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Abstract

An undesirable facility is to be located within some feasible region of any shape in the plane or on a planar network.

Population is supposed to be concentrated at a ®nite number n of points. Two criteria are taken into account: a radius

of in¯uence to be maximised, indicating within which distance from the facility population disturbance is taken into

consideration, and the total covered population, i.e. lying within the in¯uence radius from the facility, which should be

minimised. Low complexity polynomial algorithms are derived to determine all nondominated solutions, of which there

are only O�n3� for a ®xed feasible region or O�n2� when locating on a planar network. Once obtained, this information

allows almost instant answers and a trade-o� sensitivity analysis to questions such as minimising the population within

a given radius (minimal covering problem) or ®nding the largest circle not covering more than a given total popula-

tion. Ó 1999 Elsevier Science B.V. All rights reserved.

Keywords: Undesirable facility location; Bicriterion covering problem; Euclidean distance; Minimal covering; Largest
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1. Introduction

Many necessary facilities have an unwanted
impact on their environment, be it potentially for
hazardous facilities or continuously in case of
(ob)noxious facilities, leading to the so-called `not
in my backyard' (NIMBY) e�ect. The location
decision is then a delicate question leading to

many trade-o� considerations. Although funda-
mentally of multicriteria nature, with several
rather qualitative and even subjective criteria (see
e.g. the surveys by Erkut and Neuman (1989) and
Kleindorfer and Kunreuther (1994)), it turns out
that in most cases the main objective will be to
choose a site as far as possible from any kind of
population (or other) centre which might be af-
fected by the facility's presence. Such an aim, ta-
ken literally, leads to maximin-type location
problems, i.e. seeking the site which maximises the
distance to the closest (and hence most a�ected)
population (cf. e.g. Drezner and Wesolowsky
(1980) and the recent survey, Plastria (1996)).
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Typically, however, legal rules on proximity of
noxious and/or hazardous facilities, use a simple
threshold rule, stating that a population centre is
considered as a�ected only when the intensity of
the facility's undesirable e�ect felt at this centre is
beyond this threshold value. And in our densely
populated countries there will always be such af-
fected people, wherever the facility will be located.
Therefore the simple maximin objective might
better be replaced by the minimisation of the total
population a�ected by the facility, which leads to
so-called minimal covering problems.

At the one hand, however, legal rules, and
threshold values in particular, do change under
various socio-economic pressures. At the other
hand many choices of technology and/or invest-
ment in pollution abatement installations may be
under consideration, strongly in¯uencing the in-
tensity of the undesirable e�ects of the facility.
Therefore it is of great interest to be able to
measure the trade-o�s between the threshold in-
tensity on the one hand and the a�ected popula-
tion on the other hand. Thus the aim of this paper
is threefold:
· ®rst to introduce the ensuing bicriteria model

seeking lowest a�ection of population at the high-
est level of protection,

· second to prove that in quite realistic context
the set of e�cient (Pareto-optimal) solutions is
®nite and

· third to develop fast polynomial algorithms to
construct the complete trade-o� curve between
both objectives together with corresponding e�-
cient solutions.
Many undesirable e�ects, such as radioactivity,

radio interference, noise, heat, odour etc. are felt
continuously over a relatively small geographical
space and there is a clear decreasing relationship
between the intensity felt at a point and its Eu-
clidean distance to the facility's site, e.g. an inverse
squared distance type of law, (cf. e.g. Melachri-
noudis and Cullinane, 1986). Therefore we may
consider the location problem as stated in the
Euclidean plane, and the threshold intensity is in-
terpreted as a threshold distance r. The a�ected
points are then those lying within a circular disk of
radius r centered at the facility's (unknown) site x.
Both the site x and the radius r are taken as

variables, leading to location of a circular disk of
unknown radius.

Note that whereas use of Euclidean distance
seems to exclude applications involving airborne
pollution due to the presence of winds, it is pos-
sible to adapt our methodology also to this case, as
will be explained in the concluding section.

In order to be applicable in the real world any
location model, particularly for undesirable facil-
ities, must take into account many types of locat-
ional constraints. First of all regional planning
rules allow such facilities in certain areas only.
Second the topography and local geological and/or
meteorological conditions may rule out other ar-
eas. Finally law may forbid closeness to certain
points. As a result the remaining area from which
the facility's site should be chosen has quite ir-
regular and strange shapes, as a rule. Avoiding
such feasible regions (often termed `pathological')
for the sake of mathematical elegance is a guar-
antee that the model will not be applied in practice.
Therefore we prefer to directly tackle feasible re-
gions of very general shapes, thereby accepting a
possible loss in terms of shortness and simplicity.
Fortunately it turns out that this does not lead to
signi®cant new di�culties, a point that is mostly
not discussed in other work.

A very special type of feasible region, but of
particular interest in practice, is a network which is
part of the geography, thus in our model embed-
ded in the plane. Most facilities should be directly
accessible using the existing road-network, and are
not su�ciently important to allow for the exten-
sion of the existing network in order to make the
facility reachable. Therefore a site along (part of)
the existing network is sought, while the undesir-
able e�ects are of course still felt continuously over
space. It turns out that this special type of prob-
lem, which seems never to have been tackled be-
fore, is in fact easier to solve than the fully
continuous version.

The paper is organised as follows: Section 2
states the model in formal terms as a bicriteria
problem of locating (Euclidean) disks in the plane.
Section 3 describes in more detail how the infor-
mation obtained from a full solution of this
bicriteria problem may be used in di�erent ways.
In Section 4 necessary conditions are derived for a
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disk to be e�cient. These conditions lead in Sec-
tion 5 to the announced ®niteness result from
which the basic ideas follow for an algorithm to
construct the full trade-o� curve with corre-
sponding e�cient disks. Section 7 analyses further
the geometric nature of the problem leading to
lower complexity algorithms which are slightly
more complex. In Section 8 we indicate several
extensions and make suggestions for further re-
search.

2. Problem statement and scope

Let A be a ®nite subset of R2 of points of the
plane, e.g. population centres. Let also be given a
function w : A! R�, associating with each a 2 A
some positive weight w�a� (e.g. population at a,
value of installations at a, etc.).

We consider open circular disks of varying ra-
dius r and center x lying in some closed feasible
region S � R2:

iB�x; r� � fy 2 R2 j ky ÿ xk < rg; �1�
where k:k denotes the usual Euclidean norm. In
the context of the location of an undesirable fa-
cility such a disk corresponds to the region of the
plane a�ected by the facility, under the following
assumptions:
· the facility is located at site x 2 S;
· the intensity of the undesirable e�ect of the facil-

ity decreases with the Euclidean distance from
it;

· a point is supposed to be a�ected if the intensity
felt at this point is above some threshold value
(e.g. legal limit) as represented by the radius r.

Thus, we may say that the `solutions', or disks, we
are interested in are given by pairs �x; r�, where x is
a site in S and r is some nonnegative radius.

For a disk �x; r�, the set of a�ected destinations
is given by

A�x; r� � iB�x; r� \ A � fa 2 A j kaÿ xk < rg �2�
and the global a�ected weight (or population),
called the coverage, is then

cov�x; r� �
X

a2A�x;r�
w�a�: �3�

In this context the following two contradicting
objectives are quite natural:
1. to reduce as much as possible the a�ected popu-

lation, in other words to minimise the coverage;
2. to increase as much as possible the radius of the

disk of a�ected points, possibly in order to raise
the level of legal protection by lowering the
threshold, or, to use less costly technology for
the facility, implying an increase of the intensity
felt at a given distance.
We therefore seek to construct the set of e�-

cient (Pareto-optimal or nondominated, cf.
Chankong and Haimes (1983)) disks for the re-
sulting bi-objective problem (BP):

min cov�x; r�
max r;

x 2 S; r 2 R�:

We will say that a solution of (BP) �x0; r0�
(strictly) dominates the solution �x; r� i� r0P r and
cov�x0; r0�6 cov�x; r� (with at least one strict in-
equality). �x; r� is an e�cient solution of (BP) i�
there does not exist another solution �x0; r0� which
strictly dominates �x; r�.

