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Abstract

Support vector machine (SVM) is a powerful tool in binary classification, known to
attain excellent misclassification rates. On the other hand, many realworld classifica-
tion problems, such as those found in medical diagnosis, churn or fraud prediction,
involve misclassification costs which may be different in the different classes. How-
ever, it may be hard for the user to provide precise values for such misclassification
costs, whereas it may be much easier to identify acceptable misclassification rates
values. In this paper we propose a novel SVM model in which misclassification costs
are considered by incorporating performance constraints in the problem formulation.
Specifically, our aim is to seek the hyperplane with maximal margin yielding mis-
classification rates below given threshold values. Such maximal margin hyperplane
is obtained by solving a quadratic convex problem with linear constraints and integer
variables. The reported numerical experience shows that our model gives the user con-
trol on the misclassification rates in one class (possibly at the expense of an increase
in misclassification rates for the other class) and is feasible in terms of running times.

Keywords Constrained classification - Misclassification costs - Mixed integer
quadratic programming - Sensitivity/specificity trade-off - Support vector machines
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1 Introduction

In supervised classification we are given a set §2 of individuals belonging to two or
more different classes, and the final aim is to classify new objects whose class is
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unknown. Each object i € §2 can be represented by a pair (x;, y;), where x; € R™ is
the attribute vector and y; € C is the class membership of object i.

A state-of-the-art method in supervised classification is the support vector machine
(SVM), see Vapnik (1995, 1998), Cristianini and Shawe-Taylor (2000) and Carrizosa
and Romero Morales (2013). In its basic version, SVM addresses two-class problems,
i.e., C has two elements, say, C = {—1, +1}. The SVM aims at separating both classes
by means of a linear classifier, w'x + B = 0, where w is the so called score vector.
We will assume throughout this paper that C = {—1, +1} and refer the reader to e.g.
Allwein et al. (2001) for the reduction of multiclass problems to this case.

The linear SVM classifier is obtained by solving the following convex quadratic
programming (QP) formulation with linear constraints:

mn o' o+Cy Y H+C. Y &

,B.§ iel:y=+1 iely=—1
s.t. Vi@ xi +p) =1 -8, iel VM, Coy
§& =0 iel,

where I represents the set of training data, & > 0 are artificial variables which allow
data points to be misclassified, and C+, C_ > 0 are regularization parameters to be
tuned that control the trade-off between margin minimization and misclassification
errors. The case C = C_ is frequently considered in the literature, but the use of
different regularization parameters for the different classes may allow for a better
control of misclassification costs or unbalancedness. See e.g. Lin et al. (2002).

Given an object i, it is classified in the positive or the negative class according to the
sign of the so-called score function, si gn(a)Tx,- + B), while for the case a)Tx,- +p =0,
the object is classified randomly.

A mapping into a high-dimensional feature space may be considered (Cortes and
Vapnik 1995), which allows us to transform this linear classification technique in a
non-linear one using Mercer Theorem, Mercer (1909) and the so-called kernel trick,
e.g. Cristianini and Shawe-Taylor (2000). In this way we can address problems with
a very large number of features, such as those encountered in personalized medicine
(Sanchez et al. 2016).

Hence, the general formulation of SVM is

1
max —> Dok Ay K (g, x) + D0 M

s.t. Zi)»,‘y,'zo
0 <A <Cy, iel:y =+1
O<x <C_, iel:y =-—1,

where K : R™ x R™ — R is a kernel function and A are the usual variables of the
dual formulation of the SVM.
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As mentioned, the goal in supervised classification is to classify objects in the
correct class. However, ignoring imbalance (either in the classes size, either in the
misclassification cost structure) may have dramatic consequences in the classification
task, see Carrizosa et al. (2008), He and Ma (2013), Prati et al. (2015) and Maldonado
et al. (2017). For instance, for clinical databases, there are usually more observations
of healthy populations than of the disease cases, and therefore smaller classification
errors may be obtained for the first case. For example, for the well known Breast
Cancer Wisconsin (Diagnostic) Data Set from the UCI repository (Lichman 2013),
the number of sick cases (212) is smaller than the size of control cases (357). If a
standard SVM is used for classifying the dataset, then the estimated rates (average
values according to a 10-fold cross-validation approach), are depicted in Table 1.
Even though both rates are high, it might be of interest to increase the accuracy of
predicting cancer, perhaps at the expense of deteriorating the classification rates in the
other class. This problem will be addressed in this paper.

In order to cope with imbalancedness, either in class size or structure of misclassifi-
cation costs, different methods have been suggested, see Bradford et al. (1998), Freitas
et al. (2007), Carrizosa et al. (2008), and Datta and Das (2015). Those methods are
based on adding parameters or adapting the classifier construction, among others. For
example, in Carrizosa et al. (2008) a biobjective problem of simultaneous minimiza-
tion of misclassification rate, via the maximization of the margin, and measurement
costs, is formulated.

