Mem-
branes delimit compartments (also named regions) where various chemicals (also called objects)
evolve on the basis of local reaction rules; moreover, objects are transferred across membranes by
applying specific rules. A membrane with no lower neighbors is called elementary; otherwise, a
membrane is named non-elementary. A membrane with no upper neighbor is called a skin mem-

brane. The space “outside” the skin membrane is called the environment. Depending on the model,
this environment will play an active or a passive role during the evolutionary process of the sys-
tem. A simple membrane structure is shown in Figure 1. We remark that a global clock which
marks the time for all regions exists for every membrane system, and each rule (of whatever type)
is executed in exactly one time-unit.

A membrane structure can also be expressed by parentheses, thus the membrane structure of
Figure 1 can be described as a parentheses expression

[ [ ]2 [ ]3 [ [ ]5 [ [ ]8 [ ]9 ]6 [ ]7 ]4 ]1.

2.3 Multiset Rewriting Rules

Multiset rewriting rules are an abstraction of biochemical reactions taking place in a cell, which
have formu → v (hereu,v are two multisets), located in membranes. A rule in a region is available
if multiset w of objects presented in that membrane includes multiset u, i.e., u ⊆ w . For instance,
the use of the rule abc2 → bd3 transforms one object a, one b, and two c into three d , while b is
reproduced (here it plays the role of a catalyst). This rule can be applied to the multiset a2bc3d2,
but not to abcd2, because abc2 ⊆ abcd2 does not hold.

The weight of a multiset rewriting rule u → v (denoted by |u |) is defined by all the occurrences
of objects in u; a rule with weight at least two is named cooperative, while a rule with only one
object is called noncooperative.

The communication between regions is provided by passing/exchanging objects between re-
gions through membranes. Communication is a basic mechanism of cooperation among regions,
and it is incorporated in rewriting rules by target indications, which have form p → q, where each



element of q has the form (a, tar ), tar is either out, here, or in. The meaning of these target indi-
cations is described as follows:

If tar = here , then object a stays in membrane where such rule resides.
If tar = out , then object a is sent to its parent region.
If tar = in, then object a is randomly sent to one of the child regions. Note that elementary

regions do not have child regions, so a rule including tar = in residing in an elementary region
cannot be applied.

For instance, ab → (c,here ) (d,out ) (e, in) works as follows: a reacts with b, being removed from
the region. Besides, an object c (that remains in the region where the rule resides), an object d (sent
to the parent region), and an object e (sent in one of the child regions) are produced.

2.4 Communication Rules

Except for rewriting rules, another significant style of rules is called communication rules, which
regulate the shift of objects (placed in neighboring regions) among regions. A typical instance of
communication rules is antiport and symport rules, which are motivated by the coupled cross-
membrane transport of ions and molecules.

There are two forms for symport rules: (u,out ) and (u, in); while only one form exists for an-
tiport rules: (u,out ;v, in). If these communication rules are associated with region h, then the
meaning of antiport rules and symport rules is described as follows:

• for a symport rule (u, in), the multiset u placed in its parent of region h is moved to region
h;

• for a symport rule (u,out ), the multisetu placed in region h is moved to the parent of region
h;

• for an antiport rule (u,out ;v, in), the multisetu placed in region h is moved to the parent of
region h, and meanwhile the multiset v placed in the parent of region h is moved to region
h.

Obviously, for communication rules (symport/antiport rules) to be applicable it is required that
the multisets u and v of objects are available in corresponding regions.

2.5 Other Variants of Rules

Furthermore, there exist rules that are capable of changing the structure of the P system (creating,
dividing, separating, merging, etc.). Besides, inspired by a mathematical or a biological motivation,
inhibitors or promoters are associated with rules, and the employ of such rules is regulated by
priority relations, objects among regions are moved under the control of the permeability (if a
membrane is non-permeable, then all objects cannot pass through such membrane).

2.6 Strategies of Using Rules

There are various possible strategies of applying the available sets of rules to multisets of objects
appeared in regions at a given time unit.

• Maximal Parallelism. At every computation step, a multiset of rules chosen at the current
configuration is maximal.

• Flat Maximal Parallelism. A maximal set of valid rules is selected and every rule in this set
is employed exactly once in each region in a computation step.

• Minimal Parallelism. If there exist some application rules in a membrane, then at least one
rule must be employed.

• Asynchronous. Arbitrary number of available rules is employed in a computation step.



Fig. 2. An example system Π working in a flat maximally parallel way.

• Sequential. Exactly one rule is employed in a computation step.
• Bounded Parallelism. At most a certain number of rules is employed in each region in a

computation step.

Next, we present two examples to illustrate the mode of application multiset rewriting rules in
a maximally parallel and in a flat maximally parallel.

Example 1. Assume that currently the multiset w = a3b2c2 of objects is present in region h, and
such region contains the set of rules R = {r1, . . . , r5}, with

r1 : ab → v1, r2 : c → v2, r3 : bc → v3, r4 : a3c2 → v4, r5 : ad → v5,

for some v1, . . . ,v5.
Note that applying r1 removes (“consumes”) the multiset ab, while two parallel applications

of r1 remove the multiset a2b2. The remaining “still available” multiset ac2 does not allow one
more parallel application of r1, but it allows for two parallel applications of r2, which removes the
multiset c2. The remaining multiset a does not allow an application of any rule at all, and therefore
we say that the maximally parallel use of the multiset of rules is {(r1, 2), (r2, 2)}. Besides, we can
find that the application of {(r3, 2)} is maximally parallel (for the remaining multiset a3 of objects,
no rule can be used), and the application of {(r1, 1), (r2, 1), (r3, 1)} is maximally parallel (for the
remaining multiset a2 of objects, no rule can be used). Note that the application of {(r1, 2), (r2, 1)}
is not maximally parallel, because for the remaining multiset ac of objects, r2 can be still used.

Example 2. Now we present how a P system Π works in a flat maximally parallel way, the system
contains two membranes 1 and 2 located in skin membrane 1, the initial multisets of objects and
the rewriting rules of the system are located in membranes, and the environment is the output
region (see Figure 2).

The P system works as follows: At step 1, the maximal set of available rules in the left membrane
2 is {r1, r2}, hence rules r1, r2 are applied once, sending three copies of b to membrane 1; simulta-
neously, the maximal set of available rules in the right membrane 2 is {r3}, hence rule r3 is applied
once, sending three copies of b to membrane 1. Therefore, after the first step, both membranes 2
do not have objects, and six copies of b appear in membrane 1. At each of the next six steps, rules
in both membranes 2 are not available, and the maximal set of applicable rules in membrane 1 is
{r4}; by applying rule r4 once at every step, six copies of b in membrane 1 are revised to c , which
are sent to environment. Hence, after seven steps, six copies of c appear in environment, and the
system halts. The set of numbers produced by system Π is {6}.



2.7 Halting Conditions

The standard way to define successful computation is by means of halting. However, some other
variants of halting conditions have been studied in membrane computing.

• Unconditional Halting. The result of a computation can be considered from any configura-
tion starting from the initial one.

• Halting with States. The system reaches a configuration in which a final state appears.
• Partial Halting. R is a set of rules, which is partitioned into disjoint subsets R1, . . . ,Rh . A

computation stops when there are no rules available to the current configuration, which
has a rule from every set Ri , 1 ≤ i ≤ h.

3 VARIANTS OF P SYSTEMS

In this section, some basic types of P systems are presented in membrane computing, which gives
an insight to the most important models in the theory.

3.1 Transition P Systems

The notion of transition P systems (the generic variant of P systems) was raised in [78]. A simplified
variant of this construct, called symbol-object P system, is presented here.

Definition 3.1. A transition P system (with degree q ≥ 1) is a framework of the form

Π = (Γ, μ,M1, . . . ,Mq , (R1, ρ1), . . . , (Rq , ρq ), iout ),

where:

• Γ is an alphabet, and every element in such alphabet is called an object;
• μ is a hierarchical membrane structure;
• Mi , 1 ≤ i ≤ q, are multisets of objects, which are placed in membranes 1, 2, . . . ,q;
• Ri , 1 ≤ i ≤ q, are sets of rewriting rules combined with corresponding membranes

1, 2, . . . ,q, ρi is a priority relation among rules of Ri (1 ≤ i ≤ q). A rewriting rule has form
u → v , where a multiset u is from Γ, and a multiset v = v ′ or v = v ′δ (δ is a special symbol
not in Γ), and a multiset v ′ is over

(Γ × {out ,here}) ∪ (Γ × {inj | 1 ≤ j ≤ q}).

• iout ∈ {1, 2, . . . ,q} refers to output membrane.

If a rewriting rule u → v ∈ Ri is employed, all objects in multiset u are depleted, besides, all 
objects in multiset v are generated; besides, each object from v are transferred on the basis of 
instructions here, out , inj combined with them: for instance, if multiset v have (b, tar ) and tar = 
here , then b stays in current region; in case of tar = out , b moves from the current region to 
the upper region; if tar = inj , then b gets into the immediately lower membrane j (note that if 
membrane j is an elementary membrane, then a rule of form (b, inj ) is forbidden to be employed). 
Note that the instruction here is usually not written.

