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Abstract Least median of squares regression has shown to be an extremely useful tool in robust 
regression analysis. 

In this note, we extend this concept to least quantile of squares regression, and propose a poly- 
nomial algorithm that finds simultaneously an estimator for each quantile. 

This leads to a proposal of a robust minimum scale regression line and a polynomial algorithm for 
its determination. 

Keywords: Least median of squares regression; Robust regression; Sweep-line technique; Minquantile 
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1. Introduction 

Given a set S = { ( x 1 ,  Yl), .-. ,(x,, y.)} of points in ~ 2 ,  define the error function 
r : ~  2 ~ ~", r(a,b) =(Yl  - a x l  - b , . . . , y .  - a x ,  - b ) .  

As the classical least sum of squares line, the line la,~ = {(x, y): y = tix +/7} such 
that 

~ ri(d, /7)2 = m i n  ~ ri(a , b) 2 
i=1  (a,b)~ff~ z i=1  

does not perform well in presence of outliers in S, some more robust  fitting 
estimators have been proposed. 
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Rousseeuw (1984) in t roduced the least median of squares (LMS) regression: 
an LMS est imator  is a line l~,~= {(x,y): y = dx + b} such that  med~(& ~ ) 2 =  
minta, b) ~ R 2 med/r l  (a, b) 2. 

LMS has been shown to be an extremely useful tool for data analysis when there 
exists a very high (even close to 50%) degree of contamina t ion  in the sample S (see 
Rousseeuw and Leroy (1987) for a discussion of robust  regression in general and 
LMS in particular.) 

A deeper insight could be obtained if the methodology  allowed for: 
(a) The use of weights (frequencies) for different observations,  as suggested by 

Souvaine and Steele (1987). 
(b) Obta in ing  est imators for different quantiles, as suggested by Cook  and 

Hawkins  (1990), wi thout  an impor tan t  increase in complexity. 
(c) Enabling a choice among  the different regression lines obtained for different 

quantiles, e.g., minimizing a scale parameter  suggested by Rousseeuw (1984). 
The aim of this paper  is the design of an algori thm including the two first aspects, 

and showing how this leads to a solution of the third. 

2. Minquantile lines 

Let S={(Y1,J71),...,(YN,37N)} be a sample in ~2. Consider  the set 
S = {(Xa, Yl) . . . .  , (x,, y,)} of different points in S, and associate with each (xi, Yi) 
the frequency wi of (xi, yi) in the original sample S. 

Th roughou t  this paper, we assume w.l.o.g, that  xl < x2 < ... < x,; we also 
impose that  xl < x, and n > 3: otherwise, the regression problem has no interest. 

For  each I c {1, . . . ,  n}, denote  by W(1) the weight associated with the subset 
{ ( x i ,  Yi): i e I} of S, i.e., W (I) - -  ~ i ~ i w i  . 

For  m = 1 , . . . ,  N, define the function Q,,: ~2 ~ ~, 

Q,.(a, b) = min max ri(a, b) 2 
I c {1 . . . . .  n} i~l 

Wit) >_ m 
and 

Q* = min Q,,(a,b). 
(a, b) ~ R 2 

Definition 1. The line la,~ = {(x, y): y = dx + b} is said to be an m/N-minquantile 
line if Q,,(d, b) = Q*. 

This definition was already suggested by Rousseeuw and Leroy (1987) under  the 
name of least quantile of squares regression line. Observe that  the LMS lines are the 
[ (N + 1) /2] /N-minquant i le  lines. 

For  the unweighted problem (i.e. S = S, wi = l, for all i = 1, 2 , . . . ,  n = N), it has 
been observed that  any m/N-minquantile line (with m >_ 3) must  be a Chebyshev line 
(i.e. a line minimizing the maximal  absolute error) for a set of three observations 
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(see Stromberg, 1991). Hence, the search of minquantile lines is reduced to a finite 
search of cardinality O (N3). This result can be extended to the weighted case, in the 
sense that there exists a set of cardinality O(n  3) containing, for each m, an 
m / N - m i n q u a n t i l e  line. In order to give an explicit representation of such a set, some 
notation is needed. 

