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The Markovian arrival process (MAP) is a stochastic process that allows for modeling dependent and non-
exponentially distributed observations. Due to its versatility, it has been widely applied in different con-
texts, from reliability to teletraffic. In this work we show the suitability of the MAP for modeling daily
precipitation data, which are often characterized by a non-negligible correlation structure. Specifically,
a set of daily precipitation amounts series from the region of Andalusia (Spain) is shown to be correctly
fitted with a two-state MAP.
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1. Introduction

The fit of climatological series by theoretical models is an essen-
tial task in order to synthetically describe the behavior of the data,
obtain estimates and predictions given the observed values or sim-
ulate series under the same statistical pattern. In rainfall series,
usually characterized by a large variability (especially in Mediter-
ranean climates) and a significative empirical autocorrelation func-
tion, there is a need of finding suitable models that correctly
capture the data behavior. Most works dealing with such a prob-
lem have considered the modeling of annual or monthly totals,
where the normal distribution in the first case, and several asym-
metrical distributions (as the lognormal, or incomplete gamma dis-
tributions) in the second case, have been suggested (Lana and
Burguefio, 2000; Husak et al., 2007; Martinez et al., 2010).

The modeling of daily precipitation amounts, or daily intensity,
is still an open problem, even if recently there has been an increas-
ing interest in the problem of fitting daily rainfall data, mainly due
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to their social, environmental and economic impacts (Mekis and
Hogg, 1999; Romero et al., 1998, 1999; Wilks, 1999). These impacts
are especially intense in the Mediterranean climates since annual
and monthly precipitations in such climates are generated by a
small number of rainy days. This results in a high daily rainfall
irregularity, with alternating high and low values, and a huge num-
ber of days without precipitation. These particular features are not
so noteworthy in other climatic areas (especially oceanic areas), in
which monthly and annual rainfall are the product of an abundant
number of rainy days with moderate and regular rainfall totals.
Such an extreme behavior in Mediterranean climates is responsible
for two phenomena with high socio-economic and environmental
impacts: floods and strong water erosion, as a consequence of hea-
vy rains, and droughts, caused by long dry periods, which consid-
erably affect agriculture and water supply. Long dry periods
cause a non-negligible persistence in the series, which needs to
be considered in the modeling problems.

Due to the strong asymmetry of the empirical histograms of
daily rainfall amounts, some generalization of the exponential dis-
tribution as the Gamma or Mixed Exponential distributions have
been considered in the literature to capture the skewness and pos-
sible extreme behavior of the data, see for example Wilks (1998,
1999), Gronewold et al. (2012). For the modeling of daily rainfall
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extremes, probability distributions with tails longer than the expo-
nential model have been applied. For example, the Weibull and
Gumbel distributions have been suggested to capture the extreme
behavior of daily rainfall series in Catalonia and Valencia, the Span-
ish regions with a most extreme behavior, see Pefiarrocha et al.
(2002) and Casas et al. (2007). It is worth pointing out that if the
probability distributions previously referred (Gamma, Mixed Expo-
nential, Weibull or Gumbel) are not combined with specific pat-
terns of temporal or spatial autocorrelation (as in Casas et al.
(2007)), then the consecutive daily amounts will be considered
as independent observations (see Wilks (1999)), an assumption
that may be unrealistic in some cases.

Apart from the modeling of daily precipitation intensity, it may
also exist an interest in capturing the precipitation occurrence
behavior (rainfall frequency, distribution of wet and dry spells,
and transition probabilities). To this end, different statistical mod-
els that take into account the persistence factor have been consid-
ered in the literature. The Besson persistence coefficient (Besson,
1924) can be considered as a pioneering index and it has been
one of the most widely used throughout the twentieth century
(Brooks and Carruthers, 1953; Holawe and Dutter, 1999). Markov
chains of different orders have been traditionally used to describe
sequences of dry and wet days (Feyerherm et al., 1967; Gates and
Tong, 1976; Lana and Burguefio, 1998; Martin-Vide and Gémez,
1999), to deal with periodicity (Kottegoda et al., 2004, 2008), or
to compute the probability of precipitation and transition probabil-
ities (Hosseini et al., 2011). The duration of dry sequences has also
been estimated from a Weibull model (Lana et al., 2008), or by
applying the generalized extreme value (GEV) and generalized Par-
eto (GP) distributions (Lana et al., 2006).