A priority relation among rules considered here is in a strong sense: if a rule with a higher 
priority is applied, then no rule of a lower priority can be applied, even if the two rules do not 
compete for objects. For instance, if r1, r2 ∈ Ri , r1 > r2, and both rules r1, r2 are available, then at 
that step only rule r1 will be applied.

There exists an special object δ such that, if a rule u → v : Rh is applied, and δ ∈ v , then in  
that step the membrane is dissolved, more specifically, the evolved membrane disappears and the 
contents release to its parent membrane. This changes the membrane structure in such a way that,



Fig. 3. An example of a transition P system.

if child (h) = {h1, . . . ,hs } is a set of lower neighbors of membrane h, and the immediately upper
membrane of h is i , then at the next configuration child (i ) = {h1, . . . ,hs }.

A transition P system is worked in a maximally parallel mode. Note that when a membrane is
dissolved, a computational step is divided in two microsteps: in the first one, all the objects evolve
in the usual way; in the second step, the membranes that must be dissolved will be dissolved.

A configuration of a transition P system at some instant consists of all multisets of objects placed
in every region at that moment and the current membrane structure. Each passage from a con-
figuration to a next configuration is named a transition. A computation is defined by a sequence
of transitions starting from initial configuration. A system reaches a halting configuration if the
system does not have rule to apply. A transition P system has a result only when it reaches halting
configurations.

Transition P systems as one of basic P system models have been investigated widely. In [78], an
extended transition P systems, named catalytic P systems was proposed, where evolution rules have
the forms a → v or ca → cv . c,a are objects with c � a, v is a multiset, and c does not appear in v
(c only helps a to evolve intov , but c itself does not undergo any transformation). c is known as the
catalyst of the rule. The reader is referred to [35], [48], [57], and [111] for further details. However,
the computation power of purely catalytic P systems as language-generating devices with one
or two catalysts remains as an open problem. In [51], the relation of evolution-communication
P systems with energy (a special object called “energy” is produced through evolution rules and
consumed in communication rules) and non-cooperative transition P systems (all evolution rules
are non-cooperative) was explored. In [52], it is known that cooperative transition P systems are
simulated by evolution-communication P systems with energy.

The following instance is used to illustrate how a transition P system works:
Let Π be a transition P system, where sets of rules, initial multisets of objects and membrane

structure are presented in Figure 3, the output region of Π is environment.
Owing to the non-deterministic feature of transition P systems, several different paths of com-

putation are existed. The following is one possible path of computation for the P system described.
Initially, only membrane 3 has objects a, c , at step 1, if rules a → ab and c → cc are used, then mem-
brane 3 has objects a,b, c, c . At step 2, if rules c → cc and a → bδ are applied, then membrane 3
has objects b,b, c, c, c, c (because of maximal parallelism), and such membrane is dissolved, every
object placed in membrane 3 is released to membrane 2, and the rules in membrane 3 are disap-
peared. At step 3, rules b → e and cc → c (because of priority relation) are used in parallel, objects
e, e, c, c are produced in membrane 2. At step 4, only rule cc → c can be applied, and membrane 2
has objects e, e, c . At step 5, only rule c → δ can be used, membrane 2 is dissolved and two copies
of object e are released to membrane 1, all rules in membrane 2 disappear. At step 6, rule e → eout

is applied, the environment will receive two copies of object e , the system halts.



3.2 P Systems with Active Membranes

Inspired from a mathematical and a biological point of view, it is natural to consider to increase the
number of membranes, so the model of P systems with active membranes was proposed in [79],
where an important feature that every membrane is associated with one of three possible charges
(+,−, 0) is considered.

Definition 3.2. A P system with active membranes (with degree q ≥ 1) is a framework of the
form

Π = (Γ,H , μ,M1, . . . ,Mq ,R, iout ),

where:

• Γ is an alphabet, and every element in such an alphabet is called objects;
• H is a set of membrane labels;
• μ is a hierarchical membrane structure, and each membrane has a neutral polarization;
• Mi , 1 ≤ i ≤ q, are multisets of objects over Γ initially appeared in corresponding mem-

branes;
• R is a set of rules with seven types of forms (s represents the label of skin membrane):

(a) [ a → v ]e
h , for h ∈ H , e ∈ {+,−, 0},a ∈ Γ,v ∈ Γ∗

(evolution rules; under the control of the label of membrane and its polarization, a
multiset of objects is produced, and both the label of membrane and its polarization are
not changed in this process);

(b) a[ ]e1

h
→ [ b ]e2

h
, for h ∈ H \ {s}, e1, e2 ∈ {+,−, 0},a,b ∈ Γ, being s the skin membrane

(send-in communication rules; under the control of the label of membrane and its
polarization, an object enters the membrane, both the evolved object and membrane
charge may be revised in this process);

(c) [ a ]e1

h
→ [ ]e2

h
b, for h ∈ H , e1, e2 ∈ {+,−, 0},a,b ∈ Γ

(send-out communication rules; under the control of the label of membrane and its po-
larization, an object exits the membrane, both the evolved object and membrane charge
may be revised in this process);

(d) [ a ]e
h → b, for h ∈ H \ {s},α ∈ {+,−, 0},a,b ∈ Γ, where s is the skin membrane

(dissolving rules; under the control of an object, the label of the membrane, and its
polarization, a membrane with label h is dissolved, the evolved object may be revised;
all the other objects and its inner membranes (may not exist) are released to its parent
membrane; meanwhile, all rules in the membrane vanish);

(e) [ a ]e1

h
→ [ b ]e2

h
[ c ]e3

h
, for h ∈ H \ {s}, e1, e2, e3 ∈ {+,−, 0},a,b, c ∈ Γ, being s the skin

membrane
(division of elementary membranes; under the control of an object, the label of the

membrane, and its polarization, the membrane is split into two membranes, the po-
larizations of two generated membranes may be changed; the object arousing the rule
may be changed in the generated membranes; all the rest of objects are reproduced in
both of the generated membranes);

(f) [ [ ]e1

h1
[ ]e2

h2
]e

h → [ [ ]e3

h1
]h [ [ ]e4

h2
]e ′

h , h,h1,h2 ∈ H , h � s , e, e ′, e1, e2, e3, e4 ∈
{+,−, 0}, being s the skin membrane

(division of non-elementary membranes; when two membranes with labelsh1,h2 and
polarizations e1, e2, respectively, appear in a membrane h with polarization e , then that
membrane will be divided in two new membranes, the first one with membrane h1, the
second membrane with h2 and the rest of the contents, both membranes and objects
will be replicated in the generated membranes).



(g) [ a ]e1

h
→ [ Γ1 ]e2

h
[ Γ2 ]e3

h
, for h ∈ H \ {s}, e1, e2, e3 ∈ {+,−, 0},a ∈ Γ, Γ1 ∪ Γ2 = Γ and Γ1 ∩

Γ2 = ∅, being s the skin membrane
(separation rules for elementary membranes; with the appearance of an object, the

label of membrane and its polarization, a membrane is split into two membranes, the
polarizations of two generated membranes may be changed; the object a is depleted,
and the first generated membrane contains the objects from Γ1, the second generated
membrane contains the objects from Γ2).

• iout ∈ {0, 1, . . . ,q} refers to output region (0 indicates the environment).

Rules in P systems with active membranes are employed in a maximally parallel mode with the
following agreements: any membrane can be subject of only one rule of types (b) – (g); if a rule
of type (a) is employed, the membrane can also evolve by a rule of other type; if a rule of types
(e), (f), or (g) is used, we assume that the inner membranes and objects are evolved first, then the
division rule is applied, and this two processes take only one step (that is, a bottom-up manner is
considered for applying rules). Note that the rules that evolved a membrane h are applied to all
membranes h. The skin membrane cannot be divided, dissolved, or separated.

A configuration of a P system with active membranes Π at some instant consists of all multisets
of objects located in every region at that moment and the current membrane structure. The notions
of transition, computation, and halting computation are analogous to the transition P systems as
described above.

Since P systems with active membranes were first raised in [79], several varieties of such P sys-
tems were considered. Inspired by the fact that electrical charges placed on membranes are not
very reasonable from a biological perspective, the idea for trading polarizations for labels was pro-
posed by Alhazov et al. [8]. Motivated by the biological phenomenon of separation, Alhazov et al.
introduced membrane separation into P systems with active membranes [4]. Motivated from the
biological fact that when a compartment is large enough, new membranes will be generated inside
it, Mutyam and Krithivasan [62] proposed P systems with membrane creation. The conception of
strong (non-elementary) division was proposed by Zandron et al. [133], where two inner mem-
branes control the division. For further varieties of P systems with active membranes, readers are
referred to [7], [21], [38], and [50].