Describing the e�cient set is possible thanks to
the result shown in Section 5 that for ®xed com-
pact regions S of fairly general shape there are at
most O�n3� e�cient disks. Furthermore, Section 7
develops ways to e�ectively construct and evaluate
these for particular shapes S in O�n3 log n� time by
relatively simple geometric constructions, reduc-
ible to O�n3� in the case of equally weighted points
or when S is (part of) a network. In this way a full
trade-o� curve is obtained between the coverage
and the radius of disks.

An important question, in particular for the
applications mentioned in the next section is
whether any dominated disk is also dominated by
some e�cient disk. Clearly this is not true in
general, since any disk covering A fully is domi-
nated by any larger enclosing disk (same coverage,
larger radius). Fortunately this is the only excep-
tion, as shown by the next lemma.

Lemma 1. If S is compact, every dominated disk
which does not completely cover A is dominated by
at least one e�cient disk.
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Proof. Let �x0; r0� represent a disk which does not
completely cover A, i.e.,

cov�x0; r0� <
X
a2A

w�a�: �4�

De®ne x0 as

x0 :� minfcov�x; r� j x 2 S; r P r0g; �5�
which is achieved due to the fact that the function
cov takes only a ®nite number of values. Hence it
follows from Eq. (4) that

x06 cov�x0; r0� <
X
a2A

w�a�:

Let �x̂; r̂� be an optimal solution for

max r

s:t: cov�x; r�6x0;

x 2 S;

r P r0:

�6�

Observe that such optimal solution exists by
Eq. (4), the compactness of S and the lower
semicontinuity of cov. Then, �x̂; r̂� is an e�cient
disk; indeed, else there would exist a feasible
�x�; r�� satisfying

r�P r̂ �6 r0�;
cov�x�; r��6 cov�x̂; r̂� �6x0�;

�7�

with at least one inequality strict. In particular,
�x�; r�� would be feasible for Problem (6), implying

r̂ � r�P r0:

Moreover, �x�; r�� would also be feasible for
problem (5), thus

x06 cov�x�; r��6 cov�x̂; r̂�6x0;

thus cov�x�; r�� � cov�x̂; r̂�, contradicting the fact
that, in Eq. (7), one of the inequalities should be
strict.

Hence, �x̂; r̂� is e�cient, as asserted. �

It is clear that with an aim of protecting at least
some of the points of A from the undesirable e�ects
of the facility to be located, disks fully covering A
are of no interest. Therefore the restriction in
Lemma 1 is not limiting in practice, whence our
attention may further be restricted to e�cient
disks only.

We now show that, in fact, only a ®nite set of
e�cient disks need to be considered. The cardi-
nality of such a set and how to construct it are the
aim of Sections 4±7.

Lemma 2. There exists a ®nite set C of e�cient
disks such that any disk �x; r� not completely
covering A is dominated by some disk in C.

Proof. The scheme of the proof is similar to
Lemma 1: for any nonempty B � A;B 6� A, de®ne
�xB; rB� to be an optimal solution for

max r

s:t: cov�x; r�6
X
b2B

w�b�;

x 2 S;

r 2 R�:

By Lemma 1, there exists an e�cient disk �x�B; r�B�
dominating �xB; rB�.

It then follows that the list f�x�B; r�B�: ; 6� B 6� Ag
can be taken as C. Indeed, any disk �x; r� will be
dominated by �x�B; r�B� with B � A�x; r�. �

3. Applications

As explained in the introduction the location
problem at hand is normally a bi-objective one. In
practice such problems are usually reduced to a
single-objective problem, either by constructing a
utility function aggregating the two objectives or
putting one objective as a constraint by limiting it
by some threshold value and optimizing the other
objective, see Chankong and Haimes (1983). The
other possibility is to tackle the biobjective prob-
lem directly, perhaps with the aid of interactive
methods, see Chankong and Haimes (1983). It
turns out that knowledge of the full trade-o� curve
as advocated in this paper is invaluable in all these
approaches, as brie¯y discussed below.

3.1. Utility functions

One approach is the minimisation of some
(dis)utility function combining the radius in a
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decreasing and the coverage in an increasing way.
This supposes that one is able to translate both
radius and coverage into some comparable values,
in other words that one is able to evaluate the
practical trade-o�s between these two con¯icting
criteria. Although this is not always perfectly
possible it might be of interest to attempt.

The main advantage of this approach is that a
single objective problem arises for which the no-
tion of optimality is clear-cut. Evidently any op-
timal solution for this single objective problem will
be Pareto-optimal for the bicriteria problem (BP)
and thus an e�cient disk. Since these are only ®-
nite in number, a simple scanning of these candi-
date solutions will yield an optimal one.

It is quite remarkable that we thus obtain a ®-
nite method of fairly low complexity to solve an at
®rst glance totally intractable continuous optimi-
sation problem, the objective being neither convex
nor concave nor even continuous!

3.2. Minimal covering problems

Suppose the radius R of (undesirable) in¯uence
of the facility is given. Putting this objective as
constraint, one obtains the minimal covering
problem, which asks for the center of a disk of
radius at least R covering the least possible weight.
This problem was studied by Drezner and Weso-
lowsky (1994). Note that the circular region they
consider is supposed to include the full disk, and
thus in our interpretation of the feasible region we
must consider only the points at least at distance R
from the boundary, which, in this particular case,
is still a circle.

In our approach, one ®rst constructs the ®nite
list C de®ned in Lemma 2, and, for the R given,
one ®nds the disk �x�;R�� 2 C with R� being the
lowest radius in the list C greater than or equal to
R. Such disk is clearly optimal for the minimum
covering problem and its radius may be even
greater than the threshold value R. The complexity
of this task will be derived in Corollary 14.

This strategy enables one to analyse directly the
sensitivity of changes in the radius, a feature which
is extremely important to decision makers in
practice.

Moreover, the answer thus obtained is even
more instructive than Drezner and Wesolowsky's:
it not only gives some minimal covering disk of
radius R, but among all such disks (and there are
usually a continuous set of such) immediately
produces one which maximises the minimal dis-
tance to the uncovered points, thus o�ering the
best protection possible in maximin sense.

3.3. Largest circle problems

Instead of ®xing the radius and minimising the
covered weight, it is a politically relevant question
to ®x the maximal weight W which is allowable to
be covered and maximise the radius of the disk, i.e.
the level of protection for the uncovered points.
We will call such a question a largest circle problem
or a maxquantile location problem. The ®rst term
generalises the better known largest empty circle
problem, in which W � 0, and it is required to ®nd
the (center of the) disk of largest radius not con-
taining any destination point (see Toussaint, 1983
and Preparata and Shamos, 1985). The second
term explains that the objective to be maximised
may be considered as a quantile of the distribution
of distances to the given points, weighted by the wa

(considered to sum up to 1). This latter term is
perhaps better suited when other distance mea-
sures are used, as suggested in Section 8, and may
be seen as the undesirable counterpart of the
minquantile objective introduced by Carrizosa and
Plastria (1995) in general and Carrizosa and
Plastria (1999) in the context of attracting facility
location.

Classically the largest empty circle problem is
solved most e�ciently by way of the Voronoi-
diagram (see Preparata and Shamos, 1985, p. 249±
252). This does not extend directly to nonzero
coverage since for a ®xed W we do not know which
order Voronoi diagram is to be constructed
(compare with Section 8.1). However, it will be
shown in Section 7.4 that considering the Voronoi
diagrams of all orders yields the full set of e�cient
disks.

Evidently any W -largest circle (with W not too
high in order to allow for nonfull coverage of A) is
either an e�cient disk or (by Lemma 1) there exists
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an e�cient disk of the same radius with a smaller
coverage. Therefore our approach enables an al-
most instant answer to any largest circle query: it
su�ces to ®nd the largest e�cient disk with cov-
erage at most W . The complexity of this task will
be derived in Corollary 15.

In a sense we thus obtain the `ideal' W -largest
circle, since it is one with smallest possible cover-
age, among all the circles with optimal radius.
Since this is obtained for all possible weights W we
have a full sensitivity analysis with respect to the
covered weight.