In this paper a new formulation of the SVM is presented, in such a way that the focus
is not only on the minimization of the overall misclassification rate but also on the
performance of the classifier in the two classes (either jointly or separately). In order
to do that, novel constraints are added to the SVM formulation. The keystone of the
new model is its ability to achieve a deeper control over misclassification in contrast
to previously existing models. The proposed methodology will be called Constrained
Support Vector Machine (CSVM) and the resulting classification technique will be
referred as CSVM classifier.

The remainder of this paper is structured as follows. In Sect. 2, the CSVM is
formulated as an optimization problem, and details concerning its feasibility are given.
Section 3 aims to illustrate the performance of the new classifier. A description in depth
about the experiments’ design, real datasets to be tested as well as the obtained results
will be given. The paper ends with some concluding remarks and possible extensions
in Sect. 4.

Table 1 Performance of

M % Std
standard SVM with radial ean (%)
function basis kernel in % Benign instances 99 17
wisconsin
well classified
% Malign instances 94.8 49

well classified

Average values and standard deviations computed from 10 realizations
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2 Constrained support vector machines

In this section the Constrained Support Vector Machine (CSVM) model is formu-
lated as a Mixed Integer Nonlinear Programming (MINLP) problem (Bonami et al.
2008; Burer and Letchford 2012), specifically in terms of a mixed integer quadratic
programming (MIQP) problem.

This section is structured as follows. In Sect. 2.1 some theoretical foundations that
motivate the novel constraints are given. Then, in Sect. 2.2 the formulation of the
CSVM is presented. We will depart from the linear kernel case to later extend it to
the general kernel case via the kernel trick. Finally, in Sect. 2.3, some issues about the
CSVM formulation, as its feasibility, shall be discussed.

2.1 Theoretical motivation

As commented before, the aim of this work is to build a classifier so that the user
may have control over the performance over the two classes. Specifically, given a
set £2 = {(x;, yi)}; of data (a random sample of a vector (X, Y) with unknown
distribution), the target is to obtain a classifier such that p > po, where p is the
value of a performance measurement and pg is a threshold chosen by the user. The
performance measure p is chosen by the user at her convenience and may be selected
among the following rates: true positive rate (TPR) or sensitivity, true negative rate
(TNR) or specificity and accuracy (ACC), which are defined as follows:

TPR: p=Pw X+B>0]Y =+1)
TNR: p=Pw X+B<0]Y =—1)
ACC: p=P¥ (@ X+8)>0), (1)

see for example, Bewick et al. (2004).

In this paper, for the sake of clarity, the positive class shall be identified with the
class of interest to be controlled. For instance, in cancer screening studies, cancer
is labelled as positive class whereas absence of cancer is labelled as negative. Also,
in credit-scoring applications the positive class will be the defaulting clients. More
examples will be discussed in Sect. 3.

If the random variable Z, defined as

7 _ 1, if an observation is well classified,
~ ] 0, otherwise,

is considered, then, the values of p as in (1) corresponding to the probability of correct
classification can be rewritten as

TPR: p=E[Z|Y = +1]
TNR : p=E[Z|]Y = —1]
ACC: p=E[Z]
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and estimated from an independent and identically distributed (i.i.d.) sample {Z;};es,
by

_ o Z

TPR : 13=Z+=Z’ES+ ’
[S+]

_ o Z

TNR : ﬁ:Z_=Zl€S’ :
[S—]|

_ o7

ACC : ﬁzzz—z’fsﬂ :,

where S; and S_ denote, respectively, the subsets {i € S : y; = +1}and {i € S :

yi=—1}
From a hypothesis testing viewpoint, our aim is to build a classifier such that, for
a given sample, one can reject the null hypothesis in

Ho:p < po
Hy: p > po.

Under the classic decision rule, Hy is rejected if p > pg assuming that « =
P (type I error). From Hoeffding Inequality (Hoeffding 1963),

P(p = p+c) <exp(—2nc?). )
As a = P(type Lerror) = P(p > pjlp = po), substituting p by po in (2) yields
P(p<po+e)=1—exp(=2nc®) =1-a, 3)
where po + ¢ = p. Therefore, we can take

logx
Pi=po+ = @

Note that n equals |S4|, | S—| or |S], respectively, when considering the TPR, the TNR
or the accuracy.

Here, the selection of the Hoeffding Inequality is motivated by its distribution-free
character, but other options as the Binomial-Normal approximation could have been
chosen instead.