Some works consider the combination of two models, one for
precipitation intensity and the other for modeling the precipitation
occurrence. As examples, Lennartsson et al. (2008) combines Mar-
kov and Gaussian processes, and Wilks (1998) suggests a second
order Markov chain and a mixture of exponentials for the occur-
rence and intensity precipitation models, respectively. On the
other hand, Stern and Coe (1984) consider non-stationary Markov
chains to model the occurrence of daily rain and the Gamma distri-
bution to fit the rainfall amounts. Wang and Nathan (2007) merges
a Markov chain with a Gamma distribution taking into account
both daily and monthly statistical properties to generate daily rain-
fall data. Some other authors as Mehrotra and Sharma (2007a,b),
Srikanthan and Pegram (2009), not only have combined Markov
chain to model occurrence with various procedures to deal with
intensity, but have also developed some techniques to simulate
spatially correlated data simultaneously.

Hidden Markov processes have recently become very popular in
the modeling of real data of different contexts, from medicine to
engineering or signal processing. Also, in climatology and particu-
larly in rainfall data, they have played an important role (Hughes
and Guttorp, 1999; Bellone et al., 2000; Ailliot et al., 2009). In this
paper we consider the fit of daily precipitation amounts by a Mar-
kovian arrival process (MAP), a class of hidden Markov process
which, unlike previous approaches, not only takes into account
the non-exponentiality and high variability of the observed series,
but also their dependence structure. MAPs were introduced by
Neuts (1979) as a wide class of versatile stochastic processes that
generalizes the Poisson process and the exponential distribution.
The MAP combines a versatile probability distribution, the phase-
type (PH) model, with a specific autocorrelation function in such
a way that it is able to capture a wide range of statistical marginal
patterns under the assumption of a correlation structure. Phase-
type distributions (O’Cinneide, 1990; Asmussen et al., 1996;
Asmussen, 2000) constitute a large class of probability distribu-
tions that include well known models as the Exponential, Erlang,
Coxian, Hyper- and Hypo-exponential distributions. MAPs have

proven long ago as suitable models in various contexts where
dependent data are observed, such as teletraffic, reliability or
queueing (Kang et al., 2002; Altman et al., 2005; Neuts et al,,
2000; Montoro-Cazorla et al., 2009), but up to our knowledge they
have never been considered in climatology.

The purpose of this paper is to show the suitability of the sim-
plest version of MAP, the second order MAP, noted MAP,, to model
daily precipitation intensity. An estimation approach based on a
moments matching method is derived and applied to fit the
MAP; to a set of real daily precipitation series in Andalusia, Spain.
The fitting process, though technically sophisticated, is fully auto-
matized thanks to the numerical routines developed, which are
available for practitioners. An extensive numerical study is
developed to compare the MAP, with alternative models for daily
precipitation intensity.

The paper is organized as follows. In Section 2 the MAP, is intro-
duced and its main properties are reviewed. In Section 3, we derive
a scheme for inference for the MAP,, based on the empirical mo-
ments of the observed data. Illustrations to the modeling of real
rainfall data are given in Section 4, where comparisons with bench-
mark models are also provided. Finally, in Section 5, some conclu-
sions and possible extensions to this work are discussed.

2. The second order Markovian arrival process

The MAP is a stochastic process that generalizes the well-known
Poisson model. It is characterized by an unobservable, irreducible
and continuous Markov process {J(t), t > 0}, with state space S and
initial probability «, and a sequence of observable continuous
and non-negative random variables (41, 45, ..., 4,,...), which are
conditionally independent given the realizations of the underlying
Markov process {J(t), t > 0}. The Markov process {J(t), t > 0} be-
haves jumping from one state to another according to a rate matrix
D. The transitions remain unobserved but determine the value of
the observed random variables {4,},.,. In this sense, the MAP
can be regarded as a hidden Markov model, Ephraim and Merhav
(2002). In the context of daily rainfall modeling, we will interpret
the variable 4, as the total precipitation at the nth day.

In this paper we will restrict ourselves to the simplest version of
MAP, namely, the second-order (or two-state) MAP, which is gov-
erned by {J(t), t > 0} with state space S = {1,2}. As will be shown
in our empirical study this version of the process, noted MAP,, is
already flexible enough to accurately fit rainfall data. A description
of the basic properties of the MAP, follows. For a more detailed
description, see Neuts (1979), Lucantoni (1991), Asmussen (2000)
or Ramirez-Cobo et al. (2010).