3.4. MCDM

The bi-objective problem may also be further
analysed directly by any technique of multicriteria
analysis. Any such method should at least eliminate
dominated solutions and thus select a nondomi-
nated or e�cient one. Since, by Lemma 2 we end up
here with a ®nite list of such, any method, even
those devised for ®nite situations might be used,
(see e.g. Vincke et al., 1992), with the additional
advantage of allowing inclusion of more criteria.

It should however be stressed that when addi-
tional criteria are to be taken into account, which
ought to always be the case (compare the com-
ments of Erkut and Neuman (1989)), care must be
taken to include all alternate e�cient disks (if any)
in the ®nal analysis, since these may be far from
equivalent in view of the new criteria. Therefore the
algorithms presented here will have to be slightly
adapted in order to make sure that no solutions
equivalent to an e�cient one are abandoned.

4. Necessary conditions for e�ciency

We will start in this section by deriving condi-
tions that any disk should satisfy in order to be
eligible for e�ciency. These conditions will very
strongly limit the candidate disks, as indicated for
fairly general regions S in next section. In this
section S is merely assumed compact.

We will call point a 2 A active at solution �x; r�
i� a lies exactly at distance r from x. The set of all
active points at �x; r� is denoted by

act�x; r� � fa 2 A j kaÿ xk � rg: �8�
Please observe that active points are considered
not to be covered, contrary to the attractive case
(see Carrizosa and Plastria, 1999).

We recall that, by the de®nition of e�ciency, in
order to prove that some �x; r� is not e�cient it will
su�ce either to exhibit another solution which
strictly dominates it, or to exhibit another equiv-
alent solution (same radius, same coverage) which
is known not to be e�cient.

Lemma 3. If �x; r� is e�cient then active points
exist, i.e. act�x; r� 6� ;.

Proof. Suppose to the contrary that act�x; r� � ;,
then for any a 62 A�x; r� we have kaÿ xk > r. Since
there are only ®nitely many of these, we will also
have kaÿ xk > r � � for all a 62 A�x; r� for some
su�ciently small � > 0. This means, however, that
A�x; r � �� � A�x; r�, and thus cov�x; r � �� �
cov�x; r�, while r � � > r. Hence �x; r� is dominated
by �x; r � ��, and therefore cannot be e�cient. �

For some nonempty subset B of A de®ne the
distance dB�y� of y from B by

dB�y� � min
b2B
kbÿ yk:

Lemma 4. If �x; r� is e�cient then x is a local
maximum in S of the distance from act�x; r�.

Proof. By continuity of distance for each a 2 A such
that kaÿ xk < r, there exists a neighbourhood Va of
x, such that kaÿ yk < r for all y 2 Va. Similarly, for
all b 2 A such that kbÿ xk > r, there is a neigh-
bourhood Vb of x, such that kbÿ yk > r for all
y 2 Vb. Let V be the (®nite) intersection of all these
Va and Vb, then V is also a neighbourhood of x.

Suppose now that x is not a local maximum in
S of the distance from B � act�x; r�, which is
nonempty by Lemma 3. Then there exists some z 2
V \ S such that dB�z� > dB�x�. By de®nition of B �
act�x; r� we then have for all a 2 act�x; r�:
kaÿ zk > dB�x� � r:

By construction of V it follows that A�z; r� �
A�x; r� with z 2 S, hence that �x; r� is equivalent to
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�z; r�, while act�z; r� � ;. By Lemma 3 it follows
that �z; r�, and hence �x; r�, is not e�cient. �

We may therefore restrict ourselves to studying
such local maxima in S. This will be done in the
lemmas below, but ®rst we need some preliminary
notions and results.

For any ®xed point a the distance function da

de®ned by da�x� � kaÿ xk is a convex function,
di�erentiable at any point x 6� a with gradient
rda�x� � �xÿ a�=kxÿ ak. At such a point x the
directions of (at least initial) ascent are given by
the closed halfspace

H�a � fp j h p ; xÿ a iP 0g;
where h : ; : i denotes the scalar product. Notice
that the directions orthogonal to xÿ a are also
ascent directions of da at x since this function has
circular level sets, which are strictly convex. At
x � a, which is the unique minimum of da, every
direction is one of ascent. (Note that for simplicity
we consider the zero vector also a direction of
ascent!)

Let B be some ®nite set of points, then, clearly,
a vector p is a direction of ascent at x for dB i� it is
a direction of ascent at x for every active b 2 B,
i.e. any b such that db�x� � dB�x�. In the cases we
are interested in, when B � act�x; r�, all b 2 B are
active at x, and x 62 B. In such a case, it follows
that p is a direction of ascent of dB at x i� it is an
ascent direction for db for each b 2 B, i.e.
p 2 Tb2B H�b �x�. (Note that after replacing B by
B n fxg, the same property would also apply for
x 2 B.)

A direction p 6� 0 is feasible at x 2 S i� the open
hal¯ine with direction p emanating from x has
points in common with S within any neighbour-
hood of x. Evidently, a point x is a local maximum
in S of some continuous function f i� no nonzero
direction of ascent of f at x is a feasible direction
for S.

We call a point x 6� a S-remote (or anti-visible)
from a i� x 2 S and there exists no other point y 2
S such that x 2 �y; a� (see Hansen et al., 1981). A
point x is locally S-remote from a when it is S \ V -
remote from a for some neighbourhood V of x.
Note that any locally S-remote point is always a
boundary point of S.

The following de®nitions extend some well
known notions in convex analysis (cf. Hiriart-
Urruty and Lemarechal, 1993) to nonconvex re-
gions. Note that we have to use local notions due
to the loss of convexity.

A point x 2 S is a local extreme point of S i�
there exists some neighborhood V of x such that x
does not lie on any open segment joining two
points of S \ V .

Finally the local normal cone to S at x 2 S is
de®ned as

NS�x� � fp j 9V neighbourhood of x;

such that 8y 2 S \ V : h p ; y ÿ x i6 0g:

Lemma 5. Let �x; r� be e�cient and act�x; r� � fag,
then:

(i) x is a boundary point of S, locally S-remote
from a,
(ii) x is a local extreme point of S,
(iii) xÿ a belongs to the local normal cone to S at
x.

Proof. The function da given by da�x� � kaÿ xk is
continuous and convex. According to Lemma 4, x
should be a local maximum of da � dfag in S, i.e. x
should be the global maximum in S of da within
some neighbourhood V of x, hence within
Sx � V \ S.

The ®rst assertion then follows from the fact
that da linearly increases along any hal¯ine ema-
nating from a. Similarly the second assertion is a
well known fact about the global maximum of a
convex function with strictly convex level sets here
applied to da on Sx. Finally if no nonzero feasible
direction of S at x lies in H�a �x�, this means exactly
that xÿ a belongs to the local normal cone to S at
x, which corresponds to the last assertion. �

Fig. 1 illustrates these results. In the situation
shown x is a candidate to be the center of an ef-
®cient disk because it satis®es all properties stated
in Lemma 5; �y; kaÿ yk� is not a candidate e�-
cient disk since y is not locally S-remote from a;
nor are �z; kaÿ zk� and �t; kaÿ tk�, because at the
one hand z is not a local extreme point of S and at
the other hand t ÿ a does not belong to NS�t�.
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Observe that of the 23 points de®ning S's boun-
dary only the three indicated by a black dot satisfy
all conditions of Lemma 5.

For two points a and b we de®ne the mediatrix
med�a; b� as the set of all points at the same dis-
tance from a and b:

med�a; b� � fx j kaÿ xk � kbÿ xkg:

Lemma 6. Let �x; r� be e�cient and act�x; r� �
fa; bg with a 6� b, then:

(i) x lies on med�a; b� and is a boundary point of
S,
(ii) either x 6� m and x is locally S-remote from
m � 1

2
�a� b�, or x � m and this is an isolated

point of S \med�a; b�.
(iii) For any S-feasible direction p 6� 0 at x we
have h p ; xÿ a i < 0 or h p ; xÿ b i < 0.

Proof. (i) Since act�x; r� � fa; bg this means that
r � kaÿ xk � kbÿ xk, hence x 2 med�a; b�. This is
a straight line passing through m � 1

2
�a� b�, along

which the distance to a and to b strictly increases

with the distance to m. If x were an interior point
of S, the line med�a; b� would indicate a feasible
direction of increase of dfa;bg, contrary to Lemma 4.

