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Most time series forecasting methods assume the series has no missing values. When missing values
exist, interpolation methods, while filling in the blanks, may substantially modify the statistical pattern
of the data, since critical features such as moments and autocorrelations are not necessarily preserved.

In this paper we propose to interpolate missing data in time series by solving a smooth nonconvex opti-
mization problem which aims to preserve moments and autocorrelations. Since the problem may be mul-
timodal, Variable Neighborhood Search is used to trade off quality of the interpolation (in terms of
preservation of the statistical pattern) and computing times.

Our approach is compared with standard interpolation methods and illustrated on both simulated and
real data.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

The existence of missing values is a very common yet critical is-
sue in data from a variety of fields such as engineering, physics,
hydrology, finance, marketing or transportation; see
[26,30,18,36,12,19,8,3].

Missing data may hide the pattern of the data, and they may
considerably distort the results of any statistical analysis per-
formed. In order to cope with data sets with missing values, two
main strategies have been followed in the literature: one either
modifies existing statistical techniques to accommodate the exis-
tence of missing data, e.g. [26], or one first estimates the missing
values and then statistical methods are used for the completed
data set.

The latter approach has been widely used, in particular, in time
series analysis, addressed in this paper. A number of interpolation
methods have been suggested from long ago. Some assume a sta-
tistical parametric model, such as a MA(1), [2,32], an ARMA,
[6,15,23,27], an ARIMA, [17], or they impose a specific form for
the interpolator, which ranges from piecewise polynomial-based
approaches (linear, nearest-neighbor, logistic, B-splines), e.g.
[4,20,38,37], to sinc interpolation or wavelets (in connection to fil-
tering and signal processing), see [35] and the references given
there, and Chapter 19 in [34] for a detailed description of such
methods.

Because of their simplicity, weak underlying assumptions and
good empirical performance, simple polynomial-based interpola-
tion methods such as linear, nearest neighbor, cubic or splines
are implemented in general-purpose packages as Matlab or R.

In the linear interpolation method, the missing data in an inter-
val are imputed by the straight line that passes through the inter-
val endpoints. The nearest neighbor algorithm assigns the closest
known neighbor to a missing point, leading in this way to a
piecewise constant interpolant. In a similar spirit, the cubic inter-
polation method fills a missing data interval by the third degree
polynomial that passes through the four nearest neighbors. Finally,
the spline interpolation method completes the series via a cubic
spline under the requirements of smoothness and existence of
derivatives. More specifically, if yi and yi+1 denote the known edges
of the missing interval then, this will be completed by the function

SiðxÞ ¼ aiðx� yiÞ
3 þ biðx� yiÞ

2 þ ciðx� yiÞ þ di

where the constants ai, bi, ci and di are calculated to make the result-
ing function smooth enough. In other words, they are chosen
according to

SiðyiÞ ¼ Siðyiþ1Þ; S0iðyiÞ ¼ S0i�1ðyiÞ; S00i ðyiÞ ¼ S00i�1ðyiÞ:

Though not too often mentioned, such interpolation methods may
yield rather unsatisfactory results, since they may even provide
interpolated values out of the possible range: the values may be
known, for instance, to be non-negative (rainfall, exchange rates,
etc.) or to range in a given interval, such as [0,1] if the time series

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.ejor.2013.04.008&domain=pdf
http://dx.doi.org/10.1016/j.ejor.2013.04.008
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represent the evolution of a ratio, (unemployment rate, disease
prevalence, . . .), etc. As an illustrating example, which motivated
our study, consider Fig. 1, where the series of daily precipitation
amounts between 1976 and 1980 at the station of Níjar (Andalucía,
Spain) has been analyzed. The top panel illustrates the real series,
with several missing values, due to disfunctions in the measure-
ment equipment. The central and bottom panels show the interpo-
lated series according to the spline and cubic interpolation,
respectively. It can be seen that under both methods negative val-
ues were obtained. Moreover, by construction, there is no guarantee
that the moments and autocorrelations of the so-obtained time ser-
ies remain close to their sample estimates. In other words, the sta-
tistical pattern of the time series may be strongly distorted when
interpolation is done.

The purpose of this paper is to explore how missing values in
time series can be interpolated so that the imputed data are forced
to belong to a specific interval, and thus the drawback of some
interpolation methods illustrated by Fig. 1 is avoided, and the mo-
ments and autocorrelation function of the data are preserved as
well.

The paper is organized as follows. Section 2 formulates the
problem of interpolating missing values preserving range, mo-
ments and correlations as a nonconvex optimization problem with
box constraints. A well-known global-optimization metaheuristic,
namely, Variable Neighborhood Search (VNS), is customized for
this problem, as discussed in Section 3. Section 4 is devoted to
illustrate the performance of our approach by comparing it with
the benchmark interpolation methods previously described. Final-
ly, Section 5 presents conclusions and prospects regarding this
work.
Fig. 1. Nijar rainfall series from 1976 to 1980 (top panel) and imputed data accordin
2. Problem formulation

As commented in Section 1, the purpose of this work is to devel-
op a method for interpolating the missing values in an incomplete
time series so that the range of values, as well as moments and
autocorrelation coefficients, are preserved. In this section we de-
scribe how this can be naturally modeled as an optimization
problem.

Consider a sequence y ¼ fytg
N
t¼1 of real values. The index set

{1,2, . . . ,N} is partitioned into two sets: the index set B of times t
for which the value yt is missing, and the index set S = {1,2, . . . ,N}nB
of times t for which yt is known. The aim is to recover the sequence
y when only the values {yt}t2S are given.