Besides the investigated maximal parallelism, some other strategies of applying rules were also
explored in P systems with active membranes: time-freeness (the result achieved by the given P
system is not related to the running time of rules) [102, 109]; minimal parallelism (each membrane
which can evolve in a given step should do it by using at least one rule must be evolved) [25]; and
asynchronous (any number of applicable rules is employed at a time). A challenging issue is to
discuss the computational efficiency of polarization-less P systems with active membranes using
elementary membrane division and working in an asynchronous pattern or in a flat maximally
parallel pattern.

We give an example to illustrate how a P system with active membranes works.
Let Π = ({a,b, c,d, e, f }, {1, 2}, [ [ ]0

2 ]0
1, {a}, ∅,R, 1) be a P system with active membranes, where

R contains rules as shown below:

r1 : [ a → bc ]0
1;

r2 : b[ ]0
2 → [ d ]+2 ;

r3 : [ d ]+2 → [ e ]+2 [ f ]−2 ;
r4 : [ e ]+2 → c ;
r5 : [ f ]−2 → c .

The computation for the P system is depicted as follows: Initially, the skin membrane has an 
object a; hence, at step 1, objects b and c are produced by using rule r1. Next, rule r2 is applied, 



object b, outside of a membrane 2 might be rewritten into d and sent inside to the membrane, the
charge of membrane 2 is transformed to positive. At the next step, by using rule r3, two membranes
with label 2 are generated and object d is evolved to object e and object f , respectively. By using
rules r4, and r5 at step 4, two membranes with label 2 are dissolved, and objects e and f are evolved
to object c . The system halts, and membrane 1 contains three copies of object c .

3.3 Communication P Systems

In transition P systems, objects are allowed both to change and move across the membranes, while
in communication P systems, objects can not be evolved, and they are moved between the neigh-
boring regions (including the environment). Symport/antiport P systems were raised in [72], which
were inspired by phenomena (called symport and antiport) of biochemical ingredients via mem-
brane channels.

Definition 3.3. A symport/antiport P system (with degree q ≥ 1) is a framework of the form

Π = (Γ,E, μ,M1, . . . ,Mq ,R1, . . . ,Rq , iout ),

where:

• Γ is an alphabet, and every element in such alphabet is named objects;
• E ⊆ Γ is a set of alphabet of the environment, and it is assumed that the number of each

object initial located in E is large enough;
• μ is a hierarchical membrane structure containing q membranes, and 1 represents the out-

ermost membrane (skin membrane);
• Mi , 1 ≤ i ≤ q, are multisets of objects initially situated in corresponding membrane i;
• Ri is a set of antiport and symport rules placed in membrane i , 1 ≤ i ≤ q. The antiport

rules have form (u,out ;v, in), where u,v ∈ Γ∗; while symport rules have forms (u, in) and
(u,out ), where u ∈ Γ∗. Note that if rules (u, in) ∈ R1 exist, then u ∩ (Γ \ E) � ∅,

• iout ∈ {1, . . . ,q} refers to the output membrane.

]

The meaning of antiport rules and symport rules has been given in Section 2. Here we emphasize 
the case of symport rules, if the environment is the parent region of region i , then the imported 
multiset should contain at least one symbol not in the environmental alphabet E (otherwise un-
limited numbers of objects will be sent into the system in a single computational step).

In what follows, we give a simple example to demonstrate how a symport/antiport P system 
works.

Let Π = ({a, b}, {a, b}, {a, b}, [ [  2]1, {a}, ∅, R1, R2), 1) be a symport/antiport P system, R1 = 
{(a, out ; abb, in)}, R2 = {(a, in)}.

At the first step, by applying r ule (a, out ; abb, i n), in every computation step, the skin region 
obtains two copies of object b. Only when rule (a, in) is applied, the computation will halt, the 
numbers of object b presented in cell 1 is considered as the value of Π. Therefore, Π generates the 
set of numbers {2n | n ≥ 0}.

In [72], it is shown that symport/antiport P systems are computationally complete. Furthermore, 
the register machine is simulated by antiport/symport P systems with single membrane [36, 37, 
41]. As an extensive investigations, the computational power of such P systems using small or 
relatively small size parameters (for instance, the number of membranes, the length of rules, and 
symbols in multisets of rules) are equivalent to the register machines [3, 10, 12]. An interesting 
issue is to study the computational power of symport/antiport P systems with minimal parameters 
(number of objects or number of membranes).



3.4 Tissue-Like P Systems with Symport Rules and Antiport Rules

Definition 3.4. A tissue P system with symport rules and antiport rules (with degree q ≥ 1) is a
framework of the form

Π = (Γ,E,M1, . . . ,Mq ,R, iout ),

where:

• Γ is an alphabet, and every element in such alphabet is named objects;
• E ⊆ Γ is a set of alphabet of the environment, and it is assumed that the number of each

object initial located in E is large enough;
• Mi , 1 ≤ i ≤ q, are multisets of objects initially situated in corresponding cell i;
• R is a set of symport rules and antiport rules with the forms below:

—Antiport rules: (i,m/n, j ), where 0 ≤ i � j ≤ q,m,n ∈ Γ+;
—Symport rules: (i,m/λ, j ), where 0 ≤ i � j ≤ q,m ∈ Γ+;

• iout ∈ {1, 2, . . . ,q} refers to output cell and iout = 0 refers to the environment.

An antiport rule (i,m/n, j ) is employed if cell i includes multisetm of objects and cell j includes
multiset n of objects. When such an antiport rule is employed, region j receives multiset m from
region i; meanwhile, region i receives multiset n from region j.

A symport rule (i,m/λ, j ) is employed if cell i includes multiset m of objects. When such a
symport rule is employed, region j receives multisetm from region i .

A tissue P system with symport rules and antiport rules is worked in a maximally parallel mode.
A configuration of a tissue P system with symport rules and antiport rules Π identify the multisets
of objects present in its regions. The notions of transition, computation, and halting configuration
are analogous to transition P systems as described above.

If cell division rules are introduced into tissue P systems with symport rules and antiport rules,
then such systems are called tissue P systems with symport rules and antiport rules and cell division;
when cell separation instead of cell division is incorporated into such P systems, then tissue P
systems with symport rules and antiport rules and with cell separation were raised.

The form of division rules is [ a ] i → [ b ] i [ c ] i (a,b, c ∈ Γ). Such a rule is applicable if the
output cell is not cell i and cell i includes an object a. When a division rule is used, cell i is split
into two cells i: object a triggered the rule is changed to b in one cell, while in the other cell object
a is changed to c , and all the rest of objects are copied in these new produced cells.

Separation rules have form [ a ] i → [ Γ0 ] i [ Γ1 ] i (a ∈ Γ, Γ0, Γ1 are non-empty sets such that
Γ0 ∪ Γ1 = Γ and Γ0 ∩ Γ1 = ∅). Such a rule is applicable if cell i cannot be the output cell and it includes
an object a. When a separation rule is used, the evolved cell i is split into two cells i , an object a
triggered the rule is depleted, all the other objects are distributed in these new produced cells.

The model of tissue P systems with symport rules and antiport rules was raised in [73], and
then in [39] such a basic model has been developed by introducing a conception of the state to
communication channels, and the state can be revised if the corresponding communication rule
is used. If rules involve one or two regions, tissue P systems with evolution-communication [11,
19] or with conditional uniport [115] were explored. Inspired by both the way transitions of the
Petri nets and the symport/antiport paradigm, rules involve four regions (two regions are consid-
ered as inputs and the other two regions are considered as outputs) are studied, and generalized
communication P systems were explored [26, 27, 56, 116], where such P systems simultaneously
move objects from two regions to the other two regions. Such a purely communicating P system
is a network of cells where the nodes are labeled and at any step of functioning contain a finite
multiset of objects.



Due to the biological fact that molecules across a membrane are usually transferred from high
concentration to low concentration, monodirectional tissue P systems were raised [106, 107],
where only symport rules are allowed, and only one direction is allowed for two given regions
when communication happens. Motivated by the communication rules (object is evolved when its
position is changed) in P systems with active membranes, in [108], evolutional symport/antiport
rules were investigated in tissue P systems such that objects may be changed during the movement
process among regions.

A concept similar to tissue P system with evolutional symport rules and antiport rules is the P
colony, introduced in [53]. For P colony, the cells (also called agents) have only one region that can
be interacted with their joint environment by means of programs. There is a multiset of objects
in each agent, and these objects are operated by a finite set of programs. Note that the number of
objects in every agent remains unchanged during the computational process of the P colony. The
agents place in the environment, where each object in such region is supposed to be in a countably
infinite number of copies.