(ii) For exactly the same reason, when x 6� m, x
must be locally S-remote from m, while when x �
m it must be an isolated point of S \med�a; b�.
(Please note that this latter situation can normally
arise only when S contains some one-dimensional
pieces, e.g. when S is a network, and when addi-
tionally m falls exactly on S ± in other words, this
case should be considered as quite exceptional.)

(iii) Let p 6� 0 be an S-feasible direction at x,
then p cannot be an ascent direction of dfa;bg at x
since by Lemma 4 x should be a local maximum of
this function. This means p 62 H�a �x� \ H�b �x�,
whence the conclusion. �

Fig. 2 illustrates Lemma 6. Here �y; kaÿ yk� is
not a candidate e�cient disk because y is not lo-
cally S-remote from m, while �x; kaÿ xk� (resp.
�z; kaÿ zk�) is not a candidate disk since the S-
feasible direction p at x (resp. q at z) shown in the
®gure has a positive projection on both xÿ a and

Fig. 1. Examples when act�x; r� � fag.
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xÿ b (resp. zÿ a and zÿ b). So of the 4 points of
intersection between S's boundary and med�a; b�,
which would be candidates according to Lemma
6(i), only the single point t generates a candidate
for being e�cient disks with active set fa; bg.

In general, of the possible candidates following
Lemma 6(i), i.e. points of intersection between S's
boundary and med�a; b�, due to the remoteness
condition in Lemma 6(ii), only approximately half
of the ®nite number of isolated and/or local ex-
treme points will generate candidate e�cient so-
lutions, while condition Lemma 6(iii) will possibly
limit these remaining choices even further.

Lemma 7. Let �x; r� be e�cient and j act�x; r� j P 3.
(i) If x lies in the convex hull of act�x; r�, there
exist three di�erent noncollinear destinations
a; b; c 2 act�x; r� such that:

(a) x 2 S lies in the (nondegenerate) triangle
D�a; b; c�,
(b) x is the circumcentre of a, b, c, i.e. the centre
of the unique circle passing through a, b and c,
(c) Triangle D�a; b; c� is acute.

(ii) If x does not lie in the convex hull of act�x; r�,
then x is a boundary point of S and there exist
two di�erent destinations a and b on which the
conditions of Lemma 6 apply.

Proof. Denote act�x; r� by B.
(i) If x lies in B's convex hull, then, by Ca-
rath�eodory's theorem there exist three pairwise
distinct points a; b; c of B (we are in R2!) such
that x lies in their convex hull, i.e. the triangle
they form. Since B � act�x; r�, x must be at
the same distance of a, b and c, which is only
possible when these latter points are noncollin-
ear, and x is the centre of the (unique) circle
through them. The centre of the circumscribed
circle of a triangle lies inside the triangle only
when the triangle is acute.
(ii) Suppose now x does not lie in B's convex
hull. Then x may be linearly separated from B,
i.e. there exists some p 6� 0 such that
h p ; x iP h p ; b i for all b 2 B. But this
means p 2 Tb2B H�b �x�, and hence p is a direc-
tion of ascent of dB. This cannot happen when

Fig. 2. Examples when act�x; r� � fa; bg.
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x is interior to S, since then p would be S-feasi-
ble at x, contradicting Lemma 4. Therefore x
will be a boundary point (not necessarily ex-
treme) of the convex hull of B [ fxg. Calling a
and b the two extreme points adjacent to x
along this boundary, we have that p is a direc-
tion of ascent of dB i� it is a direction of ascent
of dfa;bg. This shows that the conditions of Lem-
ma 6, applied to fa; bg, must hold true. �

5. The basic algorithm

The set of candidate e�cient sites, i.e. satisfying
the necessary conditions of Lemmas 5±7, is usually
rather reduced. To simplify matters we assume in
this section that

Assumption 8. S is a ®xed planar region, possibly
disconnected and/or with holes, bounded by a
®nite number of linear pieces or arcs of quadratic
curves.

More general shapes for S are also manageable,
but may lead to an important increase in the cal-
culations needed for point inclusion and determi-
nation of boundary points either on given straight
lines or with certain normal directions. The sim-
plifying assumptions made here are, however,
su�ciently general to enable extremely close
approximations of any shapes, and already en-
compass all the more usual shapes used in Geo-
graphical Information Systems and suggested in
the literature, including their unions and/or inter-
sections, such as polygonal regions (see e.g. Han-
sen et al., 1981; Plastria, 1992b), circles (see e.g.
Drezner and Wesolowsky, 1980, 1994) or com-
plements of circles (see e.g. Hamacher and Nickel,
1995) useful for modeling the NIMBY (Not In My
Backyard) principle. Also the case when S is a
network embedded in the plane is included, in
which case S � bd S, the boundary of S.

Theorem 9. For ®xed S satisfying Assumption (8), a
®nite candidate set of e�cient disks of cardinality
O�n3� may be constructed, such that any disk which
does not fully cover A is either dominated or
equivalent to some candidate disk.

Proof. Let us consider each of the three types of
candidate e�cient disks as described in Lemmas 5,
6 and 7 in turn.

(i) For each ®xed a 2 A the set C�a� of boundary
points of S satisfying the conditions of Lemma
5 is a ®nite set as a rule, except in one case, when
part of bd S consists of some piece(s) of a circle
centered at a.
In that particular case, let Sa denote a connected
component of the intersection of bd S with
bd B�a; r� � fx j da�x� � rg, and suppose Sa is
not a singleton. Of all disks �x; r� with x 2 Sa

having the same radius r, only those minimising
cov�x; r� are candidates to be e�cient. A linear
time search similar to the one proposed in Drez-
ner and Wesolowsky (1994) will yield such an x
and in C�a� the full set Sa may then be replaced
by this x, all other candidate disks �y; r� with
y 2 Sa being either dominated or equivalent to
the chosen �x; r�.
Note: In fact Sa decomposes into connected
pieces on which A�x; r�, and hence cov�x; r� is
constant, the value changing each time (and
only when) Sa intersects one of the circles
bd B�b; r� with b 2 A n fag. Therefore one may
easily construct the (possibly several sets of)
disks equivalent to the chosen one. Thus, in or-
der to construct all e�cient disks one may in
this exceptional case additionally store this in-
formation next to the chosen x.
It follows that in this way a ®nite set C�a� arises,
with cardinality bounded by the number of
pieces on the boundary of S. Correspondingly,
a ®nite set of uniformly bounded cardinality
of disks �x; r� with x 2 C�a� and r � da�x� is ob-
tained for each a 2 A, yielding in total a set C1

of O(n) candidate e�cient disks (possibly with
pointers to additional equivalent ones).
(ii) For each pair of points fa; bg � A (a 6� b)
the (possibly empty) set of points C�a; b� satisfy-
ing the conditions of Lemma 6 is a ®nite set of
uniformly bounded cardinality.
Indeed C�a; b� is a subset of the intersection of
the straight line med�a; b� with S's boundary,
which by the assumptions on the shape of S,
is a ®nite set, except for the possible presence
of a ®nite number of straight line segments
(when bd S contains linear pieces lying ± by
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chance ± on med�a; b�), in each of which only
the endpoint farthest from 1

2
�a� b� has to be ta-

ken into account, thanks to Lemma 6(ii).
All disks �x; r� with x 2 C�a; b� and r � da�x� �
db�x� yields thus a second set C2 of O�n2� candi-
date e�cient disks.
(iii) For each triplet fa; b; cg � A which form a
nondegenerate acute triangle, the centre x of
the circumscribed circle is unique. Only when
x 2 S does one obtain a unique candidate e�-
cient disk �x; r� taking r � da�x� � db�x� � dc�x�.
These yield a third and ®nal set C3 of O�n3� can-
didate e�cient disks.
By Lemmas 5, 6 and 7, C � C1 [ C2 [ C3 con-

tains all e�cient disks (or at least for each e�cient
disk a representative equivalent one), and by
Lemma 1 any noncovering dominated disk is in-
deed dominated by a disk in C. �

Many of these candidates will, however, still be
dominated, and have to be deleted from C in order
to obtain the desired list of e�cient disks. Thanks
to Lemma 1, and by transitivity of the domination
relation, the identi®cation of the dominated disks
in C may be done by comparison among elements
of C only. Note that no disk in C fully covers A,
since each one has at least one point of A on its
boundary, and so does not cover it. This may be
done as follows.
· First one has to calculate cov�x; r� for each
�x; r� 2 C. Clearly this may be achieved in a na-
ive way in O�n4� time: for each of the O�n3�
disks in C simply check each of the n points of
A and sum the weights of the covered ones.