Any sequence x ¼ fxtgN
t¼1 satisfying

xt ¼ yt 8t 2 S; ð1Þ

interpolates the partially observed series y. However, not any such
interpolating sequence will yield a reasonable estimate of y, as we
illustrated with the example in Section 1. In order to avoid out-of-
range problems, we will also impose x to satisfy

at 6 xt 6 bt 8t 2 B: ð2Þ

The constants at, bt satisfying �1 6 at 6 bt 6 +1 are assumed to
be given by the user. A possible choice is obtained if we consider, for
each t 2 B, at = minn2S yn and bt = maxn2S yn, and thus the range of x
coincides with the range of y. However, if the time series is sus-
pected to present outliers, such a choice of at and bt may lead to ex-
treme values. In these cases, at and bt can be derived from Tukey’s
fences, though, as discussed in Section 4, this choice may also be
controversial.
g to the spline (central panel) and cubic (bottom panel) interpolation methods.
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Together with forcing x to take values in a specified range, by
imposing (2), we also wish to fix its statistical patterns by making
moments and autocorrelation coefficients of x match given target
values:

1
N

XN

i¼1

xk
i ¼ mk 8k ¼ 1;2; . . . ; k0; ð3Þ

and

qjðxÞ ¼ qj 8j ¼ 1;2; . . . ; j0: ð4Þ

Here mk and qj are given target values for the kth moment and lag-j
autocorrelation coefficient, where

qjðxÞ ¼
PN�j

t¼1ðxt � �xÞðxtþj � �xÞPN
t¼1ðxt � �xÞ2

; ð5Þ

is the estimation of the lag-j autocorrelation coefficient as defined
in [9], and �x is the sample mean of x.

Target values mk and qj allow one to preserve the statistical pattern
of the time series. They can be either estimated from the observed ser-
ies {yt}t2S, or from a related but complete time series (even the same
time series in a different time window). See Section 4.4 for a discussion
on the effect of the selection of target values on the performance of
the interpolation approach described in this paper.

While (2)–(4) allow us to govern the statistical pattern and the
range of the series, a smoothing criterion is also considered, impos-
ing the missing values not to significantly differ from the adjacent
values. In other words, if we define f as

f ðxÞ ¼
XN�1

i¼1

ðxiþ1 � xiÞ2; ð6Þ

we also wish to have f(x) as small as possible.
The previous discussion leads us to model the problem of properly

interpolating the incomplete time series y as the optimization problem
of finding x minimizing f, as defined in (6), and satisfying the con-
straints (1)–(4). However, the feasible region defined by (1)–(4) is
rather complex, and it may be hard for a numerical algorithm to find
a feasible solution. Moreover, since analyst confidence on the target
values mk and qj may be different, we find more convenient to consider
(1) and (2) as hard constraints, and (3) and (4) as soft constraints.
This way we obtain an optimization problem of the form

min FðxÞ

s:t
at 6 xt 6 bt 8i 2 B

xt ¼ yt 8i 2 S:

� ðPÞ

The objective function F in (P) is given by

FðxÞ ¼ f ðxÞ
f ðp0Þ

þ
Xk0

k¼1

kk

1
N

PN
i¼1xk

i

mk
� 1

 !2

þ
Xj0

j¼0

lj

qjðxÞ
qj
� 1

 !2

;

where p0 is a reference starting point for x, so that the quotient f ðxÞ
f ðp0Þ

is dimensionless, as the remaining terms in F, and the parameters
kk, k = 1, . . . , k0 and lj, j = 1, . . . , j0, are positive scalars which trade
off the deviations in the soft constraints.

Problem (P) is a nonlinear problem with very simple constraints
(just box constraints), but a nonconvex objective function. A closed-
form solution to (P) seems hard to obtain due to the high nonlinear-
ity of the objective. Hence, in order to cope with (P), numerical pro-
cedures are suggested. This will be discussed in Section 3.

3. Solving the problem

Problem (P) is a smooth optimization problem. Moreover, in
contrast with what happens if (1)–(4) are all considered as hard
constraints, obtaining starting feasible solutions for (P) is straight-
forward. Hence, obtaining a local minimum for (P) is a rather sim-
ple and cheap task, achievable by standard local-search numerical
routines. However, due to the nonconvexity of the objective, there
is no guarantee that the output of such local-search routines is a
global optimum of (P).

In order to scape from local optima, we propose to embed the
local searches into a metaheuristic strategy, namely, the Variable
Neighborhood Search (VNS), [29,28,10], which can successfully ex-
ploit the fact that the feasible region is rather simple, and thus
neighborhoods are easily defined. It may be observed that other
metaheuristics, e.g. [24,22,14,16], could have been used instead.

The scheme of the VNS algorithm is summarized in Fig. 2.
The VNS is customized to Problem (P) by defining the neighbor-

hood structure, the random distributions for shaking, the starting
solution and the stopping criterion.

Since the feasible region of (P) is box-constrained, a set of nested
boxes are chosen as neighborhoods, and sampling is performed by
following a uniform distribution on the boxes. As stopping criterion,
an upper bound on the number of iterations allowed is given.

A more sophisticated strategy is followed for the selection of
the starting point, since it is commonly accepted, and confirmed
as well in our numerical experiments with (P), that choosing a
good starting point is critical to guarantee an appropriate conver-
gence speed for the VNS. Although, as already mentioned, it is un-
likely to obtain a closed-form solution of problem (P), it is possible
however to solve analytically a simpler relative of (P), in which
constraints (2) and (4) are ignored, while, together with the inter-
polation constraints (1), the constraint (3) for k0 = 1 are put as hard
constraint, (or, equivalently, we set k1 = +1 in (P)). In other words,
we consider the auxiliary problem (P⁄) given by:

min
XN�1

i¼1

ðxiþ1 � xiÞ2

s:t:
xt ¼ yt 8t 2 S;PN

i¼1
xi

N ¼ m1

( ðP H gÞ

Problem (P⁄) has a quadratic convex objective and one linear con-
straint. An optimal solution can be analytically derived, as discussed
in the Appendix. Such optimal solution will be taken as starting
solution x0 for the VNS algorithm for solving (P).
4. Numerical illustrations

In this section we illustrate the performance of the proposed meth-
odology and compare it with the results provided by standard interpo-
lation methods. All results have been obtained usingR and, in the spirit
of a reproducible research, the codes utilized in this paper are available
as a stand-alone R toolbox from the authors upon request.

4.1. Data and experiments description

Ten real times series from different contexts and presenting dif-
ferent statistical features have been selected to illustrate the per-
formance of the proposed approach. The series considered in this
Section do not present missing values (see Section 4.3. for a real
incomplete series) and therefore, their sample moments and auto-
correlation coefficients are known. As will be described in the
experiments below, a chosen proportion of observations will be
randomly removed in order to test different interpolation methods.
The series, shown at the top panels of Figs. 3–7, are described next.