In [65] and [105], flat maximal parallelism of applying rules was explored, i.e., at every step, a
maximal applicable set of rules in each membrane is selected, and every rule in the set can only
be used once. In [70], the mechanism of flat maximal parallelism was studied in tissue P systems
with promoters. Motivated from the mechanization of biological cell, many methods of producing
new cells have been investigated, such as cell division and cell separation, where an exponential
workspace is created, and a plenty of NP-complete problems have been solved via space-time
tradeoff method. More specifically, in [82], cell division is incorporated into tissue P systems, such
kind of new P systems was applied to solve the SAT problem (see [28] and [29] for more details). In
[67], cell separation rules were employed in tissue P systems, and a complexity theory was studied
in the tissue P systems with cell separation framework.

In [68], cell separation was incorporated into tissue P systems with evolutional symport rules
and antiport rules, and a borderline between non-efficiency and efficiency is raised. According
to different biological fact, many other varied tissue P systems were proposed, for instance, by
introducing energy [2], promoters [103], proteins [24, 104], and the like. An obvious open problem
is to introduce the biological features into tissue P systems, and study the computation power of
such variant of P systems.

An example is given to illustrate the working of a tissue P system with symport rules and an-
tiport rules.

Let Π = ({a,b}, {a,b}, {a}, ∅,R, 1) be a tissue P system with symport rules and antiport rules
(having two cells with labels 1 and 2, respectively, with the environment being labeled 0), where
R contains two rules

r1 : (1,a/ab2, 0);
r2 : (1,a/λ, 0).

The computation for the tissue P system works as follows: Initially, cell 1 includes an object a, 
the environment includes the initial multiset {a, b} (note that we assume that every initial object 
in the environment is large enough). At step 1, rule r1 or r2 is chosen non-deterministically. If rule 
r2 is chosen , cell 2 receives an object a and the system halts; if rule r1 is chosen , the environment 
receives an object a; meanwhile, cell 1 obtains an object a and two copies of b, so cell 1 increases 
two copies of b. Therefore, two copies of b are increased in cell 1 for each step whenever rule r1 is 
selected. At some step, if rule r2 is used, cell 2 receives an object a and the system halts. Hence, 2n 
(n ≥ 0) copies of object b are produced in cell 1.



3.5 P Systems with Proteins on Membranes

Definition 3.5. A P system with proteins on membranes of degree q ≥ 1 is a tuple

Π = (O, P , μ,w1/z1, . . . ,wq/zq ,E,R1, . . . ,Rq , iout ),

where:

• O and P are finite non-empty alphabets such that O ∩ P = ∅;
• μ is a membrane structure with q membranes labeled by 1, . . . ,q;
• wi , 1 ≤ i ≤ q, are multisets over O ;
• zi , 1 ≤ i ≤ q, are multisets over P ;
• E ⊆ O is a set of the alphabet of the environment, and it is assumed that the number of

each object initial located in E is large enough;
• iout ∈ {0, 1, . . . ,q} refers to output region;
• Ri , 1 ≤ i ≤ q, are sets of evolution rules with the forms below:

(1) [ p | a ] i → [ p ′ | b ] i , p,p
′ ∈ P , a,b ∈ O , 1 ≤ i ≤ q

(The rule is available if membrane i contains object a and protein p is located on
such membrane. By using such a rule, object a evolves to b, and protein p is revised to
p ′. Note that other objects and proteins associated with the evolved membrane remain
unchanged.);

(2) a [ p | ] i → b [ p ′ | ] i , p,p
′ ∈ P , a,b ∈ O , 1 ≤ i ≤ q,

(The rule is available if the father of membrane i contains object a and protein p is
located on membrane i . By using such a rule, object a evolves to b, and protein p is
revised to p ′.);

(3) [ p | a ] i → b [ p ′ | ] i , p,p
′ ∈ P , a,b ∈ O , 1 ≤ i ≤ q,

(The rule is available if membrane i contains object a and protein p is located on
such membrane. By using such a rule, object a is sent out of membrane i , such object
is revised to b during this process, and protein p is revised to p ′.);

(4) a [ p | ] i → [ p ′ | b ] i , p,p
′ ∈ P , a,b ∈ O , 1 ≤ i ≤ q,

(The rule is available if the father of membrane i contains object a and protein p is
located on membrane i . By using such a rule, object a is sent into membrane i , such
object is revised to b during this process, and protein p is revised to p ′.);

(5) a [ p | b ] i → c [ p ′ | d ] i , p,p
′ ∈ P , a,b, c,d ∈ O , 1 ≤ i ≤ q,

(The rule is available if the father of membrane i contains object a, membrane i has
object a, and protein p is located on membrane i has object b. By using such a rule,
object a is sent into membrane i , such object is revised to d ; object b is sent out of
membrane i , such object is revised to c , and protein p is revised to p ′.).

A configuration of a P system with proteins on membranes is depicted by the current membrane
structure, all multisets of objects in every membranes, and all multisets of proteins located on
every membranes. The notions of transition, computation, and halting computation are analogous
to transition P systems as described above.

The computational power of P systems with proteins on membranes was studied widely [74, 75,
112], result shown that P systems with proteins on membranes are universal by combining various
types of rules. In [55] and [77], flip-flop membrane proteins are considered, where a protein has
at most two states, and this kind of P systems were proved to be universal. In [76], membrane
division rules are incorporated into P systems with proteins on membranes, and a uniform solution
to the SAT problem was presented by a family of P systems with proteins on membranes and



membrane division. If division rules are allowed for non-elementary, then P systems with proteins
on membranes can solve PSPACE-complete problems [112].

3.6 Spiking Neural P Systems

Neurons are one of the most interesting cell types in the human body. A large number of neurons
working in a cooperative manner are able to perform complex tasks. Inspired from the way of
neurons communicate by means of electrical impulses, spiking neural P systems were proposed in
[49]

Definition 3.6. A spiking neural P system (for short, SN P system) (with degree m ≥ 1) that was
introduced in [23] is a framework of the form

Π = (O,σ1, . . . ,σm , syn,out ),

where:

—O = {a} is an alphabet with singleton element a, which is called spike;
—σ1, . . . ,σm are neurons with form σi = (ni ,Ri ), 1 ≤ i ≤ m, where

(a) ni ≥ 0 is a natural number, which indicates the number of spikes initially placed in σi ;
(b) Ri is a set of rules that have form: E/ac → ap ;d , where E is a regular expression, c ≥ 1,

c ≥ p ≥ 0, and d ≥ 0 are integer numbers; specifically, d is the delay, which represents
the duration between employing firing rule and releasing the spike;

—syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m} are synapses (if two neurons are connected), and (i, i ) �
syn for 1 ≤ i ≤ m;

—out , in ∈ {1, 2, . . . ,m} refer to output and input neurons, respectively.

For rules of form E/ac → ap ; d , if p = 1, then such a rule is called a standard rule; and if p = 0, 
then such a rule is called a forgetting rule, hence forgetting rules and standard rules are two special 
cases.

A rule E/ac → ap ; d is employed in neuron σi if the following two requirements are satisfied:
(1) there exists k spikes in neuron σi , ak ∈ L(E); (2) k ≥ c , the number of spikes depleted by the 
rule must be less than the number of spikes in neuron σi . When such a rule is employed, neuron 
σi consumes c spikes, and after d steps, p copies of spikes are created. Especially when d = 0, the 
generated p spikes are duplicated and released immediately to all its syndetic neurons; otherwise, 
neuron σi is closed in these d computation steps, that is, if at step t , a firing rule is employed, then 
neuron σi is shut from step t to step t + d − 1, hence new spikes cannot be received from the closed 
neuron. Note that, if any spike is sent to the closed neuron, then that spike will be lost.

A forgetting rule E/ac → λ is used in neuron σi if ak ∈ L(E), k ≥ c and firing rules cannot be 
employed. By employing such a forgetting rule, neuron σi decreases c spikes.

A configuration of an SN P  system at some instant consists of the number of spikes in every 
neuron and the state of each neuron (the number of steps before the neuron opens; if the state 
of a neuron is already open, then the number of steps is zero). Therefore, a configuration of Π  is 
expressed as follows: 〈r1/t1, . . . , rm/tm〉 for ri ≥ 0 and ti ≥ 0, where ri spikes are included in neuron 
σi , and after ti (i = 1, 2, . . . ,m) steps it will become open. The notions of transition, computation, 
and halting computation are analogous to transition P systems as described above.

The result of an SN P system is represented in several ways: (1) the interval of time steps (dis-
tance) between the first two spikes [49, 83]; (2) the output neuron emits all spikes to the environ-
ment when system halts [20]; (3) the interval of time steps between all consecutive spikes. Thus, 
an SN P system is regarded as a generator over the alphabet {0, 1} [22].

