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Principal component analysis is a popular data analysis dimensionality reduction technique, aiming to
project with minimum error for a given dataset into a subspace of smaller number of dimensions.

In order to improve interpretability, different variants of the method have been proposed in the
literature, in which, besides error minimization, sparsity is sought. In this paper we formulate as a mixed
integer nonlinear program the problem of finding a subspace with a sparse basis minimizing the sum
of squares of distances between the points and their projections. Contrary to other attempts in the
literature, with our model the user can fix the level of sparseness of the resulting basis vectors. Variable
neighborhood search is proposed to solve the problem obtained this way.

Our numerical experience on test sets shows that our procedure outperforms benchmark methods in
the literature, both in terms of sparsity and errors.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction and literature review

Principal component analysis (PCA) was first introduced by [20]
as a method for projecting a set of points u1;…;up∈Rn onto a lower
dimensional space in such a way that the distances between the
points and their projections are minimized, see e.g., [14,9].

Given k vectors c1;…; ck∈Rn, let πfc1 ;…;ckg denote the projection
onto the linear space Lðfc1;…; ckgÞ spanned by the vectors c1;…; ck

πfc1 ;…;ckgðuÞ ¼ arg minf∥u−z∥ : z∈Lðfc1;…; ckgÞg:

The aim of PCA is to find a set of k≤n orthonormal vectors c1;…; ck
such that the mean squared distance between the points in the
dataset fu1;…;upg and their projections onto the vector space
Lðfc1;…; ckgÞ generated by fc1;…; ckg is minimized. In other words,
the followingmixed integer nonlinear program (MINLP) is to be solved

min
c1 ;…;ck : orthonormal

1
p

∑
p

h ¼ 1
∥uh−πfc1 ;…;ckgðuhÞ∥2

The optimal solutions, cn ¼ ðcn1;…; cnkÞ, are called principal components
(PC). The main drawback of this dimensionality-reduction technique is
interpretability: interpreting the projections is usually quite difficult
due to the fact that most of the original variables are present in each
cni , i¼1,…,k, i.e., the PC are not sparse. Interpretability is improved if
some loadings (the coefficients of PCs) are zero, and this has been
pursued in different papers.
ll rights reserved.
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guerrero@us.es (V. Guerrero).
A first attempt for achieving this is rounding, by considering all
loadings smaller than some threshold absolute value as zero.
However, this procedure has been shown to be misleading,
see [4]. Varimax rotation, see [15], has also been proposed, but it
hardly ever achieves the aim of an easier interpretation despite
losing orthogonality of the loadings and uncorrelation of the
components.

Some authors relate the notion of simplicity to the fact that
loadings belong to the set of integers. Such idea was developed in
[26] and later in [23], who called their method simple component
analysis (SCA). SCA allows the user, under his or her criterion,
to modify a simple system of components in order to improve
interpretability. However, SCA does not yield either orthogonal or
uncorrelated components. An exploratory approach to SCA was
presented in [1] for achieving orthogonality. Also in [24], SCA is
modified by using genetic algorithms.

Another way of obtaining sparsity is by constraining the number
of non-zero loadings in each PC. In this line, Ref. [5] proposes a
convex relaxation method based on semidefinite programming,
which does not preserve orthogonality or uncorrelation, as while
[6] a branch-and-bound approach lets the user choose between
keeping orthogonality or uncorrelation. A related approach is
presented in [11], in which a bound on the sum of the absolute
values of the loadings is added, combining this way the lasso
paradigm, [25], with PCA.

In [28], PCA is formulated as a regression-type optimization
problem. Sparse loadings are achieved by imposing elasticnet
constraint, [27], a generalization of lasso, on the regression coefficients.
The sparse PCs obtained from sparse principal component analysis
(SPCA) are neither orthogonal nor uncorrelated. See another
lasso-based model in [21].
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Some other authors address sparsity in PCA with tools of
feature selection. This is the case of [17], who called principal
variables those which are considered to be relevant. Rejection
methods are introduced and tested in artificial and real datasets in
[12,13]. Also the well-known variable neighborhood search (VNS),
[18,8], is adapted in [3] for developing two heuristics for feature
selection in PCA. More recently, an exact method (branch-and-
bound) is presented in [19].