Bodrog et al. (2008) provide a compact representation for the
MAP,. In particular, for most MAP,s with positive lag-one autocor-
relation (correlation between consecutive observations), as is the
case of daily rainfall data, such MAP,s are characterized in terms
of two matrices Dgy, D1, which depend on 4 parameters, x, u,y, v:

D]:<;X_y (iu—v)' M

These 4 parameters satisfy the following constraints:

xu < 0
yv = 0

2)
x+y < O
u+v < 0
Matrices Do and Dy in (1) are rate matrices that satisfy D = Dy + Dy,
where D is the infinitesimal generator of the underlying Markov
process {J(t), t > 0} whose stationary probability vector is denoted
by m = (m,1 — m) and computed as nD = 0.
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Fig. 1. Types of Mediterranean climates in Andalusia and location of meteorological stations.

An important property of MAPs concerns Markov renewal the-
ory (Cinlar, 1975). If 4, denotes the total precipitation at the nth
day, and X, is the (unobserved) state of the underlying Markov
chain at that moment, then {X,_4, 4,},-; is a Markov renewal pro-
cess, and in particular, {X,},-; is a Markov chain whose transition
matrix P* is given by

P* = (-Do)'Dy, 3)

with stationary probability vector denoted by ¢ = (¢, 1 — ¢) such
that ¢P* = ¢.

We next describe properties of the random variables of interest,
{41}, For inference purposes we will assume that the MAP, is in
its stationary version, that is, the initial probability vector equals
the stationary distribution, « = ¢. In the stationary version of the
process, {4,},-; are identically distributed and follow a phase-
type (PH) distribution with representation {¢,Do}. This implies

that 4, 4 A, foralln > 1, and 4 possesses the cumulative distribu-
tion function given by

Fi(t) = P(4 < t) = ¢ (I — ™) P¥e,
=1- pebote, fort >0,

(4)

where e is a unit vector. Expression (4) can be understood as the
probability of a total rainfall less than or equal to t at a given day.
The density function of 4 is obtained as

fa(t) = ¢e™(~Dy)e,
and the moments of 4 can be computed as
ft, = E(4") = nl(~Dy) "e. (5)

The variance ¢? and the coefficient of asymmetry y of 4 follow from

(5).

Table 1

Observatories and percentage of missing data at each season.
Observatory code Name Winter Spring Summer Autumn
63250 Almeria, Airport 0 0 0 0
5704 Cazalla de la Sierra 4.6 4.2 1.9 4.6
5402 Cérdoba, Airport 10.9 9.5 33 9.5
5514 Granada, Air Base 0 0 0 0
5911 Grazalema 0 0.7 0.3 0.1
5960 Jerez de la Frontera, Airport 0.3 0 0.3 0.2
5163 Jimena 25 2.7 1.7 4.6
6155A Malaga, Airport 0 0 0 1]
7045 Pontones 10.1 7.5 2.5 9.5
5783 Sevilla Airport 0 0 0 0
6001 Tarifa 44 0.5 0.6 4.2
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A crucial property of the MAP, for statistical modeling is that it
allows for correlated precipitation amounts, the autocorrelation
coefficient of lag k, p,, being given by

1 2

T
e — 4

where 0 < y < 1 is one of the two eigenvalues of the transition ma-

trix P*. As P* is stochastic, then necessarily the other eigenvalue is
equal to 1 (Bodrog et al., 2008).

P = P(4n, Ans) =y for k >0, (6)

3. Parameter estimation

Bodrog et al. (2008) prove that the first autocorrelation coeffi-
cient and the first three moments {p(1), i, i, i3} completely
characterize the process MAP,. We have already given formulae
for such values in Section 2, which depend on the parameters
x,u,y, v in (1) and they must satisfy (2).

Therefore, a natural estimation procedure is based on the meth-
od of moments, in which values of the parameters x,u,y, v are
sought so that the resulting values of u,, i,, it5, p(1) exactly fit

Table 2

I, [z, I3 and p(1), the empirical moments and lag-one autocorre-
lation coefficient. In other words, a first estimation attempt is to
find values of x,u,y, v satisfying (2) and the following equalities:
=M, My =[a, fy=H3, p(1)=ps, (7)
where y;, fori = 1,2,3 and p(1) are expressed in terms of the model
parameters as

— vy
= uy+yv+uvx’

_ VU—yv+yX
Ky, = Xu(uy-+yv+uvx)’

_ R nP-yvu-yux+yx?
My = 6 x2u2 (uy+yv+ox)

yo(Bx+2 vulx+ v?ux-3 xuty-5 xuyv-3 Xuv+ly+x3 v-v2x2 + 2y v-2 y 1)

p( ) - xu(Z vu2y+2 v2uy+v2ux—2y2 vu-2 y2 12 -2 yu2x-+y2xu+2 y2xv+2 yx2 v—2xuyv)

yv(—2y2 vu—y2u? + v2uy+2 vuly+y2xu+2 yx2u+y xv+x3u—2 x2u? —y? 1)2)

xu(2 vy +2 v2uy+v2ux—2y2 vu-2 y2 v2 -2 yv2x-+y2xu+2 y2xv+2 yx? v—2xuy7/) :