� Exchange. This series represents the evolution of the exchange
rates between the Hong Kong Dollar (HKD) and the US Dollar
(USD). The number of moments and autocorrelation coefficients
to be matched were k0 = 3 and j0 = 30, respectively. Data can be
found at http://gtwavelet.bme.gatech.edu/datapro.html

http://gtwavelet.bme.gatech.edu/datapro.html


Fig. 2. Pseudo-code of VNS.

100 E. Carrizosa et al. / European Journal of Operational Research 230 (2013) 97–112
� Norwegian. A total of 9181 consecutive fire claims values from
1972 to 1992 in a Norwegian insurance portfolio are considered
here. Data are heavy-tailed (see [5,33] for a complete descrip-
tion, and analysis of the data concerning heavy-tailed distribu-
tions) and k0 = 3 and j0 = 10 were chosen. The series is available
at http://lstat.kuleuven.be/Wiley/
� Internet. This time series, widely used in the literature (see

[25,33], among others), represents 50,000 real interarrival times
in a total of one million packet arrivals, recorded by Bellcore
Morristown Research and Engineering facility. The series is
highly variable and presents a non-negligible autocorrelation
coefficients. Again, k0 = 3 and j0 = 10 have been set. Data are
found at the InternetTraffic Archive: http://www.sigcomm.org/
ITA/
� Coke. This series records a total of 4128 daily Coca-Cola stock

market price on dollars. Fig. 4 shows that the series is clearly
non-stationary and long-range dependent. In order to explore
how the moments matching approach performs if only the fit-
ting of the autocorrelation coefficients is considered, we set
k0 = 0 and j0 = 1. Data can be found at http://gtwav-
elet.bme.gatech.edu/datapro.html
� Cordoba. This time series, provided by the AEMET (Spanish

National Meteorology Agency, http://www.aemet.es) repre-
sents the total daily precipitation at the station of Córdoba’s air-
port (Spain) from 2004 to 2005. In this case k0 = 3 and j0 = 1
were fixed.

The following series are provided by the Time Series Data Library
found at http://datamarket.com/data/list/?q=provider:tsdl. All of
them represent monthly observations and thus the number of
autocorrelation coefficients to be matched was set to j0 = 12. In
all cases, a value of k0 = 3 was chosen.
� Gas. This series represents 106 monthly average gas usage (mea-
sured in cubic feet times 100) from 1971 to 1979 at Iowa state.
The series, analyzed by [1], presents a strong cyclical pattern.
� Riverflow. This time series records a total of 588 monthly river-

flow from the Boise River (near Twin Springs, Idaho) measured
in cubic meters per second. Data correspond to periods from
October 1912 to September 1960. A more detailed description
of the series can be found at [21].
� Unemploy. A number of 736 monthly civilian unemployment

rates at the US from January 1948 to December 2011 are repre-
sented in this series. Data were provided by The Bureau of Labor
Statistics (BLS).
� Gnp. This series, analyzed by [31], represents 176 quarterly US

real GNP (in dollars) from the first quarter of 1947 to the first
quarter of 1991.
� Milk. This time series relates to cow milk production. Specifi-

cally, it represents a total of 156 monthly pounds of milk per
cow, from January 1962 to December 1975. It was listed and
analyzed in [13]. This series is clearly non-stationary, see Fig. 7.

Next, we describe the three conducted experiments. As com-
mented previously the series do not have missing values and
therefore they were artificially incompleted as follows.

� Experiment 1: 30% of the observations, randomly selected, was
deleted.
� Experiment 2: 15% of the observations, randomly selected, was

deleted.
� Experiment 3: An interval of consecutive observations, repre-

senting the 30% of the total, was deleted.

The values 30% and 15% were arbitrarily selected as examples of
high and moderate percentages of missing data.

http://lstat.kuleuven.be/Wiley/
http://www.sigcomm.org/ITA/
http://www.sigcomm.org/ITA/
http://gtwavelet.bme.gatech.edu/datapro.html
http://gtwavelet.bme.gatech.edu/datapro.html
http://www.aemet.es
http://datamarket.com/data/list/?q=provider:tsdl
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Fig. 3. Exchange (first column) and Norwegian (second column) time series. Top: Real series and proportion of data removed in Experiment 3. Central: Interpolation by
MMM. Bottom: Best interpolation (if different from that obtained by the MMM), according to Table 2.
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4.2. Performance and comparison with benchmark approaches

This section presents the results obtained after interpolating the
times series described in Section 4.1. by the interpolation method
defined in this work, namely, the moments matching method
(MMM, from now on), and compares the obtained performance
with that provided by Linear, Nearest Neighbor, Cubic and Spline
methods, which are easily found in common statistical packages
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Fig. 4. Internet (first column) and Coke (second column) time series. Top: Real series and proportion of data removed in Experiment 3. Central: Interpolation by MMM.
Bottom: Best interpolation (if different from that obtained by the MMM), according to Table 2.
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such as R or Matlab. The chosen option ’cubic’ makes a cubic inter-
polation based on the four nearest neighbors; the Spline approach
is encompassed in piecewise Cubic Interpolation. For more infor-
mation about Spline interpolation the reader is referred to [7].
We should point out here that, in order to implement our ap-
proach, the R-cran function optim was used with default options
as local-search routine. The function implements the L-BFGS-B

algorithm, which allows for box constrained problems. In practice,
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penalties have been considered constant and for convenience set
to kk = k = 5000, for k = 1, . . . , k0, and lj = l = 4000, for j = 1, . . . ,
j0. The number of VNS neighborhoods and total of random points
generated at each neighbor were 7 and 2, respectively. Finally,
the target values are set as the sample moments of the complete
series.

Tables 1–3 show the absolute percent error from target values
in Experiments 1–3 obtained under the MMM (highlighted in gray
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Fig. 6. Riverflow (first column) and Unemploy (second column) time series. Top: Real series and proportion of data removed in Experiment 3. Central: Interpolation by
MMM. Bottom: Best interpolation (if different from that obtained by the MMM), according to Table 2.
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color), Linear, Nearest Neighbor, Cubic and Spline interpolation
methods, for all time series described in the previous section. Recall
that m1, m2, m3 denote the moments of order 1, 2, and 3 of the series,
and qj the jth-lag autocorrelation coefficient. Imputed values are re-
quired to belong to the interval defined by the minimum and maxi-
mum values in the series. Fitted values that lie out of such a range are
starred (�). Although in some series j0 was set up to 30, for abbrevi-
ation, we only present the error when fitting q1.