In this paper we present a new procedure for obtaining a set of
orthonormal vectors which are as sparse as desired, and minimizing
the sum of squared distances between the data points and their
projections. This is achieved by heuristically solving a MINLP with
VNS. Our procedure has been tested in five datasets and compared
with some benchmark methods in the literature, namely, VARIMAX,
SCA and SPCA. In all cases we have outperformed the results given by
these other procedures, both in terms of sparsity and errors.

The remainder of the paper is structured as follows. In Section 2,
our problem is stated. Section 3 analyses an important particular
case, namely, the case in which sparsity is obtained by forcing
each original variable to appear with nonzero value in at most
one component. The model is extended in Section 4 to give more
freedom to the user to control sparsity. Section 5 reports our
numerical experience, in which our method is compared against
state-of-the-art procedures for sparse PCA, showing the advantages
of our procedure. The paper ends with Section 6, in which some
concluding remarks and future lines of research are outlined.
2. Problem statement

The special feature of our sparse PCA method against the
classical one is the fact that we force principal components to
have the most of their coordinates equal to zero. Our proposal, as
in the classical PCA, tries to minimize the sum of the squares of the
distances between the dataset and its projection on the vector
space generated by the principal components. However, those k
principal components will be forced to satisfy some sparsity
constraints, which are basically that each variable is nonzero in
at most r components, and each component has at most s nonzero
elements. Since we have two parameters to control the model and
make principal components sparse, we call our proposal rs-sparse
principal component analysis, rs-SPCA.

So, we formulate the sparse problem as a MINLP by defining
the following set of variables. First, let c1;…; ck denote the k
vectors in Rn which are sought as principal components. We call
cil the l-th coordinate of the i-th principal component ci, where
i¼ 1…k and l¼ 1…n. Binary variables zil are defined as

zil ¼
1 if cil≠0
0 else

i¼ 1;…; k; l¼ 1;…;n:
�

This assignment will let us control the sparsity of the principal
components c1;…; ck.

With the previous notation, our aim is to solve the following
MINLP:

min
1
p

∑
p

h ¼ 1
∥uh−πfc1 ;…;ckgðuhÞ∥2

s:t:

c⊤i cj ¼ δij ∀i; j¼ 1;…; k
jcilj≤zil ∀i¼ 1;…; k; l¼ 1;…;n

∑
k

i ¼ 1
zil≤r ∀l¼ 1;…;n

∑
n

l ¼ 1
zil≤s ∀i¼ 1;…; k

zil∈f0;1g ∀i¼ 1;…; k; l¼ 1;…;n

8>>>>>>>>>>><
>>>>>>>>>>>:

where δij ¼ 1 if i¼ j and 0 otherwise.
Every constraint plays an important role in the achievement
of the sparsity. The first one is given by the classical PCA, which
forces orthonormality. The second constraint is obtained by
imposing that, if zil ¼ 0, then cil ¼ 0, i¼1,…,k, l¼1,…,n. Finally,
the constraints which really control the sparsity are the last two. In
the third one, each variable is forced to appear in at most r
components, with the fourth one every component guarantees to
have no more than s nonzero loadings.

Denote the variance–covariance matrix (or correlation matrix)
by V. The previous problem is equivalent to

max ∑
k

i ¼ 1
c⊤i � V � ci

s:t:

c⊤i cj ¼ δij ∀i; j¼ 1;…:k

jcilj≤zil ∀i¼ 1;…; k; l¼ 1;…;n

∑
k

i ¼ 1
zil≤r ∀l¼ 1;…;n

∑
n

l ¼ 1
zil≤s ∀i¼ 1;…; k

zil∈f0;1g ∀i¼ 1;…; k; l¼ 1;…;n

8>>>>>>>>>>><
>>>>>>>>>>>:

ð1Þ

We must point out that principal components given by (1) will
be orthonormal but no longer uncorrelated.