2.2 CSVM formulation
In this section, the CSVM formulation is presented. As it will be seen, the formulation
includes novel performance constraints, which make the optimization problem a MIQP

problem in terms of some integer variables.
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We assume to be given a dataset with known labels. From such set we identify the
training set /, used to build the classifier, and the anchor set J, used to impose a lower
bound on the classifier performance. These sets will be considered disjoint.

With the purpose of building the CSVM, the performance constraints will be for-
mulated in terms of binary variables {z;} jcs, which are realizations of the variable Z
in Sect. 2.1 and defined as:

) if instance j is counted as well classified
= 0, otherwise.

In order to formulate the CSVM, novel constraints are added to the standard soft-
margin SVM formulation as follows:

min o' o+ Cy Z &+ C_ Z &
1

@.p.d.z ielyi=t1 iely——
sty xi+p) > 1-&, iel (5)
& >0 iel (6)
yil'xj+8) = 1—-M1—z;), jeJ CSVMy) 7
zj €10, 1) jelJ ®)
Pt = poy tel. ©)

In the previous optimization problem, (5) and (6) are the usual constraints in the
SVM formulation. Constraints (7) ensure that observations j € J withz; = 1 will be
correctly classified, without imposing any restriction when z; = 0, provided that M
is big enough. A collection of requirements on the performance of the classifier over
J can be specified by means of (9) . Also, L is the set of indexes of the constraints
that has the form of (9). These constraints can be modeled via the binary variables z,
for instance:

TPR: Y z; = pjl 4|
Jjel+

TNR: Yz > pjlJ-|
jeJ-

ACC:  zj = pjlal.
jeJ

where J; and J_ denote, respectively, the subsets {i € J : y; = +1}and {i € J :

yi=—1}.
As before, by considering the (partial) dual problem of (CSVMy) and the kernel
trick, the general formulation of the CSVM is obtained as follows (the intermediate
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steps can be found in Appendix A):

min Do hsyshy Yy K(xs, xg) + 3 e yeiy yo K (xe, xp0)
Ap,Bi.z s.s'el tt'el
+ 2 Z AsYsir ye K (x5, x)+Cy Z § +C- Z &
sel,teJ iel:yij=+1 iel:yi=—1
s.t. z; €1{0, 1} jelJ
DPe = pé( tel

Vi (Z Asys K (xs, xi) + Y e ye K (X, xi) +/3) >1-§ iel

sel teJ

yj (Z Asys K (xg, xj) + 20 ey K (xr, x ) +/3) >1—-M(1-2zj)

sel teJ
jeJ (CSVM)

§ >0 iel
2 hiyi+ 2 ujyi=0
iel jelJ
0<Ar <C4/2 iel:yi=+1
0<xrx =<C_)2 iel:y=-1
0<pu; <Mz jelJ.

Here K : R” x R™ — R is again a kernel function, M| and M are big enough
numbers, and (A, n) are the usual variables in the dual formulation of the SVM.

2.3 Solving the CSVM

In this section we give details about the complexity of our problem as formulated in
(CSVM). The problem belongs to the class of MIQP problems, and thus it can be
addressed by standard mixed integer quadratic optimization solvers. In particular, the
solver Gurobi (Gurobi Optimization 2016) and its Python language interface (Van
Rossum and Drake 2011) have been used in our numerical experiments. In contrast to
the standard SVM formulation, which is a continuous quadratic problem, the CSVM
is harder to solve due to the presence of binary variables. Hence, the optimal solution
may not be found in a short period of time; however, as discussed in our numerical
experience, good results are obtained when the problems are solved heuristically by
imposing a short time limit to the solver.

Performance constraints (9) may define an infeasible problem since the values
of the pg, may be unattainable in practice. Hence, the study of the feasibility of
Problem (CSVM) is an important issue. As an example, consider data composed by
two different classes, each one represented respectively by black and white dots in
the top picture in Fig. 1. If the optimization problem for the linear kernel SVM is
solved, the resulting classifier is a hyperplane that aims at separating both classes and
maximizes the margin. An approximate representation of the data and the classifier
is shown in the middle panel in Fig. 1. If the aim is to correctly classify all the data
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Fig. 1 Study of feasiblity and unfeasibility of the CSVM
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corresponding to a given class, it is intuitively easy to see that this objective can be
reached by moving the SVM hyperplane. In fact, it can be seen in the bottom picture
in Fig. 1 how hyperplanes 1 and 2 classify correctly all white points, and hyperplane
3 classifies all the black dots in the correct class. Among all those hyperplanes, the
SVM selects the one which maximizes the margin. So, intuitively, it is evident that if
just one constraint of performance is imposed in only one of the classes, the problem
is always feasible. However, and using the data in Fig. 1 again, as well as the linear
kernel SVM, it is clear that it is impossible to classify correctly all the instances at
the same time; thus, the problem is then infeasible. However, there exist results, as
Theorem 5 in Burges (1998), that show that the class of Mercer kernels for which
K(x,x") = 0as ||x — x'|| = oo, and for which K (x, x) is O(1), builds classifiers
that get a total correct classification in all the classes in the training sample, without
regard how arbitrarily the data have been chosen. Thus, if a kernel satisfies the previous
conditions, then feasibility is guaranteed. In particular, Radial Function Basis (RBF)
kernel meets these conditions. Therefore, to be on the safe side, if the performance
thresholds imposed are not too low, they should refer only to one class misclassification
rates (so that we can shift the variable 8 to make the problem feasible) or to use a kernel,
such as the RBF, known to have large VC dimension (Burges 1998; Cristianini and
Shawe-Taylor 2000), defined as the maximal training sample size for which perfect
separation can always be enforced.