Solving directly the nonlinear system of Eq. (7) is not straight-
forward. Instead, we propose to address (7) via solving numerically
the following optimization problem:

Columns 3-8: Empirical and estimated first moment, variance, coefficient of asymmetry and first three autocorrelation parameters by the MAP,, the Gamma and Mixed
Exponential, for daily precipitation (winter) Andalusian series. Last column: obtained p-Values from the y2-goodness-of-fit tests.

Station I a2 Y p(1) p(2) p(3) p-Value
Almeria Empirical 0.76 13.75 10.54 0.09 0.03 0.01

MAP; 0.76 13.75 10.54 0.09 0.01 0.00 0.07

Gamma 0.76 13.75 9.75 0.48

ME 0.57 6.68 5.32 p <0.01
Cazalla Empirical 3.25 92.02 4.40 0.38 0.18 0.15

MAP, 3.25 91.72 443 0.38 0.32 0.28 0.07

Gamma 3.25 92.02 5.89 p <0.01

ME 10.58 71.45 417 p <0.01
Cérdoba Empirical 2.17 38.17 4.83 0.28 0.22 0.12

MAP, 2.15 38.90 4.64 0.28 0.18 0.12 0.67

Gamma 217 38.17 5.68 0.05

ME 4.71 28.84 4.00 p <0.01
Granada Empirical 1.38 13.63 4.23 0.32 0.15 0.10

MAP, 1.38 13.63 4.23 0.32 0.23 0.17 0.22

Gamma 1.38 13.63 533 p <0.01

ME 1.91 11.65 3.99 p<0.01
Grazalema Empirical 8.88 556.15 4.48 0.44 0.25 0.16

MAP, 8.80 566.85 4.30 0.42 0.42 0.42 0.69

Gamma 8.88 556.15 5.30 0.02

ME 78.94 399.06 3.69 p <0.01
Jerez Empirical 245 48.53 4.32 0.26 0.19 0.13

MAP; 245 48.51 4.32 0.26 0.16 0.09 0.55

Gamma 245 48.53 5.68 0.28

ME 6.01 36.29 3.98 p <0.01
Jimena Empirical 1.66 22.02 5.11 0.26 0.13 0.11

MAP, 1.62 23.15 4.59 0.26 0.15 0.09 0.06

Gamma 1.66 22.03 5.64 p <0.01

ME 2.76 16.50 3.96 p <0.01
Malaga Empirical 247 85.25 6.83 0.23 0.12 0.14

MAP, 247 85.23 6.83 0.23 0.12 0.06 p <0.01

Gamma 247 85.25 7.44 0.13

ME 6.14 46.71 4.40 p <0.01
Pontones Empirical 3.44 77.71 4.76 0.36 0.21 0.15

MAP, 3.47 76.46 491 0.37 0.36 0.34 0.02

Gamma 3.44 77.71 5.12 0.20

ME 11.83 44.80 3.81 0.02
Sevilla Empirical 217 42.71 4.49 0.29 0.18 0.14

MAP, 217 42.56 4.53 0.29 0.19 0.13 0.06

Gamma 217 42.71 6.01 p <0.01

ME 4.71 31.77 417 p <0.01
Tarifa Empirical 3.05 70.76 5.27 0.29 0.17 0.17

MAP; 297 75.01 4.65 0.29 0.19 0.13 0.05

Gamma 3.05 70.76 5.50 0.01

ME 9.35 48.75 3.73 p <0.01
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min {p(1)=p(0) 4] (552) + () -+ (142) )

s.t. xu<0,
>

Here 7 is a penalty parameter, which in our experiments is set to
T =1. This choice follows Carrizosa and Ramirez-Cobo (2012),
which in addition provides a deeper discussion of the numerical
solution of problem (8) and its performance. We stress that solving
(8) is doable with standard numerical/statistical packages such as
MATLAB or R. In http://personal.us.es/jrcobo/www/Software.html
a MATLABO®© code for solving the optimization problem is available.

4. Application to the analysis of Andalusian rainfall data
4.1. Data description

The collection of analyzed daily precipitation amounts was ob-
tained from the Spanish Meteorological Agency (AEMET). The data

Table 3

base includes daily records in a total of 11 observatories in Anda-
lusia (south of Spain), from 1968 to 2009 (with the exception of
Cérdoba, where only the information up to 2006 was available).
The observatories are shown in Fig. 1.