In order to compare the results obtained with (1) against other
procedures, a goodness criterion is introduced. We suggest pro-
ceeding in the same way as in the classical problem, which means
to calculate the percentage of total variance explained by, in this
case, rs-sparse principal components, as follows:

f ¼ 1
trðVÞ ∑

k

i ¼ 1
c⊤i � V � ci � 100; ð2Þ

where trðV Þ is the trace of the variance–covariance or correlation
matrix V. Other related measures can be found in [7].

In the following sections two special cases of (1), namely, r¼1,
and the general case, r≥1, will be analyzed.
3. The case r¼1

Imposing in (1) the condition r¼1 we are forcing that each
variable appears just once. This induces a partition in the set of
variables, i.e., those assigned to each component representing one
cluster. Hence, interpretability will be high, though perhaps at
expense of a decrease in variance explained.

In this case we have directly the orthonogonality of the compo-
nents, so the constraint c⊤i � cj ¼ δij becomes in c⊤i � ci ¼ 1, ∀i¼ 1…k
and (1) is reduced to

max ∑
k

i ¼ 1
c⊤i � V � ci

s:t:

c⊤i ci ¼ 1 ∀i¼ 1;…:k
jcilj≤zil ∀i¼ 1;…; k; l¼ 1;…;n

∑
k

i ¼ 1
zil≤1 ∀l¼ 1;…;n

∑
n

l ¼ 1
zil≤s ∀i¼ 1;…; k

zil∈f0;1g ∀i¼ 1;…; k; l¼ 1;…;n

8>>>>>>>>>>><
>>>>>>>>>>>:

ð3Þ

However, if zil could be fixed by any procedure, the resulting
problem, P(z), turns into a very familiar one, namely

max ∑
k

i ¼ 1
c⊤i � V � ci

s:t:
c⊤i ci ¼ 1 ∀i¼ 1;…; k

cil ¼ 0 ∀i¼ 1;…; k; l¼ 1;…;n : zil ¼ 0

(
PðzÞ
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P(z) can be expressed in a much more manageable form. Indeed,
the problem is separable and can thus be split into k independent
subproblems. In other words, P(z) can be written as

∑
k

i ¼ 1
fmax c⊤i � V � cig

s:t:
c⊤i � ci ¼ 1 ∀i¼ 1;…; k

cil ¼ 0 ∀i; l : zil ¼ 0

(
ð4Þ

For z¼ ðz1;…; zkÞ given, denote by Vzi
i , i¼1,…,k, the symmetric

matrix obtained from V by deleting all rows and columns l such
Table 1
Example N 1ðzÞ.

z′ Perturbed row

– 1

z′1 ¼

1 0
1 0
0 1
0 1

0
BBB@

1
CCCA

2

z′2 ¼

1 0
0 0
0 0
0 1

0
BBB@

1
CCCA, z′3 ¼

1 0
0 0
1 0
0 1

0
BBB@

1
CCCA

3

z′4 ¼

1 0
0 0
0 1
0 0

0
BBB@

1
CCCA, z′5 ¼

1 0
0 0
0 1
1 0

0
BBB@

1
CCCA

4

that zil ¼ 0, l¼1,…,n. Let dzii denote an optimal solution

max d⊤i � Vzi
i � di

s:t: fd⊤i � di ¼ 1 ð5Þ
Moreover, define the vector czii as

cziil ¼
dziil if zil≠0
0 else

(

It immediately follows that the so-constructed czii , i¼1,…,k
solve (4), and thus P(z). In other words, P(z) is solved by solving
k problems of type (5), which, since Vzi

i is symmetric, its optimal
solution corresponds to any unit eigenvector dzii associated with
the highest eigenvalue λzii of Vzi

i .
Nevertheless, we must find a way for fixing those binary

variables which make our initial problem turn into P(z).