3 Computational results

This section illustrates the performance of the novel method, the CSVM, in compari-
son with benchmark approaches. To do that, an assortment of datasets with different
properties concerning size and unbalanceness shall be analyzed. Section 3.1 describes
the experiments to be carried out, while Sect. 3.2 details the choice of parameters.
Section 3.3 is devoted to clarify different aspects of the cross-validation procedure for
estimating the performance of the approach, and Sect. 3.4 presents the datasets to be
analyzed. Finally, Sect. 3.5 contains the obtained results and a deep discussion about
them.

3.1 Description of the experiments

The objective of this paper, as has been stated before, is to build a classifier whose

performance can be controlled by means of some constraints, as in Problem (CSVM).

As explained in Sect. 2.1, if we want a performance measurement p to be greater than

a value po with a specified confidence 100(1 — «)%, we should use an estimator of
ogu

P, P, and impose it to be greater than p; = po + , according to (4).

—2n

Experiments whose aim will be to increase the performance rate of interest in one
class will be performed. However, as it will be shown, a damage may be produced
in the other class. In particular, since the interest is to improve the classification in

the positive class, the TPR will be the rate to be included in the novel constraints.
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672 S. Benitez-Pefa et al.

Assume that an estimator of the TPR, TPR is given. The aim will be to impose TPR
> TPRy +41, were §; = 0.025, although other values can also be tested. Therefore,
our experiments will consist of:

Impose TPR > min {1, TPRq + 0.025} = po,

which implies that, for « = 0.05, the performance constraints in the optimization
problem defining the novel CSVM are:

log 0.05

—zn

ﬁ»ﬁzmin{l,TpRﬁ +0.025}=p;;.

The novel CSVM will be compared with benchmark approaches. The first method
to be compared with is the classic SVM where two different values of C (Cy+ and
C_) are used for each class. This approach shall be noted as SVM(C, C_) (see
Sect. 1). The second benchmark method consists of moving the original hyperplane
resulting from performing the standard SVM until the value p;j obtained by Hoeffding
Inequality is achieved. This approach will be called from now on Sliding § strategy.

3.2 Parameters setting

One of the most popular kernels K (x, x’) in literature is the well-known RBF kernel
(Cristianini and Shawe-Taylor 2000; Hastie et al. 2001; Hsu et al. 2003; Smola and
Scholkopf 2004; Horn et al. 2016), given by

K(xx') = exp (=7 le = x'I1)

where y > 0isaparameter to be tuned. This will be the kernel chosen for implementing
the CSVM, although the method is valid for an arbitrary kernel.

The time limit for the solver was set equal to 300 seconds. In addition, the M;
and M, values in Problem (CSVM) were set both equal to 100. The choice of these
values is motivated as follows. First, for the sake of computational tractability, the
time limit should not be too high, but high enough so that the optimizer is able to solve
the problem or at least to provide good feasible solutions. In our experiments, the
choice of a time limit equal to 300s gave a good balance between the computational
cost and the quality of the solutions. In the case of the values of M| and M>, if small
values are chosen, there may be many discarded hyperplanes, including the optimal
one. However, if M| and M, are too big, it might cause computational difficulties
(Camm et al. 1990) because of numerical instabilities and large gaps in the continuous
relaxation, making the branch and bound too slow. A compromise solution is obtained
by considering M; = M> = 100 in our problems. Setting M7 and M> equal to 100,
not a huge number, may indeed exclude the optimal solution of the original problem.
This is not a big issue, since the original problem is nothing but a surrogate of our real
aim, namely, classifying correctly forthcoming individuals. On the other hand, this
constraint may also be seen as a regularization constraint, since it forces the variables
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On support vector machines under a multiple-cost scenario 673

involved to take relatively small values, as already happens with the variables A;,
already force to be below C /2. In other words, though at the expense of excluding the
optimal solution of the proxy optimization problem, setting a not too large value for
M and M; can be seen as an extra regularization, thus preventing overfit.