To remove the strong seasonal component of the original series
associated with the annual cycle of precipitation, the records have
been grouped into four sets corresponding to the seasons of winter,
spring, summer and autumn. Instead of using the conventional ap-
proach of climatological seasons, the astronomical approach has
been considered since in this way the seasonal cycle of the Anda-
lusian precipitation is more accurately recorded. To clarify this
point consider the Andalusian summer season, which is character-
ized by extremes rainfall shortages from the end of June until mid
September. If climatological seasons were used, the real pattern of
the summer rainfall shortages would be distorted since on one
hand, part of the spring precipitation amounts (those correspond-
ing to the beginning of June) would be taken into account, and on
the other hand, the shortage period related to the beginning of Sep-
tember would be displaced to the fall season. The astronomical ap-
proach allows for each seasonal series to be internally rather
homogeneous, and additionally, the seasonal component within

Columns 3-8: Empirical and estimated first moment, variance, coefficient of asymmetry and first three autocorrelation parameters by the MAP,, the Gamma and Mixed
Exponential, for daily precipitation (spring) Andalusian series. Last column: obtained p-Values from the y?-goodness-of-fit tests.

Station I a2 Y p(1) p(2) p(3) p-Value
Almeria Empirical 0.50 8.84 14.30 0.11 0.07 0.00

MAP; 0.50 8.83 14.30 0.11 0.02 0.00 0.01

Gamma 0.50 8.84 11.66 0.79

ME 0.26 4.36 6.33 p <0.01
Cazalla Empirical 1.92 42.15 6.97 0.33 0.14 0.06

MAP, 1.92 42.14 6.97 0.33 0.24 0.17 p <0.01

Gamma 1.92 42.15 6.75 0.08

ME 3.61 31.61 4,63 0.01
Cérdoba Empirical 1.32 18.47 5.16 0.29 0.09 0.07

MAP, 1.32 18.50 5.14 0.29 0.18 0.12 0.92

Gamma 1.32 18.47 6.49 0.35

ME 1.75 13.85 4.47 p <0.01
Granada Empirical 1.04 12.09 6.42 0.18 0.07 0.02

MAP, 1.04 12.09 6.42 0.18 0.07 0.03 p <0.01

Gamma 1.04 12.09 6.63 p <0.01

ME 1.09 8.08 4,34 p<0.01
Grazalema Empirical 3.86 148.22 5.82 0.34 0.16 0.10

MAP, 3.86 148.20 5.81 0.34 0.26 0.20 0.36

Gamma 3.86 148.22 6.30 0.27

ME 14.93 99.79 4.15 p <0.01
Jerez Empirical 1.23 20.52 5.74 0.28 0.06 0.06

MAP, 1.23 20.51 5.74 0.28 0.17 0.10 0.31

Gamma 1.23 20.52 7.32 0.06

ME 1.52 14.78 4.90 p <0.01
Jimena Empirical 1.60 28.28 7.97 0.14 0.07 0.01

MAP, 1.60 28.28 7.97 0.14 0.04 0.01 p <0.01

Gamma 1.60 28.28 6.62 0.16

ME 2.57 17.19 4.15 p <0.01
Malaga Empirical 1.03 22.70 9.17 0.32 0.10 0.03

MAP, 1.03 22.70 9.17 0.32 0.21 0.14 0.03

Gamma 1.03 22.70 9.17 0.82

ME 1.07 11.54 5.13 p <0.01
Pontones Empirical 2.87 51.38 3.97 0.24 0.09 0.05

MAP, 2.87 51.20 4.00 0.24 0.14 0.08 0.11

Gamma 2.87 51.38 4.99 p<0.01

ME 8.83 49.40 3.96 0.1
Sevilla Empirical 1.23 18.94 5.47 0.28 0.08 0.06

MAP, 1.23 18.93 5.47 0.28 0.17 0.11 0.93

Gamma 1.23 18.94 7.03 0.47

ME 1.53 14.05 4.78 p <0.01
Tarifa Empirical 1.30 22.47 6.37 0.32 0.13 0.10

MAP; 1.30 22.47 6.37 0.32 0.23 0.16 0.2

Gamma 1.30 2247 7.28 0.35

ME 1.69 15.27 4,74 p <0.01
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the series is removed without having to use 12 monthly series,
which may be too disaggregated.