Several conclusions can be obtained from Tables 1–3. First, note
how in the three experiments considered our approach provides
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Fig. 7. Gnp (first column) and Milk (second column) time series. Top: Real series and proportion of data removed in Experiment 3. Central: Interpolation by MMM. Bottom:
Best interpolation (if different from that obtained by the MMM), according to Table 2.
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interpolated series whose moments are either very close to, or ex-
actly match the target values. Additionally, the imputed values al-
ways remain within the required interval. On the contrary, the rest
of methods present a poorer performance (the results in Experi-
ment 1 being poorer than Experiment 2, as expected, since less
information is considered). In Experiment 1, MMM provides better
fits than the rest of methods in 28 out of 37 fitted coefficients, and
comparable results to the best of the alternative interpolators in 3



Table 1
Absolute percent error from target values in Experiment 1.

Series MMM Linear Nearest Cubic Spline

Exchange m1 0.00 0.00 0.00 0.00⁄ 0.00⁄

m2 0.00 0.00 0.00 0.00 0.00
m3 0.00 0.00 0.00 0.00 0.00
q1 0.10 0.10 0.01 3.29 0.09

Norwegian m1 0.00 1.23 1.88 2.61⁄ 1.04⁄

m2 0.00 11.19 11.22 3.47 3.95
m3 0.00 8.35 8.22 1.09 5.15
q1 0.00 9.75 1.90 2.19 14.09

Internet m1 0.09 1.02 0.87 0.32⁄ 1.45⁄

m2 0.06 4.30 2.10 88.33 1.58
m3 0.00 8.07 3.49 71.09 1.95
q1 0.03 24.15 15.94 28.36 24.09

Coke q1 0.01 0.01 0.00 2.00⁄ 0.00

Cordoba m1 0.00 22.32 22.32 17.62⁄ 20.71⁄

m2 0.03 57.59 52.40 51.13 48.77
m3 0.00 81.13 77.54 77.99 76.72
q1 0.02 35.32 27.19 27.76 52.24

Gas m1 0.02 1.21 0.41 25.16⁄ 0.53⁄

m2 0.01 0.80 2.17 260.11 0.43
m3 0.02 3.36 3.94 2603 0.49
q1 0.08 0.04 8.27 70.53 0.72

Riverflow m1 0.01 0.00 1.28 38.73⁄ 2.34⁄

m2 0.02 7.88 0.64 1837 1.51
m3 0.00 15.40 0.26 68,389 2.76
q1 0.03 9.24 3.21 40.15 11.63

Unemploy m1 0.07 0.01 0.02 0.41⁄ 0.02
m2 0.04 0.08 0.13 0.45 0.11
m3 0.06 0.27 0.32 0.35 0.25
q1 0.36 0.38 0.02 6.91 0.33

Gnp m1 0.40 6.72 8.90 100⁄ 1.12⁄

m2 0.14 12.09 8.09 2264 8.20
m3 0.42 10.62 5.39 100 26.95
q1 0.08 26.08 17.39 40.66 37.86

Milk m1 0.04 0.19 0.25 0.51 0.03
m2 0.02 0.31 0.49 0.95 0.04
m3 0.03 0.37 0.73 1.36 0.03
q1 0.03 0.32 2.35 2.12 0.23

Table 2
Absolute percent error from target values in Experiment 2.

Series MMM Linear Nearest Cubic Spline

Exchange m1 0.00 0.00 0.00 0.00 0.00
m2 0.00 0.00 0.00 0.00 0.00
m3 0.00 0.00 0.00 0.00 0.00
q1 0.03 0.03 0.02 0.36 0.03

Norwegian m1 0.01 0.98 1.94 0.17 0.93⁄

m2 0.03 7.33 9.37 0.98 2.93
m3 0.01 5.69 6.38 0.33 3.20
q1 0.03 6.40 1.98 7.70 8.63

Internet m1 0.07 0.32 0.31 0.07⁄ 0.49⁄

m2 0.05 1.77 0.73 1.13 0.52
m3 0.00 3.47 1.30 5.65 0.57
q1 0.02 12.57 7.82 4.34 12.70

Coke q1 0.00 0.00 0.00 0.04⁄ 0.00

Cordoba m1 0.00 12.80 15.52 14.22⁄ 16.78⁄

m2 0.02 41.36 40.42 31.54 29.84
m3 0.00 68.50 67.11 62.80 65.46
q1 0.01 11.37 5.83 4.88 28.26

Gas m1 0.02 0.81 1.46 1.23 0.03
m2 0.00 0.39 3.39 1.15 0.14
m3 0.02 0.27 4.81 0.66 0.26
q1 0.03 0.23 4.57 3.63 0.35

Riverflow m1 0.02 0.08 1.21 1.50⁄ 0.98⁄

m2 0.03 2.89 2.86 9.64 0.99
m3 0.01 5.16 3.75 36.57 0.31
q1 0.03 2.11 2.53 19.63 3.09

Unemploy m1 0.01 0.03 0.08 0.02 0.06⁄

m2 0.00 0.07 0.13 0.04 0.11
m3 0.03 0.12 0.15 0.06 0.17
q1 0.21 0.24 0.04 0.00 0.21

Gnp m1 0.26 6.76 6.50 4.04 10.77
m2 0.54 0.08 0.54 0.37 8.69
m3 0.14 2.51 3.23 3.48 15.63
q1 0.18 18.24 11.89 12.50 22.90

Milk m1 0.02 0.20 0.34 0.45 0.08
m2 0.01 0.47 0.73 0.99 0.20
m3 0.04 0.81 1.16 1.62 0.36
q1 0.06 0.50 1.24 3.13 0.32
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cases. In Experiment 2, these values turn into 29 and 5 (out of 37),
respectively. Finally, in Experiment 3, MMM performs better than
or equal to the best of the other methods in 35 cases; see the pan-
els of the second row of Figs. 3–7 which depict the completion of
the missing central gap under the MMM approach (data in be-
tween the bands are assumed to be missing). Note that, in appear-
ance, no big differences exist between the real and interpolated
series in all cases. Also, it is of interest to note from Table 3 how
the performance of classic interpolation methods gets worse in
Experiment 3, due to their strong dependence on neighbor data.
Marked disparities between classic interpolation methods are also
observed, note for example the results from Table 3 between Cubic
and the remaining interpolators. Finally, it is worth pointing out
that, for Spline and Cubic interpolators, it is a rule more than an
exception to impute data outside the natural range of values and
in some cases quite extreme values are obtained.