· The next and ®nal step consists in building the
ordered list of nondominated or e�cient disks,
by internal comparisons within C.
The simplest way of achieving this, in general, is
by ®rst sorting C into nonincreasing order of
radius, and then `weeding', i.e. scanning the list
in this order, deleting each disk with higher
coverage than the previous one (since domi-
nated by the latter).
Since C has O�n3� elements, the sorting step
takes O�n3 log n3� � O�n3 log n� and the weed-
ing may be done in O�n3� time.
Note that in the unweighted case, when all w�a�
are equal, to 1 say, the coverage values may

range only over the integers 0; 1; . . . ; nÿ 1, and
thus this ®nal step may trivially be done in
O�n3� time by way of a simple bucketing
method.
We have thus obtained a basic algorithm,

summarised as follows:

1. Disk generation ÿ O�n3�
(a) Generate C1 ÿ O�n�
(b) Generate C2 ÿ O�n2�
(c) Generate C3 ÿ O�n3�

2. Disk evaluation ÿ O�n4�
Calculate cov�x; r� for each �x; r� 2 C � C1 [
C2 [ C3

3. Dominated disk deletion ÿ O�n3 logn�, or
O�n3� when unweighted.

Weighted case: sort and weed.
Unweighted case: bucket.

This basic algorithm is illustrated by the ex-
ample problem discussed in next section.

Note that the derived complexity is an exact
one, and not merely a worst case situation: in all
instances the method will require exactly O�n4�
steps. Although this O�n4� complexity looks like a
nice polynomiality result, it will often be too ex-
pensive for practice. Indeed, descriptions closely
®tting the real-world situation will call for high
values of n, particularly when continuously dis-
tributed a�ected individuals are approximated by
aggregation in a ®nite number of discrete points.
The di�erence between the (unavoidable) O�n3�
and O�n4� obtained above then becomes very im-
portant. Therefore it is useful to seek algorithms of
lower complexity.

In Section 7 we show that when all constraints
are of polygonal type, the disk generation step 1
and the disk evaluation step 2 may better be done
simultaneously, yielding techniques of lower
complexity. When S is a network the `naive' basic
algorithm leads to another improvement of the
complexity.

6. An example problem

As an example consider as feasible set S the
nonconvex region already depicted in Figs. 1 and
2, whose vertices, sorted counterclockwise have the
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coordinates given in Table 1; the set A of a�ected
points consists of 10 points, with coordinates given
in Table 2. Two choices of weights are considered:
the ®rst one is given in Table 2, while the second
instance assumes all the weights to be equal and
summing up to 1.

Lemmas 5±7 enable us to construct a ®nite
dominating set C :� C1 [ C2 [ C3, with cardinality
120 � 14� 80� 26, which is, as discussed above,
independent of the choice of the weights. In Fig. 3

we see the feasible region S, the a�ected destina-
tions A (empty circles) and the centers of the
candidate disks (solid circles).

Choosing the weights given in Table 2 and de-
leting from the list C the dominated disks one
obtains the list of 14 e�cient disks given in Table 3
and depicted in Fig. 4 (the solid circles represent
the centers of the e�cient disks). The corre-
sponding trade-o� curve is given in Fig. 5. From
this we may read o� directly that for in¯uence
radius of e.g. 30 the minimal feasible coverage is

Table 1

Vertices of S

1 (0, 16) 13 (26, 20)

2 (11, 3) 14 (16, 24)

3 (30, 3) 15 (15, 33)

4 (45, 7) 16 (19, 42)

5 (54, 20) 17 (28, 46)

6 (54, 32) 18 (40, 47)

7 (38, 39) 19 (41, 49)

8 (30, 36) 20 (40, 53)

9 (36, 34) 21 (22, 52)

10 (38, 30) 22 (11, 47)

11 (38, 26) 23 (0, 34)

12 (34, 20) 24 (0, 16)

Table 2

The set A: coordinates and weights

i ai xi

1 (64, 34) 6/25

2 (24, 40) 1/25

3 (20, 31) 1/25

4 (20, 52) 4/25

5 (27.8, 7) 3/25

6 (45, 55) 1/25

7 (3.8, 7) 6/25

8 (9, 36) 1/25

9 (50, 38) 1/25

10 (60, 19) 1/25

Fig. 3. Centers of candidate disks.
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0:12, while in order to reduce coverage to at most
0:08 the in¯uence radius will have to be decreased
to at most 25:296.

It is interesting to observe that, when con-
structing the list C1, the same center may appear
associated with di�erent radii; this happens to be
the case even in the ®nal list of e�cient disks,
where �0; 16� is center of two e�cient disks.

Although the list C of candidate disks is inde-
pendent of the weights, one cannot expect this to
happen with the list of e�cient disks (See Fig. 6).
Indeed, taking now all the weights to be equal, we
obtain the list of e�cient disks given in Table 4,
and the trade-o� curve given in Fig. 7.

7. Implementation details and lower complexity

methods for polygonal constraints

In this section we address in more detail e�-
cient implementations of the (slightly modi®ed)
basic algorithm. The all-over complexity results
are expressed for a ®xed S. However, where pos-

Table 3

E�cient disks (weighted case)

x r cov�x; r�
(40.891, 21.074) 19.221 0/25

(50.152, 14.442) 23.558 1/25

(0, 32.008) 25.296 2/25

(33.818, 4.018) 30.166 3/25

(41.627, 6.100) 32.980 4/25

(38.469, 5.258) 34.713 5/25

(40.494, 5.798) 36.713 6/25

(11, 47) 40.025 8/25

(22, 52) 45.372 9/25

(11, 3) 49.820 12/25

(0, 16) 54.626 16/25

(0.547, 15.353) 59.564 17/25

(0, 34) 61.847 18/25

(0, 16) 66.483 19/25

Fig. 4. Centers of e�cient disks and two e�cient disks (unweighted case).
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sible in the details about the steps we indicate more
precise complexity results related to the size and
shape of the feasible region S, which, for sake of
simplicity, is assumed here to be polygonal. Most
of the described techniques carry over to the more
general case discussed in previous section, but the
details of these would just complicate matters even
more without too much added value.

Let therefore S be a ®nite union of p (not nec-
essarily convex) polygons Sk (k � 1; . . . ; p). Each Sk

is fully described by its boundary, hence by a ®nite
circular sequence of sk vertices. It may be observed
that sk may only be 1 if Sk is a point, 2 if Sk is a line
segment, and will usually be at least 3, as soon as
Sk has nonvoid interior. Let s �Pp

k�1 sk be the
total number of vertices of S.

Fig. 5. Trade-o� curve (weighted case).

Fig. 6. Centers of e�cient disks (unweighted case).
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Where possible we will indicate the complexity
of our algorithms in terms of both n, the number
of possibly a�ected points, and s or another indi-
cator of the input size of S. When only n appears
in the complexity it means that the constraint set S
is taken as ®xed.