Crude data presented missing values. Table 1 shows, for the dif-
ferent observatories and seasons, the percentage of missing values,
which ranges between 0% and 10.9%. Therefore, an interpolation
procedure was used to complete the series. The interpolated values
were obtained by linear regression from neighboring series better
correlated with the series under study. To avoid the appearance of
negative values and keep homogeneity, the regression line was
forced to pass through the origin. This approach has been widely
applied in the literature to reconstruct daily precipitation series,
see for example Eischeid et al. (2000) or Serrano et al. (2010).
The obtained correlation coefficients (Pearson’s R) were larger than
0.7 in winter, spring and autumn. In the cases of Cérdoba and
Pontones (those with the largest proportion of missing values), it
exceeded the value of 0.9. In summer season the correlations were
slightly lower (around 0.6) but this was compensated by the
small number of missing values in that season. Finally, following
Peterson et al. (1998) and Gonzalez-Rouco et al. (2000), a quality

Table 4

control procedure was applied to detect and correct possible errors
in the database. A total of six outliers were detected and replaced
according to the interpolation procedure.

4.2. Fitting results

In this section we show the suitability of the MAP, for the mod-
eling of daily precipitation data. According to Wilks (1999) daily
precipitation stochastic models can be considered as either precip-
itation amounts models, or precipitation occurrence models. In this
work we focus on the MAP, as a daily precipitation amounts model
and therefore, we will fit the probability model defined by (4) and
(6) to the real sequences of daily precipitation amounts described
in Section 4.1.

Given a sequence of daily precipitations, the four characterizing
parameters of a MAP, as in (1) are estimated by the solution to the
problem (8). Given the estimates of (x,y,u,v), noted (%,9,1,7?),
then the estimated moments and autocorrelation function are ob-
tained by applying formulae (5) and (6) to (,y,1, ¥). From these,

Columns 3-8: Empirical and estimated first moment, variance, coefficient of asymmetry and first three autocorrelation parameters by the MAP,, the Gamma and Mixed
Exponential, for daily precipitation (summer) Andalusian series. Last column: obtained p-Values from the y?-goodness-of-fit tests.

Station A a2 Y p(1) p(2) p(3) p-Value
Almeria Empirical 0.11 3.47 37.12 0.01 0.00 0.01

MAP, 0.11 3.47 37.12 0.01 0.00 0.00 0.42

Gamma 0.11 3.47 32.05 0.59

ME 0.02 1.03 9.48 0.95
Cazalla Empirical 0.33 8.15 14.85 0.15 0.03 0.02

MAP, 0.33 8.15 14.85 0.15 0.04 0.01 0.03

Gamma 0.33 8.15 16.80 0.49

ME 0.16 6.44 9.49 0.01
Cérdoba Empirical 0.27 5.86 14.76 0.24 0.06 0.00

MAP, 0.27 5.86 14.76 0.24 0.11 0.05 0.7

Gamma 0.27 5.86 17.76 0.55

ME 0.09 3.73 9.48 p <0.01
Granada Empirical 0.22 4.32 17.75 0.09 0.04 0.03

MAP, 0.22 4.32 17.75 0.09 0.01 0.00 0.96

Gamma 0.22 4.32 18.61 0.76

ME 0.05 1.87 9.32 p<0.01
Grazalema Empirical 0.43 15.92 18.56 0.09 0.05 0.02

MAP, 0.43 15.92 18.56 0.09 0.01 0.00 p <0.01

Gamma 043 15.92 18.16 0.6

ME 0.19 7.39 9.41 0.06
Jerez Empirical 0.25 9.25 20.21 0.06 0.01 0.00

MAP; 0.25 9.25 20.21 0.06 0.00 0.00 0.76

Gamma 0.25 9.25 23.96 1

ME 0.14 5.63 9.48 p <0.01
Jimena Empirical 0.37 10.41 20.14 0.05 0.02 0.01

MAP, 0.37 10.40 20.14 0.05 0.00 0.00 0.06

Gamma 0.37 10.41 17.36 0.76

ME 0.13 4.07 8.29 0.8
Malaga Empirical 0.18 3.99 19.15 0.16 0.09 0.05

MAP, 0.18 3.99 19.15 0.16 0.05 0.01 0.38

Gamma 0.18 3.99 22.13 0.75

ME 0.08 3.39 9.48 p <0.01
Pontones Empirical 0.63 12.42 9.60 0.12 0.06 0.05

MAP, 0.63 12.42 9.60 0.12 0.03 0.00 0.37

Gamma 0.63 12.42 11.15 0.23

ME 0.39 9.97 7.65 0.21
Sevilla Empirical 0.22 5.71 17.68 0.17 0.01 0.00

MAP, 0.22 5.71 17.68 0.17 0.06 0.02 0.77

Gamma 0.22 5.71 20.96 0.81

ME 0.09 3.73 9.48 p <0.01
Tarifa Empirical 0.16 3.11 23.31 0.13 0.03 0.01

MAP; 0.16 3.11 23.31 0.13 0.03 0.00 0.92

Gamma 0.16 3.11 21.70 0.62

ME 0.04 1.60 9.48 p <0.01
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the estimated variance and coefficient of asymmetry, 62 and 7, are
also derived.