In order to examine more in depth the performance of the
MMM against that of other existing interpolation methods, it
may be natural to apply the commonly used prediction error be-
tween the actual values of the time series and the estimated val-
ues. To this end, the absolute and quadratic differences,
normalized by the smallest error, have been computed. They are
shown in Table 4, in which the best obtained results are high-
lighted in bold style. Note that the best interpolation method
according to these criteria presents an error equal to 1, and for
the rest of methods this value is exceeded. Under the absolute er-
ror criterion, MMM outperforms the rest of methods in 12 out of 30
cases; presents a comparable performance in three cases and per-
forms poorer than the best of the remaining benchmark ap-
proaches in the half of cases. If the quadratic difference criterion
is used instead, MMM outperforms the other interpolators in 15
out of 30 cases, and performs similarly to the best in two cases.
Panels of the third row of Figs. 3–7 show the interpolated series
in Experiment 3 by the best method (if different from MMM),
according to the quadratic error criterion. Note that in these cases
the linear interpolation method is the approach that always out-
performs the MMM. However, note too from Figs. 3–7 that, in spite
of presenting a larger prediction error, the MMM approach pro-
vides a more reasonable fit in terms of the statistical pattern of
the series than the linear method; see for example the cases of
Internet, Riverflow and Gnp.

Figs. 3–7 show how MMM and Linear approaches perform when
fitting the missing values. Fig. 8 illustrates how the rest of interp-
olators, namely, Nearest Neighbor (top right panel), Cubic (bottom
left panel) and Spline (bottom right panel) behave for the time ser-
ies Internet. Again, we emphasize the poor performance ob-
tained under these methods.

4.3. VNS versus local search

The optimization problem described in Section 2 has been
solved using a global optimization technique, the VNS, which



Table 3
Absolute percent error from target values in Experiment 3.

Series MMM Linear Nearest Cubic Spline

Exchange m1 0.02 0.07 0.07 3:26� 106� 0.61⁄

m2 0.04 0.14 0.14 7.27 � 1011 1.25
m3 0.06 0.20 0.20 1.99 � 1017 1.91
q1 0.01 0.05 0.05 0.12 0.42

Norwegian m1 0.00 15.76 15.76 8:81� 109� 68.31⁄

m2 0.02 23.95 23.94 4.01 � 1017 19.62
m3 0.00 10.43 10.43 2.89 � 1024 10.53
q1 0.01 10.74 10.74 103.74 2.07

Internet m1 0.07 12.68 12.68 2:80� 109� 7847.26⁄

m2 0.05 17.62 17.45 3.89 � 1017 1.72 � 106

m3 0.00 17.96 17.84 5.16 � 1025 3.21 � 108

q1 0.02 20.37 20.71 73.48 74.15

Coke q1 0.00 0.00 0.01 0.24⁄ 0.01

Cordoba m1 0.00 32.34 32.34 32.34 32.24
m2 0.02 26.68 26.68 26.68 26.68
m3 0.00 16.80 16.80 16.80 16.80
q1 0.01 17.53 17.53 17.53 17.50

Gas m1 0.08 5.62 5.62 68,355⁄ 87.30⁄

m2 0.05 14.26 11.47 2.20 � 108 57.58
m3 0.00 19.66 15.79 7.23 � 1011 155
q1 0.09 2.75 3.82 8.96 18.45

Riverflow m1 0.02 8.76 8.67 3:55� 107� 288.76⁄

m2 0.01 5.65 3.13 3.77 � 1013 3434
m3 0.01 15.97 13.34 3.37 � 1019 21824
q1 0.03 1.89 4.75 50.73 53.07

Unemploy m1 0.18 11.17 11.18 1:12� 107� 19.66⁄

m2 0.06 22.67 22.36 8.06 � 1012 70.75
m3 0.03 33.65 32.95 6.71 � 1018 186
q1 0.11 1.01 0.87 0.04 1.45

Gnp m1 1.22 1.03 1.03 9:64� 105� 249⁄

m2 1.16 18.10 15.87 2.14 � 1010 536
m3 0.54 21.56 18.26 7.79 � 1014 2211
q1 0.13 15.68 21.75 147.26 151.86

Milk m1 0.01 0.67 0.68 12208⁄ 10.34
m2 0.00 1.52 1.54 9.74 � 106 24.00
m3 0.00 2.52 2.53 9.38 � 109 41.64
q1 0.16 1.56 1.56 0.75 4.80
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escapes from local optima, though at the expense of higher running
times. Therefore, it is natural to gauge the benefits of such an ap-
proach instead of considering a simple local search, usually imple-
mented by all statistical packages. To look more closely at this
problem, the values of the objective function obtained with both
a single run of the R-cran command optim, and the VNS approach
(seven neighborhoods and two randomly generated points on
each) are depicted in Table 5. The same starting point x0, namely
the solution to Problem (P⁄) discussed in Section 3, which pre-
serves the sample mean, was used under both approaches. The
improvements of the VNS on the local search are expressed as per-
centages. It can be observed that in eight/nine/six out of 10 series
in Experiments 1/2/3, the results are similar, possibly due to the
proper choice of the starting point. However, in the case of the hea-
vy-tailed series Norwegian, and the highly variable series River-
flow and Gnp the VNS significantly improved the results in
Experiment 3. Such an improvement in accuracy are obtained at
the expense of an increase in running times. Indeed, the median
running time for MMM among the ten considered series was, for
the prototype code implemented in R, about 5.8 minutes, in con-
trast to the couple of seconds taken by the classic methods. In
other words, local search, with an appropriate choice of the start-
ing solution, as the one proposed here, gives a quick and usually
good solution, though the accuracy is substantially improved when
more computational effort is made by plugging local search into a
VNS method.
4.4. The choice of target values

As commented in Section 1, the MMM approach for completing
a time series with missing values needs for the specification of tar-
get values, to which the moments and autocorrelation coefficients
are matched. In the previous Section where the series were artifi-
cially made uncomplete by erasing some records, these target val-
ues were set as the empirical moments of the complete series
(being the sample autocorrelation coefficients defined as in (5)).
However, if the series really presents missing data, as will happen
in practice, these sample moments may be seriously distorted. This
section aims to investigate how the choice of target values influ-
ences the results of the proposed interpolation method.