With the inspirations of different biological phenomena, and mathematical motivations, various 
types of SN P systems were explored, for instance, SN P systems with polarizations by taking the



Fig. 4. An example of SN P system.

polarized membrane of a neuron as inspiration [128]; motivated by the biological fact that, if the
membrane threshold potential is inferior to its membrane potential, then such neurons can fire;
SN P systems with weights were investigated [117]; SN P systems with astrocytes inspired by
the excitatory and inhibitory functioning of astrocytes on synapses [69]; aroused by Eckhorn’s
neuron model, coupled neural P systems were designed in [87]; axon P systems motivated by the
information processing of axons in the nervous system, which have a powerful computational
power, and such P systems were proved to be universal as both function computing devices and
number generator devices [139]; SN P systems with structural plasticity were considered, inspired
by the idea from the self-organizing and self-adaptive feature of artificial neural networks [17,
123]; motivated by the feature of request-response in grammar systems in [66], SN P systems with
communication on request were investigated; cell-like SN P systems were described in [129] by
incorporating the feature of hierarchical arrangement of membrane structure; dendrite P systems
[86] aroused by the way dendrites lead the computation over neurons.

In [16], the notion of scheduled synapses was considered by spiking neural P systems, where
a duration is combined with every synapse, which is valid only in the duration of its schedule.
Therefore, it is worth studying the computational power of various SN P systems with scheduled
rules, where each synapse is associated with a duration.

An example is given to illustrate how an SN P system works. Let Π be an SN P system (see
Figure 4), which includes neurons σ1, σ2, and σ3, and neuron σ3 is the output one.

First of all, all neurons σ1, σ2, σ3 fire and the two rules in neuron σ2 are chosen non-
deterministically. At step 1, the output neuron σ3 obtains one spike from neuron σ1 and neuron
σ2, respectively; these two spikes will be depleted later. The spikes between neuron σ1 and neuron
σ2 are also exchanged; therefore, so long as the rule a2 → a; 0 in neuron σ2 is employed, neuron
σ1 gets one spike, thus two spikes are obtained, and neuron σ1 can fire again.

Whenever the rule a → a; 1 in neuron σ2 is chosen and applied, then neuron σ2 cannot receive
the spike of neuron σ1, and only neuron σ3 receives one spike; thus, if the number of spikes stays
empty in neuron σ2, it will no longer work. Next, only forgetting rule a → λ in neuron σ1 can
be used, simultaneously rule a2 → a; 1 in neuron σ3 fires; meanwhile, neuron σ2 emits one spike,
but neuron σ3 cannot receive this spike because it is shut at this step; neuron σ1 receives one
spike, which will be forgotten later. Finally, neuron σ3 sends one spike to the environment, and
the system halts. Consequently, the SN P system Π produces the set of natural numbers greater
than 1.



3.7 Enzymatic Numerical P Systems

An enzymatic numerical P system (shortly, ENP system) of degree q ≥ 1 that was introduced in
[85] is a framework of the form

Π = (μ, (Var1,E1, Pr1,Var1 (0)), . . . , (Varq ,Eq , Prq ,Varq (0))),

where

—μ is a hierarchical membrane structure;
—every membrane i is characterized by a four-tuple (Vari ,Ei , Pri ,Vari (0)), 1 ≤ i ≤ q, where:

(a) Vari is a set of variables placed in membrane i;
(b) Ei ⊆ Vari is a finite set of enzyme variables placed in membrane i;
(c) Pri is the set of programs placed in corresponding membrane i , which are the following

two cases:
(i) non-enzymatic form

Fl,i (x1,i , . . . ,xki ,i ) → cl,1 | v1 + · · · + cl,ni
| vni
,

where Fl,i (x1,i , . . . ,xki ,i ) refers to production function, cl,1 | v1 + · · · + cl,ni
| vni

refers to repartition protocol;
(ii) enzymatic form

Fl,i (x1,i , . . . ,xki ,i ) |ej,i→ cl,1 | v1 + · · · + cl,ni
| vni
,

where ej,i refers to an enzyme variable from Vari , but they are different from
v1, . . . ,vni

and from x1,i , . . . ,xki ,i ;
(d) Vari (0) is a set of original values of variables in corresponding membrane i .

If all programs are non-enzymatic form, then such P systems are called standard numerical P

systems (shortly, NP systems) [81].
A non-enzymatic program is executed as follows: At a moment t ≥ 0, the system calculates a

production value Fl,i (x1,i (t ), . . . ,xki ,i (t )) by taking the current values of variables x1,i , . . . ,xki ,i

belonging to compartment i . Afterwards, according to the distribution coefficients cl,1, . . . , cl,ni
,

the production value Fl,i (x1,i (t ), . . . ,xki ,i (t )) is distributed to each variable v1, . . . ,vni
from com-

partment i , the upper compartment, or the immediately inner compartments. Specifically, each
variable vs is associated a value ql,i (t ) · cl,s , 1 ≤ s ≤ ni , where ql,i (t ) is computed as follows:

ql,i (t ) =
Fl,i (x1,i (t ), . . . ,xki ,i (t ))

∑ni

s=1 cl,s
.

Note that when the production value has been computed, the variables in the corresponding pro-
duction function will be reset to zero; otherwise, they retain the current value. After repartition, 
the quantities assigned to each variable from several repartition protocols are added to the current 
value of these variables. If there are multiple programs that can be executed in a compartment 
at some moment, then the common strategy adopted is that all these applicable programs are si-
multaneously executed, called the all-parallel mode. The programs are also worked in one-parallel 
mode (using programs in the all-parallel mode under the restrictive condition that one variable 
can present in only one of the applied programs; in the case of multiple choices, the programs to 
be used are chosen in a non-deterministic way) or sequential mode (only one program is used in a 
step in every membrane; if more than one program in a membrane is available, then one of them 
is non-deterministically chosen). For more details, please refer to [81] and [114].



Fig. 5. An ENP system Π generating Fibonacci sequence.

An enzymatic program is employed at an instant t if ej,i > min{x1,i (t ), . . . ,xki ,i (t )}. In other
words, enzyme variables are employed to control the use of programs. The execution of enzymatic
programs is identical to that of non-enzymatic programs.

A configuration of an ENP system Π at an instant t ≥ 0 consists of the values of all variables
of the system, represented by Ct = 〈x1,1 (t ), . . . ,xk1,1 (t ), . . . ,x1,m (t ), . . . ,xkm,m (t )〉, where the co-
ordinate x j,i (t ) ∈ R indicates the value of variable x j,i from compartment i at current time t , for
1 ≤ i ≤ m, 1 ≤ j ≤ ki , and t ≥ 1. From one configuration to another, one is viewed as a transition,
that is, at instant t , given the values of variables x j,i (t ), the values of variables x j,i (t + 1) at instant
t + 1 is calculated through the use of the corresponding programs. A sequence of transitions is
called a computation. If all programs cannot be used, then the system is said to achieve a halting
configuration. The calculation results of an ENP system are the values of the designated variables
during the computation.

An example is given to illustrate how an ENP system works. To be specific, an ENP system Π1 is
defined in Figure 5. The ENP system Π1 has one membrane, and the initial values for each variable
are specified in square brackets, and the variable x1 is designated as the output .

At each step t ≥ 0, the value of enzyme variable e1 is increased by value x1 (t ), thus e1 (t ) >
min{x1 (t ),x2 (t )} is always true; in this way, programs (x1 + x2) |e1→ 1 | x1 and 2x1 → 1 | x2 + 1 |
e1 are applied all the time. Hence, at each step t , the value of variable x2 becomes the value x1 (t ),
while the value of variable x1 becomes the value x1 (t ) + x2 (t ). As variable x1 is an output one, the
result of such ENP system is defined by the value of variable x1 in the computation process, thus
the ENP system Π generates Fibonacci sequence.

Several variants of NP systems have been proposed. For example, by considering the idea of
the threshold control adopted in SN P systems, several other control strategies of the execution of
programs have also been introduced in NP systems, such as NP systems with the variable threshold
control [140], NP systems with the production threshold control [71], and NP systems with boolean
condition control [60]. Inspired by objects can pass through the membranes, NP systems with
migrating variables were put forward [141].

4 THEORY OF MEMBRANE COMPUTING

4.1 Computing Power

The initial motivation of membrane computing aimed at model computation inspired by mem-
brane structure of biological cells. After 20 years of development, plenty of models were presented
and their computing power was investigated. It turned out that universality holds for most of P
systems both for symbol and string objects, working in an accepting or in a generative ways. Uni-
versality holds for these classes of P systems in their most general form, but also for their quite
restricted forms, with restrictions on the number of membranes, form of the rules, and the like. In
most cases, trade-offs (retaining the computing power) were found among the complexity of rules,
the number of membranes or objects used. Thus, on this very abstract level one can conclude that



“the cell is a powerful computer”, both when it works alone and in tissue-like or neural-like net-
work configurations. In what follows, some basic results with regard to the computational power
of transition P systems are presented.

The results of all the computations produced by transition P system are denoted by N (Π). We
denote by NOPm (α , tar ) the family of all sets of numbers produced by transition P systems, where
m represents the number of membranes, α represents a type of rules, if α = coo, it means cooper-
ating rules are applied; if α = ncoo, it means all rules are non-cooperating; if α = cat , then rules
with catalysts are applied. If the number of membranes is not bounded for transition P systems,
we can substitute ∗ for the symbolm.