In Wilks (1999), the Gamma distribution and Mixed Exponen-
tial distribution (from now on, ME) are suggested for modeling
daily precipitation amounts. The Gamma distribution is a two-
parameters model that generalizes the exponential distribution.
The ME model, expressed in terms of three parameters
ME(p, 41, /2), is indeed a mixture of two exponentials of parameters
/1 and Z, (and p is the probability of the first component), and is
also called in the literature hyperexponential distribution. Both
the Gamma and ME distribution are particular cases of the
phase-type (PH) model defined by the cumulative distribution
function (4), and therefore it is expected that these models per-
forms equal to or poorer than the MAP, when estimating the mar-
ginal distribution of the sample data. In order to test the fit to the
empirical distribution function, a y?-goodness-of-fit test was run
at a 5% significance level for each of the three considered models.

Columns 3-8 from Tables 2-5 show the empirical values of
Uy, 02,y and p(k), for k =1,2,3, and their estimated counterparts

Table 5

by fitting a MAP, (via the estimation procedure in Section 3), and
the Gamma and ME models (by a simple matching moments meth-
od and maximum likelihood, respectively), for winter, spring, sum-
mer and fall series, respectively. The fitted values which are closest
to the empirical ones are highlighted in bold style. The last column
of Tables 2-5 show the p-values obtained from the y2-goodness-
of-fit tests. To shorten notation, we only write 2 decimals.
Several remarks need to be made at this point. First, note that,
as commented in the introduction, one of the major strengths of
the MAP, with respect to other models for daily precipitation
amounts which consider the observations as independent, is its
ability to preserve not only the marginal, but also the joint struc-
ture of the data, by fitting the correlation coefficients, which,
according to Tables 2-5 are non-negligible. In this case, unlike
the MAP,, which combines a probability distribution (PH) with the
specific autocorrelation function (6), neither the Gamma nor
the ME distributions are able to capture the correlation
coefficients. Concerning the empirical values it can be seen that
the average precipitation amounts (u,) are similar between the

Columns 3-8: Empirical and estimated first moment, variance, coefficient of asymmetry and first three autocorrelation parameters by the MAP,, the Gamma and Mixed
Exponential, for daily precipitation (autumn) Andalusian series. Last column: obtained p-Values from the y2-goodness-of-fit tests.

Station I a2 Y p(1) p(2) p(3) p-Value
Almeria Empirical 0.81 13.16 7.34 0.17 0.03 0.01