We first consider an example were 1000 synthetic data were
simulated from an AR(1) process with parameters m1 = 1 and
q1 = 0.6. Experiments 1, 2 and 3, as described in Section 4.1, were
carried out with k0 = j0 = 1, and the target values fixed as deviations
from m1 = 1 and q1 = 0.6. Specifically, 0%, 5%, 10% and 15% devia-
tions from the theoretical values were considered. Obtaining sam-
ple estimates for the autocorrelation coefficients is not a trivial
task since the available information consists in different sequences
spaced in time. Two different estimates for qj, particularized for
j = 1, were also considered. First, a weighted autocorrelation coeffi-
cient estimator is proposed as follows: the series is split into sub-
series of consecutive values with length higher than j; for each
such sub-series, its sample jth lag autocorrelation coefficient �qj;n

is computed according to (5), and then the estimator is given by

q̂j ¼
X

n

xn �qj;n; ð7Þ

where xn represents the weight of the nth sub-series. However, a
restriction worth to be mentioned while considering the jth lag
autocorrelation is that it cannot be calculated if the length of the
interval is less than j. Moreover, (5) does not behave properly when
the length of the interval is not much larger than j. This could lead
to unreliable estimations, thus the jth autocorrelation of the longest
interval of known data can be considered as an estimator instead of
the weighted one. Other estimates for qj suggested in the literature
can be found in [11].

Table 6 shows the predictive errors, when interpolating using
MMM, computed as the sum of the (absolute/squared) differences
between the interpolated and real values, under the assortment of
target values commented previously. In the last two columns the
target values m1 are chosen as the sample mean of the uncom-
pleted series, and the target values q1 are computed as the
weighted estimator (7) for j = 1, and the sample estimator (5) of
the longest complete interval, respectively.

From Table 6 it can be deduced that, in this example, the esti-
mator of the autocorrelation function based on the longest known
interval produces better results than the weighted one. It could be
also said that, as expected, the larger the intervals of known data,
the better performance is obtained by both estimators. Finally, and
as expected too, the larger the deviations from the real values m1

and q1, the poorer the results obtained under both absolute and
squared errors criterion.

We conclude this section by interpolating via the MMM a time
series which actually had missing values, and the pattern of such
missing values is unknown. The series was described in Section 1
and represents the daily precipitation amounts in Níjar, Spain,
from 1976 to 1980. It was shown in Section 1 how classic methods
as Spline and Cubic failed in interpolating the series properly due
to the fact that the imputed valued severely violated the range of
admissible values. Values of k0 = j0 = 3 were set; since the sample
moments and autocorrelation coefficients are unknown, the target
values m1,m2 and m3 were chosen as the sample moments of the
available data, and the target values q1, q2 and q3 were computed



Table 4
Absolute and quadratic differences.