7.1. Generation and evaluation of C1

For each a 2 A we must construct C�a�. By
Lemma 5(ii) only `local extreme' points have to be
checked, which for a polygonal region are always
`convex' vertices, i.e. vertices with an inside angle
of less than p. Let sc denote the number of convex
vertices of S. Then sc � s i� all Sk are convex, while

for general shapes sc may be much smaller than s,
as happens, e.g., when S is given by a convex re-
gion intersected with the complement of a convex
polygon with a very large number of vertices. The
list C of all convex vertices of S may evidently be
constructed in O�s� time by moving sequentially
along S's boundary and checking each vertex for
convexity. Once this list obtained, the construction
of each C�a� may be done in O�sc� time, by
checking for each vertex in C in O�1� time whether
it satis®es the additional condition in Lemma 5(iii).
This yields C1 in an overall O�s� n:sc�. Calculat-
ing the coverage for each of the O�n:sc� disks in C1

may thus be done in O�n2:sc� overall time.
Although in general the number of vertices in

C�a� may be of O�sc�, for many a it will be much
smaller, due to the additional condition in Lemma
5(iii). In fact the separate vertex checks may be
avoided by organising C as a circular list, sorted
counterclockwise on the normal of their entering
edge (the `preceding normal'). The normal cone at
some convex vertex is the cone generated by its
preceding normal and the normal of the leaving
edge (the `succeeding normal'). In order to ®nd,
for a ®xed a 2 A all convex vertices for which xÿ a
is in their normal cone, one may ®rst determine by
binary search along C the `®rst' convex vertex with
preceding normal less than xÿ a (this takes
O� log sc� similar to Theorem 2.2 in Preparata and

Fig. 7. Trade-o� curve (unweighted case).

Table 4

E�cient disks (unweighted case)

x r cov�x; r�
(40.891, 21.074) 19.221 0/10

(33.818, 4.018) 30.166 1/10

(41.627, 6.100) 32.980 2/10

(26.542, 3) 37.087 3/10

(11, 3) 39.217 4/10

(11, 3) 49.820 5/10

(0, 16) 54.626 6/10

(0.547, 15.353) 59.564 7/10

(0, 34) 61.847 8/10

(0, 16) 66.483 9/10
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Shamos (1985, p. 43)), and then read the vertices
sequentially from C as long as the succeeding
normal remains counterclockwise higher than
xÿ a. In this way the amount of `unproductive'
work has been reduced to O� log sc� for each
a 2 A, at the expense of an extra O�sc log sc� for
sorting list C.

7.2. Generation and evaluation of C2

For each pair fa; bg � A (a 6� b) the following
steps must be taken in order to generate C�a; b�:
1. Determine which edges of S intersect med�a; b�.
2. For each such edge e:

(a) Calculate xe, the intersection point of e
and med�a; b�.
(a) Check whether xe is remote from 1

2
�a� b�,

and if not remove e from further consider-
ation.
(c) Check the condition in Lemma 6(iii).

Step 1 may be naively done in O�s� time, just
checking for each vertex on which side of med�a; b�
it lies. Since this must be done for O�n2� di�erent
lines med�a; b�, it might be worthwhile to consider
using some O� log s� technique, such as a modi®-
cation of the method described in Edelsbrunner
(1987 p. 373, in order to generate the intersected set
of segments instead of just the count of them. The
preprocessing time and extra data storage neces-
sary may however be too important for practice.

The number of edges produced by step 1 is
di�cult to predict. Usually it will be quite small
compared to s, but in the worst case it may be
O�s�. Therefore the number of repetitions of step 2
will be O�s�.

Step 2 may be carried out in constant time for
each ®xed edge e. Here the outer normals qe cal-
culated for each edge e during the generation of
C1 will be very useful. When xe is an inner point of
e, 2(b) reduces to checking whether h xe ÿ 1=2�a�
b� ; qe i > 0, while 2(c) corresponds to checking
whether qe strictly lies in the convex cone gener-
ated by xe ÿ a and xe ÿ b. In the very exceptional
and degenerate case where xe is a vertex, the con-
dition of Lemma 6(ii) says that xe is locally farthest
from a or b, hence it will already have been found
in C1, and should not be checked again here.

The overall complexity of constructing C2 will
thus be O�n2s�. A posteriori calculation of the
coverage of all these disks would lead to an O�n3s�
method. Although acceptable it will be shown in
the next subsection that both generation and
evaluation of C2 may better be merged together
with the same steps for C3..2

7.3. Generation and evaluation of C3 (and C2)

We must generate all triplets fa; b; cg � A
which form an acute triangle, the circumcentre of
which lies in S, and calculate their coverage. We
will do this by considering in turn each pair fa; bg,
each time handling all additional points c.

Consider therefore a ®xed pair fa; bg � A
(a 6� b) and call their distance d � kaÿ bk. For
any c 2 A n fa; bg the circumcentre xc of fa; b; cg
lies on the mediatrix med�a; b� while the circum-
radius rc is an increasing function of the distance
from xc to the midpoint m � 1

2
�a� b� between a

and b; indeed rc � �d2=4� kmÿ xck2�1=2
. For any

x on med�a; b� denote by C�x� the open disk with
center x whose boundary passes through a and b,
i.e. C�x� � iB�x; kxÿ bk�. Note that C�xc� �
iB�xc; rc� and its boundary contains fa; b; cg.

The line ` through a and b de®nes two closed
halfplanes which we will arbitrarily call the upper
halfplane P� and the lower halfplane Pÿ. Simi-
larly med�a; b� is split into two corresponding
closed hal¯ines K� and Kÿ with origin m, which we
consider both (oppositely) strictly ordered (de-
noted by �) starting from m. Fig. 8 illustrates the
following easy properties, the proof of which are
left to the reader.

Lemma 10. For any two points x; y 2 K� with x� y
we have

P� \ C�x� � P� \ C�y� and

Pÿ \ C�x� � Pÿ \ C�y�:

Lemma 11.
For c 2 Pÿ we have c 2 C�m� i� xc 2 K� n fmg.
For c 2 P� we have c 2 C�m� i� xc 2 Kÿ n fmg.
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Lemma 12. For x 2 K� we have:
1. for c 2 P� we have c 2 C�x� i� xc � x;
2. for c 2 Pÿ we have c 2 C�x� i� xc 2 K� and x�

xc (Note that by previous lemma this can only
happen when c 2 C�m�).

By symmetry a similar property is obtained for
x 2 Kÿ by exchanging � and ÿ all over.

These properties allow us to decide whether a
point c is covered by some disk C�x� just by com-
paring the positions of x and xc along med�a; b�, i.e.
according to �. Hence we will generate all points
xc for c 2 A n fa; bg, and it will be very useful to
split them into two lists C� � K� and Cÿ � Kÿ,
both ordered by increasing distance from m.

Many of these xc will also generate candidates,
but not all. According to Lemma 7(iii) only triplets
forming acute triangles are to be considered. This
is easily checked for each c while generating xc as
follows:

· when c 2 C�m� triangle D�a; b; c� is always ob-
tuse at c, thus xc is not a candidate.

· if c and xc lie on the same side of ` (note that
then c 62 C�m� by Lemma 11) triangle D�a; b; c�
will be obtuse i� c lies outside the open band
built orthogonally upon segment �a; b� i� h cÿ
a ; bÿ a i 62 �0; d2�

In all these cases xc will be marked as ruled out.
The second condition to be checked on xc is of

course feasibility. This might be done separately for
each xc as part of its generation, but a much better
method, with the additional boon of handling the
candidate list C2 simultaneously goes as follows.

First ®nd all points of intersection of med�a; b�
with the boundary of S, yielding O�s� points xe as
described in Section 7.2. (Please note that when Sk

has empty interior each intersection point with the
boundary of Sk will be generated twice, since the
intersected edge appears twice in S's boundary
description.)

Fig. 8. xc � xd � xe.
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A point x moving along med�a; b� will change
its status of belonging to S or not, each time x
crosses some xe. Since S is bounded, any x far
enough from m in any direction along med�a; b�
will be outside S. The status of m may therefore be
obtained by counting the number of points
xe 2 K�, say, and then decide that m 2 S i� this
number is odd.

The arguments above are correct in the generic
situation, where med�a; b� always simply cuts the
boundary. Some degeneracies may however ap-
pear.
· First it could happen that med�a; b� only touch-

es the boundary: the corresponding intersection
point xe is then a vertex. Such an xe might be a
candidate, but the status of x should not change
when crossing this xe; therefore we will call this
an inessential xe, while the other xe are termed
essential.