Definition 2. Given three points P~, P~, Pk of S, the line la, l, is said to be the 
equidistance cutting line (e.c.l.) of the triplet (Pi, Pj, Pk) iff 

ri(a, b) = - r  j(a,  b) = rk(a, b) 

Remark 1. Any triplet ((x,  Yi), (X j, yj),  (Xk, Yk)) of different points has a unique e.c.1. 
unless xl = Xk (in that case, no (nonvertical) e.c.l, exists). 

It is well known (see e.g. Appa and Smith, 1973) that, when points are in general 
position, for any Chebyshev line la,b, there exists some triplet (Pi, Pj, Pk) which has 
la,b as e.c.1. This result will be extended to the problem addressed here. 

For i , j  ~ {1, 2 . . . . .  n}, X i ~ Xj, let 
• laij, b,~ be the line containing Pi and Pj, 
• Zij ~- O, 

• % = W({k: la,,b,j contains Pk}) /N ,  
• Uij = ( ( a i j ,  b i j ) ,  z i j ,  o~ij). 

Furthermore,  for each triplet (Pi, P~, Pk), Xi :/: Xk,  of distinct points in S, let 
la,jk, b,~k be its e.c.l., and define 
• Zijk : r i (a i j k ,  b i jk )  2, 

• ~ijk = W ({s: rs(aqk, bijk) 2 <-- Zqk})/N, 
• Vijk = { (a i j k ,  bi jk) ,  Zijk,  O~ijk). 
With this notation, one has the following theorem. 

Theorem 1. Let  B be the set 

B = {vii: 1 < i < j  < n, xi < Xj}W{Vqk: i V~ j # k, x~ v ~ Xk}. 

For any m, 1 < m < N,  there exists v = ((a, b), z, ~) ~ B such that 
(i) la,b is an m/N-minquant i le  line, 

(ii) Q* = z, 
(iii) m / N  < ~. 

Proof. Let m, 1 _ m < N. By definition, 

Q* = min min 
(a,b) t c {1 ..... n} 

wtl) >_ m 
Hence, there exists 11 

max ri(a, b) 2 -- min min m a x  ri(a , b) 2 
i~l  1 c {1 ..... n} (a,b) i~l  

wi t )  >_ m 

m {1 . . . .  ,n}, W ( I I )  >_ m such that 

Q* = min max ri(a, b) 2, 
(a,b) i~lt  
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and any (& b) solving min maxi~,  r 2 gives an m/N-minquantile line. 
The function r 2 is convex for all i; hence, (see, e.g, Drezner, 1982), there exists 

I2 = I1, 1 < Card(I2) < 3, such that 

• mints.b ) maxi~t~ ri(a, 3) 2 = min(~.b) maxi~t, ri (a, 3) 2. 
• There exists (a*, b*), optimal solution to min maxi~12 rE which is also an optimal 

solution to minmaxi~1, rE. 
Let 

J = { j  E I2" rj(a*' b*)2 = max ri(a*' b*)2 } 

It is obvious that J has cardinality Card (J)  e { 1, 2, 3}, and, by the convexity of each 
r 2, (a*, b*) is an optimal solution to min maxi~j r E. 

Let 

zj = min max ri(a, b) 2 = Q*, 
(aob) i~J 

and consider the optimization subproblem: 

max ~ witi(a, b) 
( a ,  b)  i = 1 

(SPj) s.t. rj(a, b) 2 = 2 j  for all j e J, 

1, if r i(a, b) 2 _< z j ,  

ti(a,b)= 0, otherwise. 

By construction, (SPj) is feasible, and any optimal solution (& b) to (SPj) yields 
an m/N- minquantile line satisfying y~?= 1 witi(d, b) > m. Hence, we only have to 
show that B contains an element of the form ((& b), zs, ~,".= 1 witi(& b)/N) for some 
(& b), optimal solution to (SPj). We study separately the different values of 
Card(J) .  

Case Card(J)  = 1, J = {i} (say) 
First, observe that zs = 0, thus the feasible points for (SPj) correspond to the 

lines containing (xi, Yi). Let (a, b) be a feasible solution to (SPj), and let K = {j: 
tj(a, b) = 1}. Clearly, if Card(K) 2 2, then (a, b) is of the form (air, bit). On the other 
hand, if Card(K) = l, we can always t ake j  # i such that xj # xi. It is obvious that 
the l i n e  la,j.b,~ is feasible for (SPs) and Zk=lWktk(a i j ,  bij ) >__ Zk=lWktk(a ,b) .  This 
implies that, whatever Card(K), (SPj) always admits an optimal solution of the 
form (air, bit). 