Note that an alternative formulation, avoiding big M constraints is obtained by using
the Specially Ordered Sets of Type 1 (SOS1) (Bertsimas and Weismantel (2005), see
also Silva (2017) and Bertsimas et al. (2016) for some examples of SOS1). However,
we prefer to maintain the big M| and M, for two reasons. On the one hand, the
use of SOS1 would involve quadratic constraints, which would make the problem
even more difficult to solve. For example, constraint 0 < u; < M>z; would become
(e, 1 —z4):SOSI1 and 0 < p;. This is equivalent to u,;(1 — z;) = 0and 0 < uy,
which includes, as we can see, a non-convex quadratic constraint. On the other hand,
not every solver has implemented the SOS1 method or is capable to solve quadratic
mixed integer problems with non-convex quadratic constraints. In addition, even if it
can manage SOS1-type constraints, it might perform the conversion to the problem
with a big M automatically, and thus we would be again with big M constraints, now
controlled by the solver and not by ourselves.

3.3 Performance estimation

The estimation of the performance of the novel CSVM is based on a K-fold cross
validation (CV) as follows, see Kohavi et al. (1995). Generally, K = 10, but for those
datasets with more than 1000 samples, K = 5 so that the running times are lower.
Note that, apart from tuning y, the regularization parameters C; and C_ introduced
in Sect. 1 also need to be tuned. In order to make the CSVM procedure quicker, our
experiments are based on choosing C; = C/|Iy| and C_ = C/|I_|, so only one
parameter C shall be tuned for the CSVM, but not for the SVM(C., C_), in which
both C and C_ are tuned independently. As it will be seen later, this is not a crucial
issue. Hence, for a given pair of parameters (C, y), the process consists mainly on
solving a standard SVM using all the instances (I U J), and collect the values of A
(from the dual formulation of the SVM) as well as the value of 8. Once the SVM is
solved, and with the purpose of providing an initial solution for the CSVM, the value
of B is slightly changed (maintaining the values of A’s fixed) until the desired number
of instances well classified is reached. Then, the values of 8 and A’s obtained are set
as initial solutions for CSVM. In addition, depending on whether each instance in J is
well classified or not, we set their values of z as O or 1 as initial values for the CSVM.

We should make the selection of the best pair (C, y) in each of the previous folds.
In order to do that, a 10-fold CV (5-fold CV for datasets with more of 1000 samples,
in order to reduce the running times) as before is made for each pair in a grid given
by the 121 different combinations of C = 27 and y = 273 (€, = 2(=59),
C_ =239 and y = 205 for SVM(Cy, C_)). The general criterion used to
select the best pair of parameters is the accuracy. However, in cases where the datasets
are severely unbalanced in the classes size (when one of the classes has a weight
less than a 30% of the total size), the G-mean (Tang et al. 2009), which is defined as
~T PR x TNR,isused to perform the parameter tuning instead. Finally, the average
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674 S. Benitez-Pefa et al.

values of TPR and TNR obtained in the first CV, in addition to their standard deviations,

are calculated.
For a better understanding, the previous algorithm is summarized in Algorithm 1.

Algorithm 1: Pseudocode for CSVM

1 Split data (D) into “folds™ subsets, D = {Dy, ..., D fojqs}-
2 for kf = 1,.. . folds do

3 Set Validation = Dyy and I U J = D — {Dyy}.

4 for each pair (C,y) in grid ({2759}, 2(=55)}) do

5 Split D — {Dyy} = D* into “folds2” subsets, D* = {Df, ..., D?oldsz}'
6 for kf2 = 1,. .., folds2 do

7 Set Validation™ = Dltfz and I* U J* = D* — {Dyy2}.

8 Run standard SVM over I* U J*.

9 Move B of SVM until the instances are correctly classified.

10 Run problem CSVM over I*, J* with initial solutions from before.
11 Validate over Validation™®, getting the accuracy (ACC[kf2]).

12 end

13 Calculate the average accuracy (Zkfz ACCIlkf2])/ folds2 = ACC.
14 if ACC > bestACC then

15 Set bestACC = ACC, besty =y and bestC =C.

16 end

17 end

18 Run standard SVM over / U J with the parameters besty and bestC.

19 Move B of SVM until the instances are correctly classified.

20 Run problem CSVM over 7, J with initial solutions from the previous step.

21 Validate over Validation, getting the correct classification probabilities (T P R[kf], T N R[kf]).
22 end

23 Calculate the average values for T PR and TN R.

Finally, we want to clarify that for our experiments we have selected I as the first
half of 7 U J and J as the second one.