Series Exp. diff. MMM Linear Nearest Cubic Spline

Exchange 1 abs 1.04 1.00 1.27 2.94 1.14
quad 1.05 1.00 1.75 31.36 1.15

2 abs 1.00 1.00 1.00 1.00 1.00
quad 1.00 1.06 2.62 11.16 1.15

3 abs 1.00 2.42 2.42 1.14 � 108 25.51
quad 1.00 3.98 4.03 1.75 � 1016 584.11

Norwegian 1 abs 6.81 1.08 1.00 2.47 1.73
quad 2.24 1.11 1.00 3.24 1.47

2 abs 4.33 1.07 1.00 1.74 1.63
quad 2.22 1.00 1.00 2.04 1.32

3 abs 1.95 1.00 1.01 3.96 � 108 3.09
quad 1.97 1.00 1.00 1.76 � 1016 1.55

Internet 1 abs 1.36 1.00 1.17 2.01 1.25
quad 1.73 1.00 1.38 18.74 1.51

2 abs 1.45 1.00 1.21 1.23 1.23
quad 1.79 1.00 1.46 1.89 1.42

3 abs 1.25 1.00 1.02 1.99 � 108 556.13
quad 1.29 1.00 1.00 3.88 � 1016 172175.02

Coke 1 abs 1.00 1.00 1.27 3.84 1.17
quad 1.00 1.00 1.51 519.50 1.36

2 abs 1.00 1.00 1.30 1.81 1.08
quad 1.00 1.00 1.70 16.04 1.11

3 abs 1.00 1.66 3.22 1.95 � 109 3.81
quad 1.00 3.22 11.83 6.51 � 1018 13.52

Cordoba 1 abs 1.48 1.00 1.02 1.10 1.18
quad 1.56 1.02 1.03 1.01 1.00

2 abs 1.29 1.00 1.03 1.25 1.39
quad 1.00 1.08 1.07 1.74 1.09

3 abs 1.97 1.00 1.00 1.00 1.00
quad 1.99 1.00 1.00 1.00 1.00

Gas 1 abs 1.00 2.04 4.53 18.30 1.28
quad 1.00 4.02 19.29 1795.20 1.68

2 abs 1.00 7.42 23.21 19.96 4.73
quad 1.00 39.43 376.53 301.51 24.74

3 abs 1.00 3.52 4.20 1.15 � 104 14.65
quad 1.00 10.03 14.06 1.75 � 108 153.15

Riverflow 1 abs 1.00 1.22 1.51 5.69 1.27
quad 1.00 1.43 2.27 322.56 1.44

2 abs 1.00 1.22 1.99 2.26 1.17
quad 1.00 1.51 4.40 10.18 1.37

3 abs 1.00 1.07 1.08 1.31 � 106 15.31
quad 1.41 1.00 1.11 2.31 � 1012 197.80

Unemploy 1 abs 1.06 1.00 1.36 2.56 1.12
quad 1.06 1.00 1.77 27.69 1.14

2 abs 1.12 1.00 1.48 1.75 1.17
quad 1.09 1.00 1.69 2.86 1.27

3 abs 1.00 1.27 1.26 1.23 � 106 2.52
quad 1.00 1.42 1.46 2.16 � 1012 6.17

Gnp 1 abs 1.11 1.00 1.00 5.62 1.46
quad 1.35 1.00 1.01 205.98 2.10

2 abs 1.00 1.31 1.27 1.33 1.80
quad 1.00 2.19 2.00 2.42 4.34

3 abs 1.35 1.00 1.00 2.93 � 104 7.56
quad 1.78 1.00 1.01 1.27 � 109 44.57

Milk 1 abs 1.00 1.92 4.38 3.97 1.33
quad 1.00 3.42 14.60 16.13 1.98

2 abs 1.00 2.25 2.95 5.20 1.56
quad 1.00 6.94 10.08 34.70 3.23

3 abs 1.00 5.56 5.61 3.03 � 104 26.30
quad 1.00 26.60 27.36 1.23 � 109 521.75
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as the weighted estimators, and as the sample estimators (5) from
the longest interval.

Níjar has sub-desertic Mediterranean climate and therefore
rainfall days are very rare, although when they occur precipitation
amounts may be extreme. This leads to interquartile ranges close
to zero. In order to implement our approach we have considered
lower and upper bounds as the minimum and maximum of the
known data, as in the previous examples. From top panel of
Fig. 9, it can be seen that the series does not present isolated miss-
ing data but located missing intervals, which motivates the use of
the weighted estimator (7). Central and bottom panels show the
completed series via MMM. In the central panel, the estimator
(7) has been used while in the bottom panel, only the estimator
corresponding to the longest interval has been considered. It can
be observed from both figures how imputed values representing
precipitation amounts are non-negative and do not exceed the
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Fig. 8. Top left: Real Internet series and proportion of data removed in Experiment 3. Top right: interpolation by Nearest Neighbor. Bottom left: interpolation by Cubic.
Bottom right: interpolation by Spline.

Table 5
Comparison between a local search versus VNS approach in terms of objective function values.

Experiment 1 Experiment 2 Experiment 3

optim VNS Improv. (%) optim VNS Improv. (%) optim VNS Improv. (%)

Exchange 1.03 1.03 0.01 1.00 1.00 0.00 1.02 1.02 0.01
Norwegian 2.15 1.83 14.69 1.15 1.15 0.00 1025.46 1.18 99.88
Internet 1.65 1.64 0.86 1.26 1.25 0.16 2.59 1.39 46.14
Coke 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.35
Cordoba 2.87 2.87 0.04 1.81 1.81 0.00 1.46 1.46 0.00
Gas 1.10 1.09 0.70 1.03 1.00 0.00 1.58 1.56 1.11
Riverflow 1.40 1.40 0.00 1.09 1.09 0.02 3.46 1.36 60.47
Unemploy 1.10 1.10 0.00 1.05 1.05 0.00 1.21 1.17 3.68
Gnp 14.39 1.60 88.82 5.04 1.38 72.55 33.42 3.72 88.87
Milk 1.05 1.05 0.00 1.09 1.09 0.00 1.52 1.51 0.41
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maximum of the known series. Moreover, it is interesting to
note that not all imputed data are close to zero: there exists a
large imputed value, of the order of the larger values in the ob-
served series, in the case of the weighted estimator interpola-
tion. Note that, although the longest interval is completed with
drain days in central panel, precipitations are allowed on other
time instants.
5. Concluding remarks and extensions

This work has considered the problem of interpolating missing
values in a time series so that moments and autocorrelation coef-
ficients are fitted to target values. This is done via a smooth non-
convex optimization problem, solved via a VNS approach in a
continuous space.



Table 6
Interpolation by MMM under different target values for a simulated series from an AR (1) process.

Experiment 0% Dev 5% Dev 10% Dev 15% Dev Weighted Longest

1 abs diff 249.47 244.46 248.20 268.97 460.26 346.92
quad diff 330.33 319.25 332.18 388.24 1150.74 649.42

2 abs diff 106.96 107.63 141.59 221.19 232.91 110.59
quad diff 125.84 126.14 203.88 559.14 621.91 136.50

3 abs diff 329.84 339.47 376.51 413.83 326.37 328.98
quad diff 508.79 528.34 633.66 758.52 502.15 508.77
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By several numerical examples, the suitability of the new ap-
proach has been highlighted, in comparison with classic interpola-
tion methods, which clearly present a poorer performance.
Regarding the optimization problem to be solved, the choice of a
proper starting point and the use of a global optimization routine
are shown to be relevant.

For simplicity, just univariate time series have been considered,
though the model naturally extends to the multivariate case, in
which also the correlation between the different time series is gov-
erned by setting target values. Experimental analysis of such
extension deserve further attention.

Appendix A. Closed-form solution of (Pw)

In this section, how to obtain the optimal solution of (Pw) is
shown in detail. The problem to be solved is:

min
XN�1

i¼1

ðxiþ1 � xiÞ2

s:t: xi ¼ yi;PN

i¼1
xi

N ¼ m1:

8>>>>><
>>>>>:

8i 2 S; ðP H gÞ

The Lagrangian function is given by

Lðx; kÞ ¼
XN�1

i¼1

ðxiþ1 � xiÞ2 þ k

PN
i¼1xi

N
�m1

 !
: ð8Þ

As shown next, the solution to (Pw) depends on the number of inter-
vals containing missing values and their lengths. In order to solve
(Pw), three cases are considered: the length of the interval of miss-
ing values is greater than or equal to 3, (case 1) or it is just 2 or just
1 (case 2).

First, we first address the problem for a unique interval, and
then we will extend the obtained results to the case of several
intervals of missing values.