Case Card (J) = 2, J = {i, j }, say, with i < j 
If xi < xj, the only Chebyshev solution for {Py, Pj} (thus the only feasible 

so.lution to (SPj) is the line la,j,blj, whose corresponding triplet vlj is in B. 
The case xi -- xj is similar to the case Card(J)  = 1, except that the optimal lines 

are those containing the midpoint  between Pi and Pj, and will not be repeated here. 
Case Card(J) = 3 
Straightforward: Any feasible solution to (SPj) is, in particular, an e.c.1, for the 

points in J. []  
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Remark2 .  Observe that, although only the m/N-minquant i le  lines with 
[(m + 1)/N] > ½ are of interest in robust analysis, the result above is valid for any 
m in {1 .. . .  ,N}. 

3. Determination of minquantile lines 

Several algorithms have been proposed in order to construct an exact LMS 
regression line in an efficient way; see, e.g., Steele and Steiger (1986), Souvaine and 
Steele (1987), Edelsbrunner and Souvaine (1990) and, Xu and Shiue (1993). 

In this section we propose an algorithm that determines, for all m, 1 < m < N, an 
m/N-minquant i le  line, for which we should expect a complexity higher than the 
O(N2)-complexity obtained for the LMS estimation (Edelsbrunner and Souvaine, 
1990) because of two reasons: 

(1) Much more information must be obtained: in the worst case we will end up 
with N minquantile lines. 

(2) The existing algorithms for the LMS estimator assume that points are in 
general position (no three points on a line, and no two points on the same vertical 
line), thus no frequencies (but the trivial) are allowed. When this assumption is 
highly violated (as might occur if S is a sample of a discrete random vector), such 
algorithms must be adapted, with a possible increase in complexity. 

The output  of the procedure we propose here consists of two lists of N elements, 
M I N Q  and Q, where, for any m, 1 < m < N, MINQ[m]  stores the coefficients of an 
m/N-minquant i l e  line, and Q [m] = Q*. These two lists are obtained after perform- 
ing three phases, which are described below. 

1. Initialization of MINQ and Q, 
2. Updating, 
3. Garbage deletion. 
Phase 1: (Initialization o f  M I N Q  and Q) 
Set, for any m, MIN Q[m]  equal to an arbitrary value, (0,0), say, and 

QEm] = + oo. 

Phase 2: (Updating). 
In order to update MINQ and Q, we modify the sweep-line technique used by 

Souvaine and Steele (1987) for the determination of the LMS line. For this purpose, 
define the mapping T, that takes (a, b) e •2 to the line la.b, and the line la,b to the 
point ( - a, b). (For a discussion of the properties of this mapping, refer to Souvaine 
and Steele, 1987). As T preserves vertical distances, the triplets v in B of Theorem 
1 can be obtained in terms of T: 

For any pair P i = ( x i ,  yi), P~=(x~,y j ) ,  x i # x ~ ,  the associated triplet 
v u = ((aij, bu), z u, ~u) is obtained as follows: 
• l,,,,b,j = T -1 ( T ( P i ) n T ( P J ) .  
• Zij -~- O, 
• a u = W({k: r ( P i ) c ~ r ( P j e  T (Pk)} ) /N .  

On the other hand, given three distinct points P~ = (xi, yi), Pj = (xj, y j ,  
Pk = (Xk, Yk), Xi # Xk, the triplet Vijk = ((aUk, bok), ZUk CtUk) associated with the e.c.l. 
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l.,j,,b,~k for (Pi, 
la. b is the line 
inverse by T 
vertical from 
thus 

Pj, Pk) can be obtained as follows: Let la,b = T -  I ( T ( P i ) ~  T(Pk)) (i.e. 
containing P~ and Pk). Then, the e.c.l, is obtained by considering the 
of the middle point between T(Pi)c~ T(Pk) and the point on T(Pj) 
T(P i )~  T(Pk). In other words, the e.c.l for (Pi, Pj, Pk) is la,(yj-axj + b)/2, 

• (aijk, bi~k) = (a, (b - x~a + yy2).  
• Zijk = ((b + x~a - yj)/2) 2, 
• CriCk = W({s: ( -- Xsa + Ys -- (b - x ja  + yy2)  2 < Zijk})/N. 
Following the notation of Souvaine and Steele (1987), we use two data structures 

of list type, LIST and HEAP. Initially, LIST is the list of lines {T(xi ,  Yi), 1 < i < n}, 
arranged increasingly following the order < ,  given by 

la,b<lc.d i f f ( a < c )  or (a = c, b > d). 