· Second med�a; b� might have a nontrivial seg-
ment in common with S's boundary, the end-
points of which yield two points xe. As
explained before only the one farthest from m
should be considered as a possible candidate.
Normally the segment is part of the boundary
of S, hence no points xc on such a segment
should be candidates since they are not interior
points of S. Therefore both endpoints may be
considered inessential xe. If however S has a
strange shape, it might be that it is described
by the union of several pieces, each with its
own boundary, but possibly overlapping ones;
in such a case it should be checked whether
the segment really is part of S's global boundary
in order to determine whether each endpoint xe

is essential or not.
We propose to include all the points xe in the

sorted lists K� and Kÿ, thereby determining
whether m is IN or OUT of S. We also calculate as
COV the coverage of C�m�. This variable will
dynamically hold the coverage value of the disk
C�x� corresponding to the current x. Then each of
these lists will be linearly scanned in the order
given by �, initialising the status (IN or OUT) of
the current point to that of m and COV to that of
C�m�.

At each move to the next x in the list the fol-
lowing steps are taken (here described for K�).

1. If x � xe then:
� if status is IN, check the condition of Lemma

6(ii) on xe. If this is met, store xe as a candi-
date for C2 together with its radius r � kaÿ
xek and its coverage COV.

� if xe is essential then invert the status.
2. If x � xc and c 2 Pÿ, then subtract w�c� from

COV by application of Lemma 12(ii). (No
candidate can be obtained here because xc

was ruled out, the triangle D�a; b; c� being
obtuse.

3. If x � xc and c 2 P�, then:
� if xc was not ruled out and the status is IN,

then store xc as a candidate for C3 together
with its radius r � kaÿ xck and its coverage
COV;

� anyway, increase COV by w�c�.
Two reasons may exist for ruling out some xc in

this last case.
· The ®rst was mentioned above and correspond-

ed to an obtuse triangle.
· The second is connected to the fact that, by a

simple repetition of the above over all pairs
fa; bg, each triangle will be checked up to three
times. This is avoided using some simple num-
bering rule for the points of A. Generating the
pairs in lexicographic order then allows one to
rule out (as already checked) all xc for c's num-
bered lower than either a or b.
Building the sorted lists C� and Cÿ takes

O�n log n� time for each pair fa; bg and the further
processing explained above is of O�n�. Since O�n2�
pairs have to be processed this way, the full gen-
eration and evaluation of C2 and C3 takes
O�n3 log n�.

Putting together all complexity results of Sec-
tion 5 and the Sections 7.1 and 7.3 above, we
obtain

Theorem 13. The complete trade-o� curve between
the coverage and radius of circular disks centered in
S may be generated in O�n3 log n� time.

Theorem 13 gives complexity bounds for solv-
ing the two standard single-objective problems
associated with (BP), as presented in the following
corollaries.
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Corollary 14. Each minimal covering problem can
be solved in O� log n� time with a preprocessing time
of O�n3 log n�.

Proof. For given R, one just needs to identify from
the trade-o� curve the e�cient disk with smallest
radius of at least R. Since this curve is de®ned by
the list of O�n3� e�cient disks, which is sorted on
radius, this may be done by a binary search. The
result then follows from the fact that this task
takes O� log�n3�� � O� log n� time. �

Remark that, for a single value for the radius R,
our procedure requires in total O�n3 log n� time,
while the algorithm of Drezner and Wesolowsky
(1994) is in O�n log n�. However, for repeated trials
of R (as will be rule in any interactive procedure),
Drezner and Wesolowsky procedure must start
each time from scratch (thus consuming again
O�n log n� time), (it is not known in advance which
particular values of R are critical) while our pro-
cedure will only consume O� log n� time, thus en-
abling the execution of an interactive procedure in
real time.

With a similar reasoning for a given coverage
one obtains

Corollary 15. Each maxquantile or largest circle
problem can be solved in O� log n� time with a
preprocessing time of O�n3 log n�.

As will be shown in Section 7.4, better com-
plexity results can be obtained for the unweighted
case.

7.4. An improved complexity method for the
unweighted case

We show now that a method of O�n3� exists for
generation and evaluation of all candidate disks.
This means that the ®nal complexity of O�n3 log n�
still remains, but only due to the sorting of the
candidate list in view of dominated disk deletion, a
task which is well-understood and quite e�cient in
practice. For unweighted problems the overall
complexity is then reduced to O�n3�, since the
sorting step is unnecessary, which implies in par-

ticular that both minimal covering and largest cir-
cle problems can be solved, in the unweighted case,
in O� log n� time after an O�n3� preprocessing time.

As the naive generation of C1 and C2 and their
coverage values has complexity O�n3� let us take a
di�erent look at the generation and evaluation of
C3. In fact we might as well generate all triplets
B � fa; b; cg � A together with their correspond-
ing disk �xB; rB� and coverage cov�xB; rB�, where xB

is the circumcentre of B and rB the circumradius
dB�xB�, if this task may be done e�ciently. This will
just increase the candidate list, without increasing
its O�n3� length.

For each B � fa; b; cg � A its circumcentre xB is
a Voronoi vertex in a Voronoi diagram of A of an
appropriate order (see Preparata and Shamos,
1985, p. 237). Indeed, for k �j A�xB; rB� j the point
xB will be the Voronoi vertex in the order k � 1
Voronoi diagram of A, at the intersection (in the
nondegenerate case where no fourth point is active)
of the Voronoi faces corresponding to the subsets
of k � 1 closest points A�xB; rB� [ fag, A�xB; rB� [
fbg and A�xB; rB� [ fcg. In fact xB will also be a
vertex on the order k � 2 Voronoi diagram on the
faces of closest points A�xB; rB� [ fa; bg, A�xB; rB� [
fb; cg and A�xB; rB� [ fa; cg, but this is of no im-
portance to us here.

Our task thus boils down to that of construct-
ing all Voronoi vertices of all orders, hence the
Voronoi diagrams of all orders k � 1; . . . ; nÿ 1.
This task may be done in O�n3� as explained in
Edelsbrunner (1987), and includes the determina-
tion for each face of the corresponding set of k
closest points. For any vertex x, after checking
x 2 S in O�1� time, the corresponding set B is ob-
tained by xoring the closest point sets of all three
adjacent Voronoi faces. This yields the radius
rB � dB�x�, and the coverage cov�x; rB� is the total
weight of the intersection of the closest point sets
of the adjacent Voronoi faces. All these extra items
may also be generated in the course of Edelsb-
runner's algorithm.

Note. A. Tamir (1995) suggested to us that even
for weighted problems the dominated disk deletion
step might be merged with Edelsbrunner's algo-
rithm without increase in complexity, thus yielding
an optimal O�n3� method. This remains, however,
an open question.
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7.5. Location on a network

In practice the location of the undesirable fa-
cility will often be restricted to some existing net-
work in order to be reachable, see e.g. Karkazis and
Bo�ey (1994). Although the general case treated in
the previous subsections applies to S being a net-
work, it is interesting to emphasize the fact that in
this perhaps at ®rst glance more complicated situ-
ation, one obtains in fact a slightly lower com-
plexity by way of the naive basic method.

Indeed, when S is part of a physical network,
such as a road, rail and/or waterway network, it
may be adequately described by a ®nite union of
linear line segments. Note that since we do not
consider an abstract network, but one explicitly
embedded in the plane, the edges usually consid-
ered will often have to be modeled as unions of
several straight line pieces in order to accommo-
date bends. Even higher precision of the descrip-
tion may be obtained by using elliptical arc pieces
by spline approximation, see Ueberhuber (1995)
and the references therein.

As such S has no interior points, meaning we
may forget about the three active point case de-
scribed in Lemma 7. Therefore only the generation
and evaluation of C1 and C2 remain, which were
shown in Sections 7.1 and 7.2 to be implementable
in a naive way in O�n3� time. The candidate list
produced is then of length O�n2�, hence dominated
disk deletion takes only O�n2 log n� time, leading
to an overall O�n3� complexity. Observe that the
geometrical method developed in Section 7.3
would not lead to a lower complexity since all
O�n3� points xc would still have to be generated in
order to determine the coverage!