3.1. Problem resolution: fixing an initial feasible solution

Given V, the correlation or variance–covariance matrix, classical
principal components cn ¼ ðcn1;…; cnkÞ can be easily computed. We
will find zil, i¼1,…,k, l¼1,…,n, such that the sum of the absolute
values of loadings of principal components are maximized by
imposing constraints which are required in (3). A constraint
forcing at least one variable appears in each principal component
will be also included in this formulation. So, we want zil to satisfy

max ∑
k

i ¼ 1
∑
n

l ¼ 1
jcniljzil

s:t:

∑
k

i ¼ 1
zil ≤1 ∀l¼ 1;…;n

∑
n

l ¼ 1
zil≤s ∀i¼ 1;…; k

∑
n

l ¼ 1
zil≥1 ∀i¼ 1;…; k

zil≥0 ∀i¼ 1;…; k; l¼ 1;…;n

8>>>>>>>>>>><
>>>>>>>>>>>:

ð6Þ

Problem (6) has a flow problem constraint structure, and it
attains its optimal value at some point zn with all coordinates
znil∈f0;1g. Such zn will be used as values for z in P(z).

Combining problems (6) and P(z), a solution (c,z), feasible in
terms of sparsity and orthonormality, is achieved. However, it may
not be optimal for (3), but it could be a good starting point for a
search procedure such as VNS.

3.2. Problem resolution: improving the solution via a VNS algorithm

VNS is a metaheuristic for avoiding been trapped in a local
optimum. It does not assure reaching the global one, but it some-
times achieves a good improvement on the solution initially given.
Now we describe how VNS is customized for our problem (3).

As we have seen above, problem (3) is a MINLP in the vari-
ables (c,z). For z¼ ðz1;…; zkÞ given, the optimal solution to P(z),
cðzÞ ¼ ðc1ðz1Þ;…; ckðzkÞÞ, is obtained by calculating eigenvectors of
the matrices Vzi

i defined above.
Our algorithm will perform a neighborhood search in the
z-space, yielding ðcðzÞ; zÞ as solution to problem (3).

Since z consists of the binary variables zil, a natural neighbor-
hood structure in the z-space is defined as follows: given z,
satisfying the constraints in (6), for each radius ρ¼ 1;…;n, the
neighborhood N ρðzÞ of z is defined as the set of all z′ fulfilling
the constraints in (6) and obtained form z by exchanging ρ rows.

For instance, consider the case n¼4, k¼2, r¼1, s¼2, and z
given by.

z¼

1 0
0 0
0 1
0 1

0
BBB@

1
CCCA ð7Þ

The elements in the neighborhood N 1ðzÞ of radius 1 of z are the
five matrices z′ given in Table 1.

Observe that each element z induces a partition of the features
space 1;2;…;n into kþ 1 clusters: For l¼1,…,n, variable l is
associated with cluster i (i¼1,…,k) if zil ¼ 1; if zil ¼ 0 for all i¼1,
…,k, then variable l is associated with the extra cluster k+1.

Hence, the elements z′ in a neighborhood of radius ρ of z
correspond to those partitions of the features obtained by exchan-
ging ρ features form the partition in z.

For instance, z given in (7) induces the clustering {1}, {3,4}, {2}
for the features {1,2,3,4}; the partitions in the neighborhood of
radius 1 are shown in Table 2.

As a stopping criterion, let the algorithm looks for no more
than Qmax solutions in each neighborhood and impose that the
total running time does not exceed a given Tmax.

Assuming these conditions, the implementation of the algo-
rithm is done as is shown in Fig. 1.
4. General r

Let us now consider problem (1). We propose to proceed as we
did in the case r¼1. Firstly, we obtain the principal components
cn ¼ ðcn1;…; cnkÞ and then we obtain an approximation to cn which is
feasible (in terms of the number of nonzero elements) and as close
as possible to cn. To do that, we find an initial z by solving the
following flow problem (which is identical to problem (6), except
that r is an arbitrary integer number, r ≤kÞ

max ∑
k

i ¼ 1
∑
n

l ¼ 1
jcniljzil
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s:t:

∑
k

i ¼ 1
zil≤r ∀l¼ 1…n

∑
n

l ¼ 1
zil≤s ∀i¼ 1…k

∑
n

l ¼ 1
zil≥1 ∀i¼ 1…k

zil≥0 ∀i; l

8>>>>>>>>>>><
>>>>>>>>>>>:

ð8Þ

Let zn be the optimal solution of the flow linear program (8), and
then we find cðznÞ by solving the nonlinear continuous program

max ∑
k

i ¼ 1
c⊤i � V � ci

s:t:
c⊤i cj ¼ δij ∀i; j
cil ¼ 0 ∀i; l : znil ¼ 0

(
ð9Þ

Orthogonality constraints cannot be simplified anymore, con-
trary to what we did in the previous section. Hence, a general-
purpose optimization routine is to be used to solve this problem.
5. Computational experiments

In this section we analyze the empirical behavior of our rs-
SPCA, which is compared against benchmark procedures in the
literature, namely rotation methods (varimax criterion) [15], SCA,
[23] and SPCA, [28]. Those different procedures for achieving
simplicity will be carried out on datasets proposed in [22]. The
numerical experience will show that rs-SPCA provides principal
components which outperform, in terms of sparsity and error
minimization, the ones given by the procedures cited above.
Table 2
Partition.

z′ Partition

z′1 {1,2}, {3,4}, f∅g
z′2 {1}, {4}, {2,3}
z′3 ({1,3}, {4}, {2}
z′4 {1}, {3}, {2,4}
z′5 {1,4}, {3}, {2}

-Initialization:
- find c∗, principal components.

- find z 0, optimal solution to (6).

- find c0, optimal solution to P(z 0)

-Repeat the following steps until a maximu

(a) q ← 1, ρ ← 1

(b) Repeat the following steps until ρ>

(i) Shaking:
generate a z̃ = (z̃1,..., z̃k ) in N
optimal solution to P( z̃ ) .

(ii) Neighborhood change:

if
k

i=1

ci (z̃ i ) Vc i (z̃ i ) >
k

i=1

then move ( z 0 ← z̃ ), contin
and set ( q ← 1); otherwise
If q +1 >Qmax then set q ←
Go to (b).

Fig. 1. VNS al
5.1. Data description

Hearing loss data, come from [9], who considered the
first four principal components in their study. It consists of
eight measurements of hearing loss taken on 100 males who
had no indication of hearing difficulties. The correlation matrix
is available in R package sca.
Reflexes data were described in [14], gives measurements
of strength of reflexes at 10 sites of the body, taken form 143
individuals. As the previous data, reflexes correlation matrix
can also be found in R package sca.
Pitprop, data [10], is an example which has been proven
the difficult achievement of simplicity in the past. About 13
variables arised from a study on the strength of pitprops cut
from home-grown timber, measured in 180 observations. Six
principal components were calculated. Correlation matrix can
be found in R package elasticnet.
Associated Movements data were introduced in [16],
where 10 measures of the amount of associated movements
observed during some finemotor and grossmotor tasks in 484
children and adolescents were taken. Five principal compo-
nents are proposed to be calculated.
Muscle Strength data consist of 51 maximal isometric
muscle strength measurements made on all areas of the body
from 569 healthy subjects. The first six principal components
will be calculated. See [22].
5.2. Experiments description and results

In order to show the power of rs-SPCA, several computational
experiments have been carried out. The measure of goodness used
is the percentage of the variance explained by the basis selected,
as given by (2).

We compare our rs-SPCA (r¼1) against benchmark meth-
ods. We have implemented our procedure in Matlab, using the
routines linprog to numerically solve the flow problems
(6) and (8), while the routine fmincon is used to solve (9).
VNS was implemented as described in Section 3.2, with
Qmax ¼ 5 trials within each neighborhood, and a time limit
.

m running time Tmax is achieved.

n .

ρ(z 0) and find c(z̃ ) = (c1(z̃1),..., ck (z̃k )) ,

c0
i Vc 0

i ,

ue the search in the neighborhood N 1(z̃ )
, set q ← q +1 .
1 and ρ ← ρ +1.

gorithm.
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Tmax of 15, 30, 45, 60 and 100 s respectively for the different
datasets.

Varimax, SCA and SPCA algorithms are included in stats,
sca and elasticnet packages of R software, respectively.
For SCA, two parameters, namely, the number of block and
difference components, must be chosen a priori. We have followed
[22] to chose such parameters.