(Case 1.a) A unique interval of missing values.
Assume a unique interval of consecutive missing val-
ues, given by (xp, . . . , xp+r), of length R = r + 1 P 3. The
partial derivatives of the Lagrangian function are given
by
@L
@xp
¼ 4xp � 2yp�1 � 2xpþ1 þ k

N ; if j ¼ 0;
@L

@xpþj
¼ 4xpþj � 2xpþj�1 � 2xpþjþ1 þ k

N ; if 1 6 j 6 r � 1;
@L

@xpþr
¼ 4þ xpþr � 2xpþr�1 � 2ypþrþ1 þ k

N ; if j ¼ r:

8>><
>>:
Making the Lagrangian function equal to zero, we obtain
xpþj ¼ ðjþ 1Þxp � jyp�1 þ
jðjþ 1Þ

4N
k; ð9Þ
for 1 6 j 6 r � 1. On the other hand, xp+r can be calculated in two
different ways. First, from the partial derivative of (8) with respect
to xp+r�1, we conclude that
xpþr ¼ ðr þ 1Þxp � ryp�1 þ
rðr þ 1Þ

4N
k: ð10Þ
Also, from the partial derivative of (8) with respect to xp+r,
xpþr ¼
r
2

xp �
r � 1

2
yp�1 þ

1
2

ypþrþ1 þ
r2 � r � 2

8N
k: ð11Þ
Making (10) and (11) equal, we obtain
xp ¼
r þ 1
r þ 2

yp�1 �
1

r þ 2
yp�1 þ

�r2 � 3r � 2
4Nðr þ 2Þ k: ð12Þ
From the active constraint
PN
i¼1xi

N
¼ m1;
it follows that
xp þ
Xr�1

j¼1

xpþj þ xpþr ¼ c; ð13Þ
where c ¼ Nm1 �
P

i2Syi from now on. Substituting (9), (11) and
(12) into (13), yields
k ¼
2c � ðr þ 1Þyp�1 � ðr þ 1Þypþrþ1

c
;

where
c ¼ �r3 � 2r2 � 3r � 2þ 2s
4N

and s ¼
Xr�1

j¼1

jðjþ 1Þ:
(Case 1.b) L1 P 2 intervals of missing values.
Assume in this case a number L1 P 2 of intervals of
missing values, noted I1; . . . ; IL1 . An analysis similar to
that in the previous case shows that, in the interval In

of length Rn = rn + 1, for 1 6 n 6 L1,
xpn
¼ rnþ1

rnþ2 ypn�1 � 1
rnþ2 ypn�1 þ

�r2
n�3rn�2

4Nðrnþ2Þ k

xpnþrn ¼ ðrn þ 1Þxpn
� rnypn�1 þ rnðrnþ1Þ

4N k

xpnþrn ¼ rn
2 xpn

� rn�1
2 ypn�1 þ 1

2 ypnþrnþ1 þ
r2

n�rn�2
8N k

xpnþj ¼ ðjþ 1Þxpn
� jypn�1 þ jðjþ1Þ

4N k; 1 6 j 6 rn;

8>>>>>><
>>>>>>:
where
k ¼
2c �

PL1
n¼1ðrn þ 1Þypn�1 �

PL1
n¼1ðrn þ 1Þypnþrnþ1PL1

n¼1cn

;

where cn ¼
�r3

n�2r2
n�3rn�2þ2sn

4N and sn ¼
Prn�1

j¼1 jðjþ 1Þ.
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Fig. 9. Interpolation of Nijar rainfall amounts data via MMM.
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k ¼
2c �

PL1
n¼1ððrn þ 1Þypn�1 þ ðrn þ 1Þypnþrnþ1Þ �

PL2
n¼1ð2ypn�1 þ 2ypnþ2ÞPL1

n¼1cn �
2L2
N �

L3
N

Now we address (P⁄) for case 2, which corresponds to intervals
of missing values of length 1 or 2.

(Case 2.a) A unique interval of missing values of length 2
Assume a single interval T of missing values xp and xp+1,
for 2 6 p 6 N � 2.
In the same manner as in the previous calculations we
can see that
�
PL3

n¼
xp ¼
2
3

yp�1 þ
1
3

ypþ2 �
1

2N
k;

xpþ1 ¼
2
3

ypþ2 þ
1
3

yp�1 �
1

2N
k;
where in this case
k ¼ ð�c þ yp�1 þ ypþ2ÞN;
(Case 2.b) L2 intervals of missing values of length 2.
Assume I1; . . . ; IL2 intervals of two missing values in the
time series x. The reasoning above applies to this case
to obtain, for 1 6 n 6 L2,
xpn
¼ 2

3
ypn�1 þ

1
3

ypnþ2 �
1

2N
k;

xpnþ1 ¼
2
3

ypnþ2 þ
1
3

ypn�1 �
1

2N
k;
where P

k ¼

c � L2
n¼1ðypn�1 þ ypnþ1Þ

�L2
N

;

(Case 2.c) A unique missing data.
When there exists one single missing data xp in the
time series x, it is easily seen that
xp ¼
1
2

yp�1 þ
1
2

ypþ1 �
1

4N
k; ð14Þ
for 2 6 p 6 N � 1, where
k ¼ ð�2c � yp�1 � ypþ1Þ2N;
(Case 2.d) L3 isolated missing data.
Finally, assume a set of isolated missing data fxigi2I ,
where the length of I is L3. Again, it is straightforward
to obtain
xpn
¼ 1

2
ypn�1 þ

1
2

ypnþ1 �
1

4N
k con pn�I;
for any 2 6 j 6 N � 1 and where
k ¼
2c �

PL3
n¼1ðypn�1 � ypnþ1Þ

�L3
2N

;

We end this Appendix by putting all the previous results to-
gether, giving a closed-form expression for the solution to (Pw).
Consider a time series which has L1 intervals of missing data of
length less than or equal to 3, L2 intervals of length 2, and L3 iso-
lated missing values. Let jBj represent the number of missing val-
ues. The expressions for the missing data are the same derived
previously, where the only difference is the value of k, which has
to be the same for all expressions. Taking into account the active
constraint to preserve the meanXL1

n¼1

Xn

j¼1

ðxpn
þ xpnþj þ xpnþrn Þ þ

XL2

n¼1

ðxpn
þ xpnþ1Þ þ

XL3

n¼1

xpn
¼ c;

we obtain
1ðypn�1 þ ypnþ1Þ
;
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where c ¼ Nm1 �
P

i2Syi and

cn ¼
�r3

n � 2r2
n � 3rn � 2þ 2sn

4N
; sn ¼

Xrn�1

j¼1

jðjþ 1Þ:
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