Due to the definitions, the following relations are obvious:

Lemma 4.1.
(1) For allm ≥ 1, we have NOPm (ncoo, tar ) ⊆ NOPm (cat , tar ) ⊆ NOPm (coo, tar );
(2) NOP∗ (ncoo, tar ) ⊆ NOP∗ (cat , tar ) ⊆ NOP∗ (coo, tar );
(3) For allm ≥ 1 and α ∈ {coo, cat ,ncoo}, we have NOPm (α , tar ) ⊆ NOPm+1 (α , tar ).

We denote by Σ a set of terminal objects, and the computation result of transition P systems is
counted by the number of the symbols of Σ ⊆ Γ in the specified output membrane at the end of the
halting computations. An interesting case of transition P systems is when we consider Σ = Γ −C
(C is a alphabet of catalysts), thus the set of nutural numbers or vectors produced by transition P
system are denoted by N−C (Π) or Ps−C (Π), and the families of all sets of numbers or sets of vectors
computed by transition P systems with at most m membranes and the set of catalysts having at
most k elements are denoted by NO−CPm ([p]catk ) or PsO−CPm ([p]catk ).

The following results based on transition P systems with (purely) catalysts are obtained (the
proof of the following theorems can be found in Chapter 4 in [84]).

Theorem 4.2. NO−CP1 (cat2) = NO−CP1 (pcat3) = NRE.

Corollary 4.3. For anym ≥ 1 and k ≥ 2,

PsRE = PsO−CPm (catk ) = PsO−CPm (pcatk+1).

We obtain the following general result as a counterpart to Corollary 4.3.

Corollary 4.4. For anym ≥ 2 and k ≥ 2,

PsRE = PsOPm (catk ) = PsOPm (pcatk+1).

Next, we show that transition P systems with no catalyst and purely catalytic P systems with
one catalyst can only generate semilinear sets.

Theorem 4.5. PsO−CP1 (cat0) = PsO−CP1 (pcat1) = PsREG .

4.2 Generation of Languages

Catalytic P systems and purely catalytic P systems can also be used as language generators: During 
a successful computation, all the symbols sent out through the skin membrane are taken as the 
symbols forming a string in just that sequence from which the symbols are sent out. (We take all 
possible sequences of symbols that are sent out in one transition step as possible substrings to be 
concatenated with the string already generated by the preceding transition steps—thus, not only 
one string may be the result of a successful computation.) The language generated by a (purely) 
catalytic P system Π in that way is denoted by L(Π). The family of languages generated by [purely] 
catalytic P systems with at mostm membranes and at most k catalysts is denoted by LOPm ([p]catk ).

Lemma 4.6. For any partially recursive function f : N → N there exists a register machine M with 
two registers computing f in such a way that, when starting with 2n in register 1 and 0 in register 2,



M computes f (n) by halting with 2f (n) in register 1 and 0 in register 2. Moreover, in no configuration

both registers are empty.

The following results based on (purely) catalytic P systems are obtained (see chapter 4 in [84]).

Theorem 4.7. LOP1 (cat2) = LOP1 (pcat3) = RE.

Theorem 4.8. LOP1 (bicat1) = RE, where bicat represents bistable catalysts, i.e., the catalytic may

switch between two states.

Symport/antiport P systems as language generators were also studied. More specifically, dur-
ing a successful computation, all the terminal objects sent out by means of the skin membrane
are taken as the objects forming a string in just that sequence the objects are sent out. If there
is more than one object is sent out in one step (either by only one copy of a rule or by several
rules from the applied multiset of rules), then we take all possible sequences of objects that are
sent out in one transition step as possible substrings to be concatenated with the string already
generated by the preceding transition steps, as we take all possible substrings from each tran-
sition step. So not only one string may be the result of a successful computation. The language
generated by a symport/antiport P system Π in the above-mentioned way is denoted by L(Π). The
family of languages generated by symport/antiport P systems with at mostm membranes using an-
tiport/symport rules of type α (α ∈ {symk ,antik }), using the transition modeX ∈ {max ,amin}, are
denoted by LOPm (α ,X ), where symk (respectively, antik ) represents symport rules (respectively„
antiport rules) of length at most k are employed.

The following results based on symport/antiport P systems are obtained (the proof of the fol-
lowing theorems can be found in chapter 5 in [84]).

Theorem 4.9. RE = LOP1 (anti3,max ) = LOP1 (sym3,max ).

For the minimally parallel mode we also get a characterization of RE with the minimal number
of membranes being two.

Theorem 4.10. RE = LOP2 (anti3,amin) = LOP2 (sym3,amin).

4.3 Computational Efficiency

The first foundations of a complexity theory in Membrane Computing were given in [97] and
[98]. In the seminal paper of Membrane Computing discipline, the models defined are (cell-like) P
systems with output membrane but without input membrane, where a single initial configuration
given by the initial multisets over the working alphabet is associated with such P systems. In [98],
P systems with input membrane have been designed, where an input alphabet Σ of such kinds of
P systems is included in working alphabet Γ, and initial multisets located in input membrane are
over Γ \ Σ.

4.3.1 Recognizer Membrane Systems. Bearing in mind that the solvability of decision problems
is associated with the recognition of languages, so recognizer P systems are considered in the
Membrane Computing framework.

Definition 4.11. A recognizer membrane system is a membrane system (with or without input
membrane) that satisfies the following conditions: (a) two special objects (no and yes) are in-
cluded in working alphabet Γ; (b) the initial multisets of a P system without input membrane are
over Γ; however, the initial multisets of a P system with input membrane are over Γ \ Σ. Σ is an
input alphabet of the system; (c) all computations of a recognizer membrane system halt; (d) if a
computation C exists, then only one of the objects no, yes should have been delivered to the output
region at the final step.



A computation C of recognizer P systems is named an rejecting (respectively, accepting) compu-

tation when object no (respectively, yes) appears in the output region when systems halt. Note
that every computation in a recognizer membrane system is a halting computation.

These concepts are extended to tissue P systems motivated by intercellular communication in
organs or tissues. Specifically, if Γ, Σ, and E represent the working alphabet, input alphabet. and
environment alphabet, respectively, then E ⊆ Γ \ Σ and the initial multisets of a tissue P system
are over Γ \ Σ.

4.3.2 Polynomial Time Complexity Classes. In [58], [79], and [132], P systems without input
membrane were employed as an effective tool to offer efficient solutions to NP-complete problems.
This kind of solution is considered as special-purpose solutions; for every instance of the problem,
a corresponding P system is designed such that the syntax of this given instance is a portion of
the designed P system.

Semi-Uniform Solutions. Next, following [98], the special-purpose solutions are defined in a math-
ematical way, called semi-uniform solutions.

Definition 4.12. A decision problem X = (IX ,θX ) is efficiently solved in a semi-uniform manner
by means of a family {Π(u) | u ∈ IX } of recognizer P systems without input membrane from R
(denoted by X ∈ PMC

∗
R ) if the following prerequisites are satisfied:

• The family Π is polynomially uniform by Turing machines, more specifically, a deterministic
Turing machine, which can design the system Π(u) on the basis of the instance u ∈ IX
processing in polynomial time exists.

• The family Π is polynomially bounded, i.e., there is a natural number k ∈ N , and every
computation of Π(u) implements at most |u |k steps for every specific instance u ∈ IX .

• The family Π is complete (for every specific instance u ∈ IX , if θX (u) = 1, then allcomputa-
tions of Π(u) are accepting computations) and sound (for every instance u ∈ IX , when an
accepting computation of Π(u) exists, then θX (u) = 1) in reference to X .

According to Definition 4.12, the following statements are achieved:

—A semi-uniform solution to the decision problem X is offered by the family {Π(u) | u ∈ IX }.
—A system Π(u) is designed to process each instance u ∈ IX . Moreover, according to the no-

tions of completeness and soundness of the family in reference to the decision problem X ,
clearly, the system Π(u) is confluent, i.e., the same result is obtained for all computations
(either all computations are rejecting computations or all computations are accepting com-
putations).

Uniform Solutions. Next, another kind of solution to decision problems by families of recognizer
P systems is introduced. More specifically, all instances (with the same size) of the problem are
solved via a system combined with an appropriate input.

Definition 4.13. A decision problemX = (IX ,θX ) is solvable in polynomial time and in a uniform

way by a family Π = {Π(n) | n ∈ N} of membrane systems from R (denoted by X ∈ PMCR ) if the
following conditions hold:

• The family Π is polynomially uniform by Turing machines, that is, there exists a deterministic

Turing machine working in polynomial time which constructs the system Π(n) with input

membrane from n ∈ N ;

• There exists a pair (cod, s ) of polynomial-time computable functions over IX such that:



—For each instance u ∈ IX , s (u) is a natural number and cod (u) is an input multiset of the

system Π(s (u)); we denote by Π(s (u)) + cod (u) the system obtained by adding cod (u) to

the multiset in the region iin of Π(s (u));
—For each n ∈ N , s−1 (n) is a finite set;

—The family Π is polynomially bounded with regard to (X , cod, s ), that is, there exists a

polynomial function p, such that, for eachu ∈ IX , every computation of Π(s (u)) with input

cod (u) is halting and it performs at most p ( |u |) steps;

—The family Π is sound with regard to (X , cod, s ), that is, for each u ∈ IX , if there exists an

accepting computation of Π(s (u)) with input cod (u), then θX (u) = 1;

—The family Π is complete with regard to (X , cod, s ), that is, for each u ∈ IX , if θX (u) = 1,

then every computation of Π(s (u)) with input cod (u) is an accepting one.