SPCA also depends on two parameters. For the quadratic
penalty, we follow [28], and fix it to 0, since the number of
variables is lower than the number of observations in all our
datasets. The second parameter has been chosen so that the so-
obtained principal components have the same non-zero coordi-
nates than the ones given by our method. In other words, we are
giving valuable information to the user, since we are already giving
a clue on the distribution of non-zeros.

The results are given in Table 3. The first column gives the
name of the dataset. Columns 2 and 3 give respectively n (the
number of variables) and k (the number of components to be
obtained). Then, for the different methods tested (PCA, VARIMAX,
SCA, SPCA and our rs-SPCA), we represent the sparsity (as the
percentage of zeros in the components) and the percentage of
variance explained by the components, f, as given by (2).

We conclude from Table 3 that, in terms of sparsity, our
procedure clearly outperforms PCA as well as the methods seeking
sparseness. This happens for all methods except SPCA, for which,
thanks to the extra information we provided, gives identical
sparsity results to ours, but at the expense of a lower variance
explained. Unlike in our proposal, orthogonality is not ensured in
SPCA or the remaining sparse procedures. In other words we have
proposed a method with a high sparsity and a low loss in terms of
the variance explained, as compared with the classical PCA.
Table 3
Percentages of zeros of the components and percentages of explained variance.

Datasets n k Sparsity PCA VARIMAX SCA SPCA rs-
SPCA

Hearing Loss 8 4 %zeros 0 0 12.50 75.00 75.00
f 87.37 68.40 85.40 84.08 85.37

Reflexes 10 5 %zeros 0 16.00 52.00 80.00 80.00
f 97.05 72.20 91.50 96.17 96.70

Pitprop 13 6 %zeros 1.28 7.69 80.77 83.33 83.33
f 87.00 78.90 74.80 71.99 76.85

Movements 22 5 %zeros 0 2.27 20.45 75.00 75.00
f 55.00 43.20 53.80 49.84 53.60

Musclestrength 51 6 %zeros 1.63 8.50 34.64 80.07 80.07
f 70.40 70.39 68.10 60.00 61.39
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Fig. 2. f varying s and k for Hearingloss dataset.
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Fig. 4. f varying s and k for Pitprop dataset.
A second analysis has been done to study how sensitive our
procedure is with respect to the choice of k and s. The performance
of our method on the different test sets is depicted in Figs. 2–6,
which show f for r¼1 and varying s and k. These figures correspond
to the case r¼1, as analyzed in Section 3.

For the case of an arbitrary r, as discussed in Section 4, the local
search routine may fail to find a feasible solution. Table 4 shows
the percentages of feasible solutions obtained for the different
datasets, when r is varying between 1 and k, and s varies between
1 and n. We conclude that failing to obtain feasibility is rare in
small-dimensional datasets, while for the larger set (n¼51), a
feasible solution was obtained in less than 40% of the instances.
6. Conclusions

In this paper we have introduced a new dimensionality reduc-
tion method which ensures sparsity of the procedure. We have
modeled the problem as a MINLP, heuristically solved by using
VNS. The numerical experience reported shows that our procedure
outperforms, in terms of error minimization and sparsity, bench-
mark methods in the literature. Several research lines remain
open. Although for high-dimensional problems heuristics such as
VNS seem to be the only feasible strategy, it would be interesting
to be able to solve the MINLPs obtained with exact methods.
Plugging directly the problem into state-of-the-art MINLP branch-
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Table 4
Percentage of feasibility in rs-SPCA general problem.

Datasets Feasibility

Hearing Loss 100%
Reflexes 100%
Pitprop 94.87%
Movements 92.04%
Musclestregth 38.89%

E. Carrizosa, V. Guerrero / Computers & Operations Research 52 (2014) 349–354354
and-bound methods such as Couenne, [2], was unsuccessful, since
no solution was provided in reasonable times. Our method, as well
as its competitors, seeks orthogonal vectors, but the output is not
uncorrelated. Seeking a basis (not necessarily orthogonal) yielding
uncorrelated projections should lead to more challenging optimi-
zation problems, which are now under study.
Since both uncorrelation and orthogonality are of interest,
addressing a biobjective problem trading-off components correla-
tion and orthogonality, but maintaining a high variance explained,
is also a challenging problem which deserves a deeper analysis.
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