3.4 Data description

The performance, in terms of correct classification probabilities and accuracy, is illus-
trated using 6 real-life datasets from the UCI and Keel repositories (Lichman 2013 and
Alcala-Fdez et al. 2009). In particular, the datasets are australian (Statlog (Aus-
tralian Credit Approval) Data Set), votes (Congressional Voting Records Data Set),
wisconsin (Breast Cancer Wisconsin (Diagnostic) Data Set), german (Statlog
(German Credit Data) Data Set), pageBlocks (Page Blocks Classification (Imbal-
anced: 0) data set) and biodeg (QSAR biodegradation Data Set).

Details concerning the distribution of the classes in the considered datasets are
provided by Table 2. The first two columns give the name and number of attributes for
each set. The values |£2| and |§2. | represent, respectively, the size for each dataset and
the number of positive instances in §2. Finally, the percentage of positive instances is
compiled in the last column.
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implomentaon ot e CSuM. N v il 1241 %)

for the considered datasets Australian 14 690 307 (44.5%)
Votes 16 435 267 (61.4 %)
Wisconsin 30 569 212 (37.3 %)
German 45 1000 300 (30%)
PageBlocks 10 5472 558 (10.2%)
Biodeg 41 1055 356 (33.7%)

Note that prior to running the different experiments, data have been standardized,
that is to say, each attribute has zero mean and unit variance.

As a remark, we want to express that for the two biggest datasets (those that have
more than 1000 samples), an alternative is proposed in order to reduce the compu-
tational times. First, to train the classifier, instead of using the training samples, we
have built clusters of training points of the same class via the k-means method. The
number of clusters was selected so that the proportion of original positive and negative
instances was maintained. Also, we took into consideration the number of instances
per cluster to train the SVM. In the validation sample, we kept the instances as they
were originally.

3.5 Results

In this section we illustrate the performance of the CSVM in comparison with the
classic SVM, the SVM(C., C_) and the Sliding B strategy. As previously commented,
the purpose will be to increase the TPR. Note that, even though from Sect. 2.3 the
CSVM problem is always feasible using the training sample, it may happen that the
desired performance is not achieved in the validation sample.

Table 3 reports the average rates (and under them, and in parenthesis, their
standard deviations) obtained under the SVM, SVM(C,, C_), Sliding B strat-
egy and CSVM, for the experiment described in Sect. 3.1, that is, when ﬁ >

/1og 0.05
min § 1, TPRg + Og—2 4 0.025 ; is imposed. Also, the target values (in paren-
—zn

thesis in the third and forth columns) to be achieved for the TPR are shown.

Some comments arise from the table. In the case of australian, we trivially
considered “+4” as the positive class and “—” as the negative. The SVM(C4, C_)
slightly improves the TNR when it is compared with the standard SVM, but yields a
worse value in the TPR, which is the rate to be improved. When the Sliding § strategy
is used, although a target value of 0.855 is imposed, even a lower value that the one got
with the SVM is obtained, with a lower TNR value also. On the other hand, when the
CSVM is used instead, the increase is not only of 0.025 points but of 0.073, obviously
at the expense of the other class. Hence, the best TPR is obtained for the CSVM.

We shall analyze next the results for votes, which has two classes: “democrat”
and “republican”. Since in principle there is no interest in a better classification of one
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Table 3 Results under the SVM, SVM(C., C_), the Sliding B strategy and the novel CSVM

Name SVM SVM(C4, C-) Sliding B CSVM
Mean Mean Mean (Target) Mean (target)
(Std) (Std) (Std) (Std)
Australian TPR 0.83 0.806 0.821 (0.855) 0.903 (0.855)
(0.071) (0.093) (0.073) (0.05)
TNR 0.863 0.878 0.855 0.772
(0.079) (0.088) (0.068) (0.081)
Votes TPR 0.963 0.945 0.971 (0.988) 0.978 (0.988)
(0.04) (0.042) (0.037) (0.026)
TNR 0.951 0.941 0.91 0.922
(0.031) (0.037) (0.063) (0.04)
Wisconsin TPR 0.948 0.962 0.989 (0.973) 0.965 (0.973)
(0.049) (0.027) (0.017) (0.037)
TNR 0.99 0.931 0.953 0.945
(0.017) (0.07) (0.045) (0.045)
German TPR 0.464 0.89 0.043 (0.65) 0.671 (0.65)
(0.103) (0.08) (0.023) (0.164)
TNR 0.847 0.407 0.996 0.668
(0.031) (0.069) (0.009) (0.111)
PageBlocks TPR 0.807 0.557 0.819 (0.832) 0.859 (0.832)
(0.03) (0.361) (0.981) (0.045)
TNR 0.988 0.901 0.981 0.965
(0.004) (0.088) (0.006) (0.012)
Biodeg TPR 0.783 0.793 0.797 (0.808) 0.852 (0.808)
(0.084) (0.083) (0.095) (0.057)
TNR 0.909 0.839 0.891 0.833
(0.032) (0.037) (0.037) (0.05)

Bold values indicate the measurement to be improved
Target rate: TPR

of the classes, the majority class (“democrat”) will be identified as the positive class.
From the table it can be seen how the results under the SVM(C,., C_) are poorer than
under the classic SVM. If the Sliding B strategy is used instead, an increase in the
TPR is obtained but the rate does not achieve the target value. Even though the CSVM
does not achieve the target value in the validation set, here again, this novel approach
achieves the best TPR.