According to Definition 4.13, the following statements are achieved:

—A uniform solution to the decision problem X is offered by the family {Π(n) | n ∈ N}. The
ordered two-tuples (cod, s ) is a polynomial encoding of X in {Π(n) | n ∈ N};

—A system Π(s (u)) + cod (u) is designed to process every instance u ∈ IX . Moreover, the sys-
tem Π(s (u)) + cod (u) is confluent, i.e., the same result is obtained for all computations (either
all computations are rejecting computations or all computations are accepting computa-
tions).

On the basis of the definitions of recognizer P systems, the aforementioned complexity classes
are closed both under polynomial-time reductions and under complement [99].

From Definition 4.12 and Definition 4.13, it is easy to know that each uniform solution of a
decision problem can be viewed as a semi-uniform solution applying the same number of comput-
ing resources, i.e., for any class R of recognizer membrane systems, PMCR ⊆ PMC

∗
R . It has been

proved that the concept uniformity solution is strictly weaker than semi-uniformity solution for
P systems [63].

4.3.3 Limits on Efficient Computations. In this subsection, the limitations of polynomial time
computations in membrane systems is analyzed. With respect to cell-like membrane systems, two
interesting results were established [46]:

—A family of recognizer transition P systems can simulate every deterministic Turing ma-
chine processing in polynomial time;

—If a family of recognizer transition P systems can solve a decision problem, then a deter-
ministic Turing machine is existed, which can efficiently solve such decision problem.

Consequently, the computational power of basic recognizer transition P systems is bounded,
where only the class of problems in P is solved. A similar result is also available for recognizer
tissue P systems. Actually, recognizer tissue P systems are simulated via recognizer transition P
systems (see [30] for details).

4.3.4 Solving Computationally Hard Problems. In accordance with the previous section, for the
sake of offering efficient solutions to computationally hard problems, therefore, it is necessary to
raise the number of processor units (cells or membranes) during a computation in membrane sys-
tems. Specifically, the membrane system should have the ability of trading space for time by pro-
viding an exponential workspace generated in a reasonable time. This capability has been imple-
mented by using different mechanisms inspired by the cellular mitosis (division rules), autopoiesis
(creation rules) or membrane fission (separation rules), among others.



Cell-like membrane systems. P systems with active membranes are a kind of basic cell-like P
systems [79], where each membrane is combined with an electrical charge. From Definition 3.2,
it is known that each type of rules is non-cooperative, and by applying a rule, both the evolved
membrane charge and object can be revised.

The class of recognizer P systems with active membranes (respecively, division of both non-
elementary and elementary membranes or only of elementary membranes) is represented by
AM (resp.,AM (+ne ) orAM (−ne )). Many strongly NP-complete problems (Bin Packing [95],
Clique [6], SAT [97], Common Algorithmic Problem [96]) and weakly NP-complete problems
(Partition [44], Knapsack [93], Subset Sum [92]) were solved in the framework ofAM (−ne ) in
polynomial time. In [5], a family of recognizer P systems fromAM (+ne ) can solve the quantified

Boolean formula (QBF-SAT) problem.
In [100], it is shown that a computation of any confluent recognizer P system with active mem-

branes can be simulated by means of a deterministic and efficient algorithm. Moreover, a de-
terministic Turing machine taking a time of the order O (2p (n) ) (p (n) is a polynomial) can sim-
ulate any confluent recognizer P system with active membranes. Hence the result PSPACE ⊆
PMCAM (+ne ) ⊆ PMC

∗
AM (+ne )

⊆ EXP is achieved. In [113], the complexity class PSPACE has been
characterized by PMCAM (+ne ) .

According to the previous results, we know that P systems with active membranes are too
powerful for solving decision problems from a perspective of computational complexity. Thus,
polarizationless P systems with active membranes are proposed, and the class of all recognizer
polarizationless P systems with active membranes is denoted by AM0 (α , β ), (a) if α = +d (re-
spectively, α = −d), it means the systems allow (respectively, forbid) the use of dissolution rules;
(b) if β = +ne (respectively, −ne), it means the systems allow the use of division of both non-
elementary and elementary membranes (respectively, only of elementary membranes). It is worth
pointing out the relevant role played by dissolution rules in the framework of AM0 (α , β ) from a
complexity view. The result from [45] shows that P = PMCAM0 (−d,−ne ) = PMCAM0 (−d,+ne ) ; be-

sides, a solution to the QBF-SAT problem via membrane systems from AM0 (+d,+ne ), has been
given [9]; i.e., PSPACE ⊆ PMCAM0 (+d,+ne ) .

Tissue-Like Membrane Systems. The class of recognizer tissue P systems with cell division (re-

spectively, without environment) is denoted by T DC (respectively, �T DC). We represent by
�T DC (k ) (respectively, T DC (k )) the class of such tissue P systems (respectively, without environ-

ment), where communication rules of length at most k are allowed. It is worth pointing out that by 
applying the dependency graph method ([45]), it was shown that recognizer tissue P systems from 
T DC (1) can only solve tractable problems, P = PMCT DC (1) [43]. However, in [42], a solution to 
the HAM-CYCLE problem was presented by a family of recognizer systems from T DC (2).

In [94], it is proved that any tissue P system with environment and with cell division can be 
efficiently si mulated by  a ti ssue P sy stem wi thout en vironment an d wi th ce ll di vision, th at is, 
we have PMCT DC (k ) = PMCT D�C (k ) (for each k ≥ 1). Hence, the function of the environment 
in recognizer tissue P systems with cell division framework is irrelevant from a perspective of 
computational complexity.

5 APPLICATIONS OF MEMBRANE COMPUTING

The applications to computer science are quite different: c omputer g raphics, sorting/ranking, 
simulating and modeling circuits, cryptography, parallel architectures, and so on. In the past two 
decades, models of P systems have been employed to process a wide spectrum of application 
problems [137]. Here we only focus on the brief introduction of autonomous mobile robots path 
planning, fault diagnosis with spiking neural P systems, and other applications.



5.1 Path Planning and Control of Mobile Robots

Robots are physical devices acting in the real world and interacting with human beings and envi-
ronment elements by means of sensors, motors, and computation units. In summary, the motion
planning problem is defined below: Given a geometric description of the robot, two states (a goal state

and a start state), and the location of the obstacles in the environment, find a sequence of commands

that controls to move the robot from the start state to the goal state. The classical solution divides
the problem in three subproblems: global planning, local planning, and PID control, where:

• The global planning considers the location of static obstacles in the environment (a precom-
puted map should be given as input), as well as the starting and goal positions. It computes
a path avoiding obstacles before the robot starts to move.
There are two versions of the global planning problem:
—The Feasibility Problem. The goal is to discover a feasible path, if one exists.
—The Optimality Problem. The goal is to find a feasible path with minimal cost where the

cost is given by a computable function.
• The local planning takes the given path and tries to move the robot following the route

while considering kinematic and physical constraints as well as avoiding both static and
dynamic obstacles. The output of the local planner is a sequence of velocity references in
an open loop.

• The PID control takes each velocity reference and commands the motors in order to main-
tain a constant velocity as close as possible to the velocity reference until the next reference
is given.

One of the most important features of any control system in robotics is the need to provide
real-time solutions to hard problems such as navigation with kinematic constraints in enviro-
ments populated with static and dynamic obstacles. Therefore, most of the classical algorithms
in robotics can only provide approximate solutions given a fixed time of computation. Several
authors have studied how to accelerate such algorithms by using parallel hardware, i.e., GPU or
FPGA, but adapting the algorithms to such a hardware is a hard task. On the other hand, instead
of accelerating the conventional algorithms with parallel hardware, an intermediate computing
paradigm can be used. In this sense, membrane computing is an inherently parallel computing
paradigm with a large variety of simulators able to reproduce computations over parallel hard-
ware. Thus, membrane computing can be used to model solutions to hard problems in robotics
and well-studied hardware simulators can be used to apply the solutions to real case studies. The
main advantage of this approximation is to apply the computational power of membrane comput-
ing which is intrisically parallel, as well as, to use well-studied and robust simulation algorithms
for parallel hardware. On the other hand, the main disadvantage is the complication of adapting
such algorithms to membrane computing, which requires an expert knowledge both in robotics
and membrane computing.