Along with each T(xi ,  Yi), we define two pointers, UP and DOWN, pointing, 
respectively, at the immediate predecessor and successor of T ( x ,  Yi) following 
< (if they exist). For each pair or nonparallel lines T ( x ,  y~) and T(xj ,  yj) which 

are adjacent in LIST, we add T ( x ,  y~) c~ T(x j ,  yj) to HEAP in such a way that the 
top of HEAP contains the minimum point according to the lexicographical order. 
We also add the pointers from LIST to HEAP and from HEAP to LIST as 
described by Souvaine and Steele (1987). 

Once the data structures have been initialized, the updating process is identical 
to the sweep-line method, taking into account that, if more than two lines intersect 
at T (x i, Yi)c~ T (Xk, Yk) (this is the degenerate case not considered there), the order of 
all such lines must be completely reversed in LIST. (Note that by incorporating this 
modification in the original Souvaine and Steele technique gets rid of the general 
position assumption in their LMS construction algorithm). Besides, at any step, 
with s o m e  T(xi ,  y~)c~ T(Xk, YR) at the top of HEAP, l)ik and all the triplets of the 
form vij k have to be evaluated (in the way mentioned above) and their correspond- 
ing z's compared with the values stored in Q. Observe that, after obtaining Vik, the 
set {Vijk}j can be obtained in O(n) time, just by simultaneously sweeping LIST 
upwards from the highest among T(Pi) and T(Pk) and downwards from the lowest 
among T(PI) and T(Pk). 

During this operation, for any found triplet v = ((a, b), z, c¢), with z < Q [aN], we 
set 

Q [ ~ S ] ~  z, MINQ [0tN] ~- (a, b). 

The process stops when HEAP is empty, that is, when all the triplets of B have 
been considered. Then, we go to Phase 3. 

Phase 3. (Garbage deletion). 
For  any i, j e  {1, . . . ,N},  i > j ,  i fQ[i ]  < Q[j] ,  then set 

Q [j]  ~ Q [i], MINQ [ j ]  ,--- MINQ [-i]. 

Example. As a simple illustration, consider the sample S = {P1, P2 . . . . .  P6 } with 
coordinates and weights given in Table 1, and depicted in Fig. 1. 
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Table 1 

i Pi wl 

1 (0, 0) 2 
2 (2, 2) 2 
3 (2, 3) 2 
4 (3, 4) 2 
5 (4, 3) 1 
6 (8, 4) 1 

• 3 

O 2 

• 4 0 6 

0 5  

A I t I I I I I 
1 

Fig. 1. The sample 

Thus N = 10 and n = 6. In Phase 1, the lists Q and M I N Q  of 10 componen ts  
each are built, and we set Q [m] = + ~ ,  M I N Q  [m] = (0, 0) for all m = 1 , . . . ,  10. 
Phase 2 starts with the const ruct ion of the structures LIST and HEAP,  whose 
initialization values are shown in Fig. 2(a). Fig. 2(b) shows the initial si tuation 
under  T-transform. The vertical sweepline is at the left, and the order  in LIST may 
be read off downwards  along this line. H E A P  contains the intersection points  at the 
r ight-hand vertex of each gray triangle (which represent the pointers between LIST 
and HEAP),  ordered from left to right. 

The  lowest element of H E A P  is T(P2)nT(P,,)= ( - 2 ,  --2). Therefore, we 
compute  the triplets /)24. and (/)2j4)j, checking whether  Q and M I N Q  must  be 
updated:  
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HEAP: [T(Pa)2T(P4) - T(Pa)2T(P3)]__ T(Ps)2T(P6)]__ T(P4)2T(Ps) ] 
(-2,-2) (-312,0) (-i/4, O) (I, 7) 

3 

2 

4 

8 

+ 

-b 1 
I 
I 
i 0 + 

+ 

T 

i 
4- 

I I 
2 

Fig. 2(a). Initial LIST and HEAP.(b). 