Concerning wisconsin dataset, it has two classes: “malignant” and “benign”.
Here, we consider as positive the “malignant” class, which is clearly the class of
interest. The results for the SVM(C, C_) are better than those obtained under the
SVM, but it does not achieve the target value. When the Sliding  strategy is used,
the target value for the TPR is achieved, while reducing the value for the TNR with
respect to the SVM. Then, when we use the CSVM, the TPR is a bit higher than when
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the SVM(C4., C-) is used, but lower than the one obtained for the Sliding § strategy.
The same happens for the TNR. In this case, the method that performs the best is the
Sliding B strategy.

Next, we shall analyze german dataset, which is composed by two classes: good
and bad credit risk. The class of interest and hence the positive one, is “bad credit
risk”. Here, the SVM(C, C_) improves in a significant way the estimation of the
TPR in comparison to the classic SVM; however, this is achieved at the expense of
worsening the TNR. The Sliding B strategy performs very poorly in the case of the
TPR but provides in contrast a very high TNR. The CSVM gets the most balanced
result: the TPR exceeds the target values, and at the same time, the TNR is not notably
affected.

We next describe the results obtained for the pageBlocks dataset which, as it has
been previously commented, is a strongly unbalanced dataset with a dimension higher
than in the previous cases. The two classes for this dataset are “text” and “graphic”
areas. In addition, the “graphic” areas instances are less frequent (10.2 %). Assume
that for this problem the interest is in distinguishing the “graphic” areas from the
“text” areas, therefore, the class to be controlled will be the “graphic” one. The results
show how the SVM(C_., C_) obtains the opposite effect than the pursued. Both the
TPR and TNR are lower than when the classic SVM is used. In the case of using the
Sliding B strategy, the TPR is increased but it does not reach the imposed target. On
the other hand, the TNR is slightly reduced. For the CSVM, the target value in the
TPR is reached, resulting in a small decrease in the TNR.

Finally, we present the results for biodeg, with two classes: “ready biodegrad-
able” and “not ready biodegradable”. Originally, Mansouri et al. (2013), classification
models were used to discriminate “ready biodegradable” from “not ready biodegrad-
able”, being “ready biodegradable” considered as the positive class. Here again,
SVM(C4, C-) improves the TPR with respect to the classic SVM. The Sliding B
strategy outperforms the SVM(C,, C_) but only the CSVM obtains an estimated
TPR larger than the imposed lower bound. Note that, in contrast, the TNR under the
CSVM is slightly lower than the values under the benchmark approaches.

Overall, the target value is almost always achieved when the CSVM is used. In the
cases this does not occur, we obtain a close value. However, although initially one
may think that good results will be obtained for the Sliding B strategy, such naive
procedure does not achieve the target value so frequently. The same occurs with the
SVM(C4, C-).Hence, we can conclude that the method that provides more control on
the performance measures is the CSVM, which highlights the novelty of our proposal.

4 Conclusions

In this paper, we propose a new supervised learning SVM-based method, the CSVM,
with the purpose of controlling a specific performance measure. Such classifier is built
via a reformulation of the classic SVM, where novel constraints including integer
variables are added. The final optimization problem is a MIQP problem, which can
be solved using standard solvers as Gurobi or CPLEX. In order to guarantee that the
performance rate is lower bounded by a fixed constant with a high confidence, some
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theoretical foundations are provided. The applicability of this cost-sensitive SVM has
been demonstrated by numerical experiments on benchmark data sets.

We conclude that it is possible to control the classification rates in one class, pos-
sibly, but not necessarily, at the expense of the performance on the other class. This
highly contrasts with the naive approach in which, once the SVM is solved, its intercept
is moved to enhance the positive rates in one class, necessarily deteriorating the per-
formance in the other class. The results presented confirm the power of our approach.

Although, for simplicity, all numerical results are presented just adding one per-
formance constraint, one constraint per class, as well as an overall accuracy, may be
added in our approach. Also for simplicity, we addressed here two-ways data matrices
and two-class problems; however, this approach could be extended to the case when
using more complex data as multi-class or multi-way arrays (Lyu et al. 2017), which
are very common in biomedical research. On the other hand, an alternative perspective
for addressing the SVM regularization is to consider different norms (Yao and Lee
2014).