Membrane computing provides a new point of view for implementing in parallel architectures
such algorithms. However, due to the difficulty of working in a continuous space state in classical
membrane system models, enzymatic numerical P systems (ENP systems) [85] were selected to
model PID controllers (note that ENP systems use variables containing real numbers instead of
multisets of objects).

Up to now several membrane controllers have been designed. In [15], the membrane controllers
for mobile robots is formulated. In [124], a multi-behavior robot coordination controller is designed
based on ENP systems. In [14], some current results and challenges about membrane controllers
are presented. In [125], an original trajectory tracking control method based on ENP systems was



employed to solve the nonholonomic wheeled mobile robots problem. The control of robot swarms
was also studied in [31], [32], and [33] in the framework of P colonies.

The global planning problem has also been attacked by using P systems. In [126], a membrane
algorithm based on particle swarm optimization has been employed to solve the path planning
problem for mobile robots. In [91], the rapidly exploring random tree (RRT) strategy was used for
solving the feasibility problem in global planning together with random enzymatic numerical P
systems with shared memory. The RRT is a classical approach in robotics, which includes the RRT
algorithm (often used to solve the feasibility problem) and the RRT∗ algorithm (often used to solve
the optimality problem). In [90], the RRT and RRT∗ algorithms were modeled and simulated by
using ENP systems, which include parallel implementations in CUDA and OpenMP with several
comparisons.

5.2 Fault Diagnosis with Spiking Neural P Systems

The fuzzy spiking neural P systems (FRSN P systems) was introduced in [89] and it can deal with
the representation of fuzzy knowledge and complete fuzzy reasoning. Moreover, it is an ideal model
to solve the problem of fault diagnosis having properties such as parallel computing advantage,
high understandability, dynamic feature, synchronization, non-determination, and non-linearity.
The structure of FSN P systems is described as follows:

Definition 5.1. An FRSN P system of degree m ≥ 1, is a construct of the form

Π = (A,σ1, . . . ,σm , syn, I ,O ),

where

• A = {a} is the singleton alphabet (the object a is called a spike);
• r1, . . . , rm are neurons having the form ri = (αi ,τi , ri ) with i ∈ {1, . . . ,m}, where

(i) αi ∈ [0, 1] represents the (potential) value of spike contained in neuron σi (also called
the pulse value);

(ii) τi ∈ [0, 1] represents the truth value associated with neuron σi ;
(iii) ri is a firing/spiking rule contained in neuron σi , and it is of the form E/aα → aβ ,

where a,b ∈ [0, 1].
• syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m} with i � j for all (i, j ) ∈ syn, 1 ≤ i, j ≤ m (synapses be-

tween neurons);
• I and O represent the input neuron set and output neuron set, respectively.

Neurons in FRSN P system are classified into three classes: proposition neuron, AND-type rule 
neuron, and OR-type rule neuron. The reasoning algorithm in [89] is based on the firing mecha-
nism of the neurons and it also uses matrix operations. Moreover, the model in [89] is capable of 
representing the fuzzy production rules of a fuzzy diagnosis knowledge base visually. It can also 
effectively model the corresponding dynamic reasoning b ehavior. In 2013, an approach f or the 
fault diagnosis of power systems was proposed in [131] based on fuzzy reasoning spiking neural 
P systems (FRSN P systems). Moreover, the proposed method can diagnose different single and 
multiple faults along with failed malfunctioned protective devices. Only simple matrix operations 
are required for these models. Also the FRSN P systems based diagnostic model in [131] have good 
fault tolerance capacity. These models can be constructed in advance and can be stored in files 
and the diagnostic results can be obtained in no more than five reasoning steps. These inherent 
properties of this model make it an ideal model for online application.

In [89] and [131], fuzzy reasoning P systems with real numbers were presented. In [121], fuzzy 
reasoning spiking neural P systems with trapezoidal fuzzy numbers (tFRSN P systems) were used



for fault diagnosis of power systems. In this model, in order to develop the inference ability of
tFRSN P systems from classical reasoning to fuzzy reasoning, a matrix-based fuzzy reasoning al-
gorithm based on the dynamic firing mechanism was proposed. Moreover, the neurons in tFRSN
P systems can be divided into four types, i.e., proposition neurons and three kinds of rule neu-
rons: general, AND, and OR. Also the pulse value contained in each neuron is represented by a
trapezoidal fuzzy number in [0, 1] instead of a real number.

In [119], fuzzy reasoning spiking neural P systems with real numbers (rFRSN P systems) have
been proposed for fault diagnosis of electric locomotive systems. Moreover, using fuzzy production
rules, the relationships among breakdown signals and faulty sections in subsystems of electric
locomotive systems have been investigated and, according to these rules. the fault diagnosis models
are constructed for these subsystems. Then the fault diagnosis models based on rFRSN P systems
for these subsystems are built according to these rules. Moreover, in [122], the fault diagnosis
models for Shaoshan4 (SS4) electric locomotive systems based on rFRSN P systems were discussed.
Also the rules neurons of this model are of three types, i.e., GENERAL, AND, and OR.

In 2015, a fault diagnosis method was introduced, based on fuzzy reasoning spiking neural P
systems (FDSNP systems) [119] with trapezoidal fuzzy numbers. This model was used to model
the faulty section along with an algebraic fuzzy reasoning algorithm which further helped the
power system identify the faults. Moreover, from the diagnosis, it was clear that this model can
effectively identify the faults in power transmission network with single and multiple fault section
irrespective of incomplete and uncertain data from SCADA. Similarly, in [120], a weighted fuzzy
reasoning spiking neural P system (WFSN P system) was proposed for diagnosis of the faults
occurring in a traction power supply system of high-speed railways. A modified fuzzy reasoning
spiking neural P system (MFRSN P system) [47] was also introduced in 2015 to solve the fault
diagnosis problems in metro traction power systems. This model is also a rFRSN P system and it
contains three rule neurons.

In [118], a new variant of spiking neural P systems known as fuzzy reasoning spiking neural P
systems with interval-valued fuzzy numbers (ivFRSN P systems) was introduced for fault diagno-
sis of power systems. Such a model is a combination of interval-valued fuzzy numbers and spiking
neural P systems. Furthermore, ivFRSN P systems can handle the incomplete and uncertain mes-
sages from the SCADA systems. In [88], intuitionistic fuzzy spiking neural P (IFSNP) systems were
introduced by integrating intuitionistic fuzzy logic into spiking neural P systems. Such a model
is very effective in the identification of fault in power systems which receives incomplete and
uncertain messages from SCADA.

5.3 Other Applications

Membrane computing models are also useful in solving problems related to engineering optimiza-
tion. It is well known that there exist a huge amount of computationally hard engineering problems
which are intractable. Membrane algorithms are a popular heuristic approach to solve computa-
tionally hard problems because of its parallel distributive architecture, flexible evolution rules, and
the like. Moreover, these approaches have been used to solve engineering problems in areas such
as digital image processing, radar emitter signal analysis, and constrained manufacturing param-
eter optimization problems. The optimization of the time-frequency atom decomposition process
of radar emitter signals has been done by quantum-inspired evolutionary algorithms (QIEA) in
membrane algorithm framework and P systems (MQEPS) [136]. In [135], the image sparse decom-
position problem has been solved by the membrane algorithm with quantum-inspired systems
(MAQIS). The membrane algorithm based on tissue P systems and differential evolution (DETPS)
[134] was applied to solve manufacturing parameter optimization problems. Moreover, an adaptive
membrane evolutionary algorithm having dynamic membrane structure (AMEA) was introduced



in [130], and the differential evolution with the adaptive mutation factor has been used for solving
CEOPs (constrained engineering optimization problems).

6 CONCLUSIONS AND FURTHER WORKS

In this article, we focus on a branch of natural computing called membrane computing, where
membranes play an essential role in numerous biochemical responses which occur in compart-
ments of cells. Some basic notions of such a paradigm were introduced, several classic types of P
systems were given, and results both in theory and applications were presented.

Inspired by various biological facts, except the maximally parallelism of using rules, various
parallel way of applying rules were proposed, such as only one rule is employed in a P system at
every step (sequential mode [110, 138]); any number of applicable rules is employed in a region
(asynchronous mode [40]); a appointed number of rules in each region or in the system (bounded

parallelism [13]); if there exist some application rules in a membrane, then at least one rule must
be employed (minimal parallelism [25]), and so on.

The applications to computer science are diverse, for instance, parallel architectures, model-
ing/simulating circuits, computer graphics, sorting/ranking, cryptography, and the like, which
demonstrate that P systems are suitable for several research areas, actually, most of the applica-
tions are based on software for simulating P systems. There are also software products developed
for didactic reasons, distributed implementations, as well as hardware attempts to implement P
systems. Under development, there is also a specialized programming language (P-Lingua), as well
as a plan to implement a P system in a biolab. In addition, perhaps a promising direction of appli-
cations is the use of membrane computing ideas in evolutionary computing.
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