• v24 = ((2, - 2 ) ,  0, 4/10).  
• V 2 3 4  = ((2, -3 /2 ) ,  1/4, 6/10) 
• v254 = ((2, 7/2), 9/4, 5/10) 
• v2~4 = ((2, - 1 ) ,  1, 8/10) 
• v264 = ((2, - 7 ) ,  25, 6/10) 

Q[-43 *-- o, M I N Q [ 4 ]  .-- (2, - 2 ) ,  
Q [-63 *-- 1/4 M I N Q  [63 ,--- (3, - 3/2), 
Q [-5] ~ 9 M I N Q  [5] .-- (2, 7/2), 
Q [-8] .-- 1 M I N Q  [8] ~ (2, - 1), 
(Q [6] = 1/4 < 25, no updating). 

After that, the order  in LIST of T(P2) and T(P4) is interchanged, and H E A P  is 
upda ted  as shown in Fig. 3(a). Geometrical ly the sweepline has moved  right across 
the point  (2, - 2 ) ,  as shown in Fig. 3(b). 
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HEAP: 
IT(Pl)~T(P3 ) ] T(P3)nT(P4) ~ T(P2)2T(P 5) T(Ps)~T(P6) I 
(-3/~,o) - - I  (-~,I) (-i/2,1) - -  (-i~4,2) 

8 

i f -  , 

I I 
0 1 2 

2 / .  I 
4 

5 

Fig. 3(a). First updating of LIST and HEAP.(b). 

As the minimum of HEAP is T(P1)nT(P3)= (-~2,0), one must evaluate 
vr3 and {Vlj3}j. For instance,/)143 = ((~2, 1 ) ,  1/16, 6/10). As Q[6] > 1/16, Q[6] 
and MINQ I-6] must be updated, by setting Q I-6] ~ 1/16 and MINQ I-6] ~ (3/2, 

- 1 / 2 ) .  

The process goes on until HEAP becomes empty, the sweepline having moved 
across all intersection points, and Phase 3 starts, with Q and MINQ as shown in 
Table 2. 

After the garbage deletion, one obtains the values given in Table 3. 
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Table 2 

i Q [i3 MINQ [i] 

1 + oc (0, 0) 
2 0 (1/4,2) 
3 0 (3/4,0) 
4 0 (2, --2) 
5 1,/16 (3/4, 1/4) 
6 1,/36 (4/3, 1/6) 
7 1/4 (0, 7/2) 
8 1/4 (1, 1/2) 
9 49/64 (3/4, 7/8) 

10 25/16 (1/2, 5/4) 

Table 3 

1 0 (2, - 2 )  
2 0 (2, - 2 )  
3 0 (2, -2)  
4 0 (2, - 2 )  
5 1/36 (4/3, 1/6) 
6 1/36 (4/3, 1/6) 
7 1/4 (1, 1/2) 
8 1/4 (1, 1/2) 
9 49/64 (3/4, 7/8) 

10 25/16 (1/2, 5/4) 

Theorem 2. After having performed the three phases above, for any m, MINQ [m], 
and Q [m] contain respectively the coefficients of  an m/N-minquantile line and Q*. 

P r o o f .  Evident by Theorem 1. Observe that Phase 3 is necessary because in 
Theorem l(iii), we only have m/N < ~. [] 

Theorem 3. MINQ and Q can be obtained in 0 (n 3) time with 0 (n) space. 

Proof. Trivially Phase 1 is performed in O(n) time and requires O(n) space. In 
phase 2, the construction of LIST and HEAP requires O(n log (n)) time and O(n) 
space; furthermore, we have O(n 2) steps in this phase (in fact, we have exactly 
n(n + 1)/2 for points in general position), and at each of these steps, the computa- 
tion of all corresponding v's, and updating of MINQ, Q, LIST and HEAP is done in 
O(n) time. This gives to Phase 2 a complexity of O(n 3) time and O(n) space. As 
Phase 3 can be performed in O(n) time with O(n) space, the complexity of Phase 2 
gives the total complexity of the algorithm. [] 
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Remark 3. For simplicity, we have assumed that both LIST and HEAP are lists. 
Using, as in Souvaine and Steele (1987), more sophisticated data structures (e.g. 
heaps), one could alleviate the running time of some steps of the algorithm, but 
without reducing the overall O(n 3) worst-case complexity. 