Finally, another possible extension is to perform a feature selection which uses the
proposed constraints in order to control the misclassification costs, see Benitez-Pefia
et al. (2018). Such a process is an essential step in tasks such as high-dimensional
microarray classification problems (Guo 2010).
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Appendix A: Derivation of the CSVM

In this section, the detailed steps to build the CSVM formulation are shown. For that,
suppose that we are given the mixed-integer quadratic model

min o'w+Cy Y &+C- Y &

w,B.§.z iel:yj=+1 ieliyj=—1
s.t. yilw xi +8) > 1—&, iel
& >0 iel
yil'xj+B) =1—-M(1—-2zj), jelJ
z; €{0,1} jelJ
ﬁg > pée tel.

Hence, the problem above can be rewritten as

min, ming pe 0 w+Cy Y E+C- Y &
iel:yj=+1 iel:yj=—1
st. z;j€{0,1} j e J st yi(w'xi +8)=1-§ iel
ﬁgZpél Lel yj(a)TxJ'+ﬁ)Zl—M1(1—zj), jedJ
§& =0 iel.

@ Springer



On support vector machines under a multiple-cost scenario 679

We first develop the expression of the dual for the linear case and then we show
how the kernel trick applies. As a previous step we should consider the variables z as
fixed. Hence, having those variables fixed, the inner problem is rewritten as:

ming g 0 w+Cy Y E+C- Y &
iel:yj=+1 iel:yj=—1

S.t. Vi (wai"’ﬂ) >1-§ iel
yj(a)ij—i-,B)zl, jeJ:zj=1
yj(a)ij—i-,B)zl—M], jGJZZjZO
£ >0 iel.

As M is a large number, the fourth constraints always result feasible, so they can
be removed. Also, we can denote {j € J : z; = 1} by J(z), obtaining

ming e 0 w+Cy Y E+C- Y

iel:yj=+1 iel:yj=—1
S.t. Vi (a)Tx,- + ,3) >1-§ iel
vi(@'x;+B) = 1, jeJ@
& >0 iel.

Hence, we can build the Lagrangian

LB =0'o+Ci Y &E+Co Y &

iel:y;=+1 ielyi=—1
=Y s Os@xs + B) — 1+ &)
sel
= > i@ x B =1 =) Sk
teJ(z) i'el

The KKT conditions are, therefore

oL
—=0=>0=>3 (A/Dysxs + X (:/2)yix;
dw sel teJ(z)
oL
—=0=0=> Ays+ >
3/3 sel teJ(z)
oL .
—:O:}O:—Al—8l+C+ l€13)’i=+1
&
AL .
¥202>0:—Ai—55+c_ iel:y =-1
i
0 <A iel
0 < te J(@
0 <6 iel
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Note that we can replace, without loss of generality, A;/2, /2 by Ay and pu,
respectively. Then, in the condition dL/38 = 0 we have

0= 2hy+ Y 2y,

sel teJ(z)

that can be simplified to

0=> Ays+ > iy

sel ted(2)

as stated. In addition, the condition d.£/d&; = 0 is transformed into
0=-2X1—-6+4+C4, i€l:y =+1

and

0=-2A—-6+C_, iel:y;=—1.

Furthermore, since these results must be equivalent to the case if we had maintained
the previously removed constraint, we have u; = Owhenz;, =0, € Jandpu, >0
when z; = 1, t € J. This can be summarized as 0 < u;, < M»z,, t € J. Also, as
usual, §; is removed since we add

0<A; <Cq/2, iel:y =+1
and

O0<A <C_/2, i€el:y =—1,
as we know that §; > 0. Therefore, the KKT conditions result:

w = Z AsysXs + Z Mt Yt Xt

sel teJ
0= Z)\sys + Zﬂtyt

sel teJ
0 <A, <Cy)/2 sel:y =+1
0 <A, <C_)2 sel:y =-1
0 < < Moz tel.

Note that we have replaced all the J(z) by J using the previous clarification.
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Thus, substituting the previous expressions into the second optimization problem,
the partial dual of such problem can be calculated, yielding

T
min min (Z AsYsXs + Z :U“t}’txt> (Z AsYsXs + Z :ut)’txt>

< A, B.€ sel ted sel ted

+Cy Y &H+C- Y &

iel:yj=+1 ielyj=—1

-
M-QEﬂlﬂjemei(kaﬁy+ZMwm).w+ﬂ

sel teJ

>1-& iel

.
pe=py, tel vy <Zkﬁﬂr¥ZMdﬂJ xj+p

sel teJ

z1-M-z;) jelJ

§ >0 iel

2 hiyi+ 2y =0

iel jeJ

0<A <Cq/2 iel:y=+1
O<x <C_/2 iel:y=-1
O<wuj <Mz jel.

Finally, since this problem only depends on the observation via the inner product,
we can use the kernel trick and Problem (CSVM) is obtained.
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