8. Extensions and suggestions for further research

8.1. Largest almost empty circles

The method of Section 7.4 may be considered to
be an extension of the way Toussaint (1983) han-
dles the largest empty circle problem. One partic-
ular order k-Voronoi diagram is not of direct use in
our problem, except in the unweighted case ± then
it may serve to ®nd the largest disk covering exactly

k ÿ 1 points. For the determination of the largest
circle covering at most a given weight W of points,
one would need an as yet undocumented extension
of the order-k Voronoi diagram concept, which we
would like to call a knapsack±Voronoi diagram.

Given a ®nite set of points A in the plane, with
corresponding weights wa, for a ®xed W , the W-
knapsack±Voronoi diagram is de®ned by the re-
gions of all points x for which the set of closest
points of A up to a total weight of W (the weight of
the last one possibly less than its full weight) is
®xed. The name stems from the analogy with
continuous knapsack problems. We feel that this
type of diagram has an interest of its own, and
possible applications in other ®elds, in particular
for Weber problems with supply surplus as studied
in Kaufman and Plastria (1988).

Using currently available techniques, however, it
will be necessary to check all order k-Voronoi dia-
grams for k � 1; . . . ;K, where K is chosen in such a
way that any subset B of A with w�B�6W has car-
dinality less than K. The ideal K is found by solving
the knapsack problem maxfj B j j w�B�6 W g,
which is easily done by sorting A nondecreasingly
and count how many weights taken in this order still
sum up to no more than W , or even quicker, without
sorting using the linear time method described by
Balas and Zemel (1980). Probably the most e�cient
way to generate all order k-Voronoi diagrams for
k � 1; . . . ;K is to use the incremental method,
which may be done in O�K2n log n� time, see Pre-
parata and Shamos (1985, p. 244). For small K this
may have an even better complexity than the O�n3�
obtained in Section 7.

Checking all order k-Voronoi diagrams for k �
1; . . . ;K in fact generates all information necessary
in order to ®nd all e�cient disks up to coverage W .
Such partial enumeration may be important in
practice. Indeed in the context of undesirable facility
location the covered weight should normally be kept
as small as possible, and certainly below some given
threshold, e.g. one which is politically a�ordable.

8.2. Other feasible regions

The geometrical method of Section 7 should
extend quite naturally to nonpolygonal feasible
regions.
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Two types of special constraints may be sug-
gested here, both leading to feasible regions of a
shape satisfying Assumption 8 in Section 5.

The ®rst concerns the presence around the fa-
cility to be located of a `high danger' zone of given
radius R, within which no population should lie.
The feasible region may then be described as the
intersection of some, usually polygonal, region Sp

with the complement of all disks B�a;R� for a 2 A

S � Sp \
\
a2A

�R2 n B�a;R��:

This means that the supplementary part of S's
boundary due to the disk complements consists of
arcs of circles, the outer normals of which point
towards S's interior. According to Lemma 5 only
endpoints of such arcs may remain in C1, while no
point internal to such an arc will satisfy the con-
ditions of Lemma 6, and will thus not have to be
retained in C2.

The other type of additional constraint con-
cerns reachability and is somewhat opposite to the
previous one, but might be used in conjunction
with it. As suggested by Drezner and Wesolowsky
(1980) in connection with largest empty circle
problems, the facility should usually be located at
some point which is su�ciently reachable from a
certain number of given points, often the same
ones which should be protected from it. Therefore
these authors propose as feasible region the inter-
section of a set of disks centered at each a 2 A and
of given, possibly di�erent radii. We suggest ex-
tending this towards a more general destination set
A0 (which may have points in common with A) and
accept other distance measures db up to point
b 2 A0 than the Euclidean one (e.g., polyhedral, see
Plastria, 1995) for the simple reason that here we
consider proximity possibly connected with trans-
portation. The feasible region will thus be further
restricted to lie within the intersection of a given
number of convex sets, the balls for these distance
measures db. The extra complication these as-
sumptions may imply is the appearance of new
pieces of boundary of possibly nonlinear shape,
the endpoints of which are new convex vertices.
These will of course to be taken into account for
the construction of C1, but also nonvertex points
satisfying Lemma 5 may now appear and should

be determined. In case b 2 A \ A0 and db is Eu-
clidean the degenerate special case discussed in
Section 5 may appear, possibly calling for the use
of a linear search. The whole approach may now
be viewed as an extension of the proposal of
Rangan and Govindan (1992) for the largest
empty circle problem.

8.3. In¯ated Euclidean distances

The maxmin model studied by Drezner and
Wesolowsky (1980) was in fact slightly more gen-
eral: distances up to each point in A were mea-
sured by in¯ated Euclidean distances kakaÿ xk
(note that these authors call these in¯ation factors
the weights, which would be rather confusing in
our context). Although the use of this generaliza-
tion for modeling undesirable facility location is
disputable (and we do not advocate it: why should
the risk to two di�erent centers at the same Eu-
clidean distance be di�erent?), it may be handled in
almost the same way as the normal case. Indeed
the only di�erence appearing is that med�a; b� is no
longer a straight line, but a circle (the Appolonius
circle). The basic algorithm and its improved
geometric version certainly apply, but the Voronoi
diagram machinery may also be put into play,
provided its multiplicative weighted version is
used, see Okabe et al. (1992, p. 129 et seq), al-
though the subject of order k multiplicatively
weighted Voronoi diagrams and their construc-
tions seem not to be documented as yet. This
would extend the work of Melachrinoudis and
MacGregor Smith (1995).

8.4. Other planar distance measures

Distance measures other than the Euclidean
one might be investigated. Both Lemmas 3 and 4
carry through without any changes. It is not hard
to see that if a disk �x; r� is e�cient, then x is a
global maximum in S of the minimal distance
function dU�x;r� to U�x; r� � A n A�x; r�, the set of
points of A not covered by iB�x; r�. In other words
x is then a global solution to some maxmin
problem with directional di�erentiable objective,
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for which many results are known, e.g. in Chapter
3 of Dem'yanov and Rubinov (1986). These lead
to conclusions similar to those in Lemmas 5±7,
and in principle the ideas of the basic algorithm
should carry through.

However, we consider that in the realm of un-
desirable facility location the distance measures of
interest are the Euclidean, and its modi®cations
due to the presence of winds. For the modeling of
airborne pollution it seems that an ellipsoidal
gauge, i.e. the Minkowsky distance generated by
an ellipse with `centerpoint' possibly di�ering from
its center of symmetry, might be of interest. As
long as this centerpoint remains inside the ellipse
we obtain skewed norms as de®ned in Plastria
(1992a). If the centerpoint moves out of the ellipse
this does not correspond to a usual distance
measure anymore. However, the level sets (above a
certain level) of the Gaussian plume model (see
e.g. Karkazis and Papadimitriou, 1992) for dis-
persion of airborne pollutants may be approxi-
mated by an ellipse for which the point of emission
lies outside. Therefore even such a case might be
applicable.

Let us therefore consider our model, but re-
placing the circular disks by such ellipses. More
precisely, let T be a regular linear transformation
of R2, and q any vector in R2. Denote by U the
standard Euclidean unit disk, hence B�x; r� �
x� rU . We assume now that we have as new unit
disk the set C � T �U� � q, which is an ellipse with
symmetry center at the point q. The disk of radius
r and center x for this new distance measure is then
given by C�x; r� � x� rC, which is an ellipse, but
the symmetry center of which lies now at x� rq.

Our naive algorithm may be adapted as follows
to this new situation in the case of polygonal re-
gions. First, for each given point all boundary
vertices should be tested for being locally farthest
feasible points. Second, for each pair of given
points the mediatrix ± which is now a branch of a
hyperbola in general ± should be intersected with
the boundary of the feasible region. Third, for
each triplet of points the circumellipse should be
constructed, thereby determining the radius r, and
then it should be checked whether the translate
over ÿrq of its symmetry center is feasible. In this
way the candidate solution list is constructed,

which should still be evaluated and weeded. All
this does not look like a very di�cult task. It re-
quires some research however in order to ®nd an
e�cient way of carrying it out.

8.5. A�ected regions

Another very important extension in practice is
to consider a�ected regions instead of a�ected
points. Since most of our analysis and methods
heavily relied on the assumption of discrete af-
fected points, it is not clear at all how to extend the
methods presented here. In view of the evident
practical interest of such models they certainly
deserve attention by the research community.
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