Remark 4. After adaptation of the topological sweep of Souvaine and Steele to 
other quantiles, one could also obtain a O(n 3) procedure just by repeating the 
method for each m. In our method, however, only one sweep is performed, thus only 
one data-structure construction is needed. 

4. Robust minimum scale regression line 

The choice of the robustness (in terms of breakdown point) is still left to the 
analyst. Of course, if this choice were made in advance, algorithms with lower 
complexity are available, by adapting those proposed for the LMS. 

The availability of all minquantile lines allows however an "automatic" choice of 
the breakdown point. As shown by Carrizosa and Plastria (1992), the bi-criterion 
problem of finding a line la, b which both maximizes m (i.e. the proportion of 
not-rejected data points) and minimizes Qr,(a, b) (measuring within which range the 
nonrejected data points lie from the regression line), may be solved by inspecting 
the minquantile lines only. Indeed, consider any m ~ {N /2 , . . . ,  N } and (a, b) e ~2. If 
we set 

m* = W (i: r2 (a, b) < Qm(a, b)}), 

we see that m* > m and Q,,.(a, b) = Q,.(a, b). By Theorem 1, there exists an m*/N- 
minquantile line la,~ such that 

W({i: r2 (ci, b) < Qm.(~i, b)}) > m*. 

Hence, as Qm.(ci, b) < Q,,,.(a, b) = Q,,,(a, b), the line la, r, produces a smaller error 
than la,o and, at the same time, rejects a lower number of observations: W({i: 
r~2 (c/, b) > Q,..(c/, b)}) instead of N - m*. 

However, many different bi-criterion evaluation rules may still be applied. One 
proposal may be derived from the scale parameter suggested by Rouseeuw (1984) 
for the LMS regression line, by adapting it to other quantiles in the following way: 
For any line 1,,,b and m (N/2 < m < N), define the scale parameter S,,,(a, b) as 

Sin(a, b) = c(N, 2) Qm(a, b)l/2/c~- l ((N + m)/2N) 

and 

SN(a, b) = + oo, 

where c(N, 2) is the finite-sample correction factor suggested by Rousseuw (1984). 
Since Sin(a, b) is increasing in Qr,(a, b) and decreasing in m, a regression line with 
minimal scale parameter will be found by calculating S,. (a, b) for each m using Q*, 
and selecting the m giving the lowest S,, (a, b); the corresponding m/N-minquant i le  
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Table 4 

m Sm/c(N, 2) 

5 0.25 
*6 0.20 

7 0.48 
8 0.39 
9 0.53 

10 + ~  

line will give the optimal solution. For instance, for the example of Section 3, one 
obtains the values (up to the constant c(N, 2), which has no influence in the 
decision) shown in Table 4. As a result, the line l(4/3, 1/6) is chosen, rejecting the 
points 2, 5 and 6 (weight 4) as outliers. 

5. Concluding remarks and extensions 

In this paper we have addressed the problem of finding a least quantile of squares 
line for all quantiles. We have proposed a sweep-line algorithm that runs in 
polynomial time and allows for the use of frequencies associated with the different 
observations in the sample. 

The knowledge of minquantile lines for all quantiles enables to accomodate the 
methodology of least median of squares to problems where the portion of outliers is 
lower than a half. In particular, an automatic choice of the portion of outliers may 
be obtained by minimizing a scale parameter, as shown in Section 4. 

Part of the analysis carries over to the multiple linear regression model 

Yi= XiO + ei ( i= l , . . . ,n) ,  

where (Xi, Yi) s ~P × ~ are data points with weights (frequencies) wi. 
From the results of Carrizosa and Plastria (1992), it follows that an ~-minquan- 

tile hyperplane may be determined for each ~ by considering all hyperplanes 
passing through at least p points, and for each set of p + 1 data points, all the 
hyperplanes yielding residuals which are equal in absolute residual I rl but not in 
sign. For each such hyperplane, one determines the corresponding s-value, by 
evaluation of the proportion of the data with absolute residuals not exceeding I rt. 
Since there are at most 

n 

such hyperplanes, and each may be evaluated in O (n) time, we obtain an O(n p÷ 2) 
algorithm. Thanks to the sweep-line technique we were able to reduce this complex- 
ity to O(n 3) for p = 2. 
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It remains an open question whether similar techniques may be developed for 
higher dimension. 
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