MAP, 0.81 13.16 7.34 0.17 0.06 0.02 0.83

Gamma 0.81 13.16 8.87 0.45

ME 0.66 7.89 5.37 p <0.01
Cazalla Empirical 3.61 125.47 4,92 0.34 0.16 0.09

MAP, 3.61 12547 4.92 0.34 0.26 0.20 0.34

Gamma 3.61 12547 6.20 0.07

ME 13.04 92.96 427 p <0.01
Cérdoba Empirical 2.34 61.15 6.68 0.23 0.13 0.08

MAP, 2.34 61.14 6.68 0.23 0.12 0.06 p <0.01

Gamma 2.34 61.15 6.66 0.18

ME 5.50 36.86 4.16 p <0.01
Granada Empirical 1.34 15.64 4.25 0.22 0.08 0.06

MAP, 135 1543 4.37 0.22 0.11 0.05 0.1

Gamma 1.34 15.64 5.85 0.01

ME 1.82 12.31 418 p<0.01
Grazalema Empirical 6.96 417.77 5.05 0.29 0.17 0.09

MAP, 6.83 435.14 4.63 0.29 0.19 0.12 0.67

Gamma 6.96 417.77 5.87 0.29

ME 48.45 277.60 3.89 p <0.01
Jerez Empirical 2.60 66.28 4.86 0.31 0.13 0.09

MAP; 2.60 66.19 4.88 0.31 0.21 0.15 0.06

Gamma 2.60 66.28 6.24 0.01

ME 6.80 46.29 4.19 p <0.01
Jimena Empirical 1.57 23.76 5.94 0.20 0.06 0.04

MAP, 1.57 23.76 5.94 0.20 0.09 0.04 0.06

Gamma 1.57 23.76 6.19 0.19

ME 247 16.47 4.15 p <0.01
Malaga Empirical 245 88.64 6.49 0.24 0.12 0.07

MAP, 242 91.27 6.11 0.24 0.12 0.06 0.9

Gamma 242 88.64 7.65 0.56

ME 6.04 48.64 4.51 p <0.01
Pontones Empirical 2.97 63.59 4.34 0.28 0.14 0.08

MAP, 2.97 63.70 4.32 0.28 0.18 0.12 0.85

Gamma 2.97 63.59 5.35 0.32

ME 8.87 56.65 4,07 0.01
Sevilla Empirical 241 61.85 5.69 0.25 0.12 0.07

MAP, 2.37 63.69 5.35 0.25 0.13 0.07 0.14

Gamma 2.37 61.85 6.52 0.05

ME 5.80 43.49 4.37 p <0.01
Tarifa Empirical 2.78 68.84 4.83 0.25 0.13 0.09

MAP; 2.78 68.82 4.83 0.25 0.14 0.08 0.8

Gamma 2.78 68.84 5.95 0.75

ME 7.77 46.54 3.96 p <0.01
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Fig. 2. Empirical (solid line), and estimated (dashed line) cumulative distribution functions F,(x) as in (4) with a MAP, model. Each row corresponds to two random stations
per season (Granada and Cazalla in winter, Pontones and Sevilla in spring, Malaga and Grazalema in summer, and Jerez and Tarifa in fall).
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stations (with the exception of Grazalema). More variability can be
found in the distribution of the variance (see for example the val-
ues of ¢? in Cazalla and Grazalema). The positive coefficients of
asymmetry imply that the distributions of the data are skewed to
the right, as a consequence of possible extreme values. Most series
present a significative positive correlation, in some cases around
0.35-0.40 (see Cazalla, Pontones, Grazalema in winter, Cazalla
and Grazalema in spring, Cérdoba in summer and Cazalla in au-
tumn). With regards to the performance of the MAP, it can be con-
cluded from the tables that the MAP, properly fits the marginal
moments (mean, variance and skewness coefficient) of the daily
precipitation data. In addition, according to the p-values, the
MAP, can be considered the generator model of the data in 34
(out of 44) stations. From Fig. 2, which depicts the empirical (solid
line) and estimated (dotted line) cumulative distribution functions
(4) for eight different stations, it can be seen that both the body
and the tail of the empirical distributions are correctly captured
by the estimated model.

We focus now on the performance of the MAP,, in comparison
with that of the Gamma and ME models. Note first that the Gamma
distribution exactly fits the mean and variance of the data. This is
an expected result since the estimation of (o, ) is based on the
equality between the theoretical and empirical mean and variance.
On the contrary, in some cases the ME performs poorer than the
MAP, and Gamma distribution when estimating the mean and var-
iance (see for example the series of Grazalema in winter, spring
and fall, Tarifa in summer or Cazalla in fall). Concerning the coeffi-
cient of asymmetry, it can be seen how the MAP, perfectly matches
it, while the Gamma distribution tends to generate longer tails
(since the coefficient of asymmetry is usually larger). On the con-
trary, the ME model tends to underestimate the skewness coeffi-
cient, which implies that less extreme values will be generated
according to the estimated ME distribution. The p-values obtained
when running the y?-goodness-of-fit tests indicate that the Gam-
ma and ME are not rejected in 32 and 5 times (out of 44), respec-
tively. The MAP, and Gamma models are accepted at the same time
for 23 series, in 15 of which the MAP,’s p-values are higher than the
corresponding Gamma'’s p-values.

In order to examine the MAP, with respect to its capacity to
reproduce the largest observed values, an analogous analysis to
that conducted by Wilks (1999) was performed. Similarly as in
the cited reference, the comparison between the observed maxima
and their theoretical counterparts is obtained by estimating the
cumulative probability associated with each observed maximum
Xmn) as

n-1/3
POX<x0) =113 )
where n represents the sample size. Fig. 3 depicts the relationships
between the largest observed daily precipitation amounts for each
station and season, in relation to the corresponding (through Eq.
(9)) theoretical amounts from the MAP, model (top panel), the
Gamma model (central panel) and the ME model (bottom panel).
Also, the mean squared error was computed for each model.

As a conclusion from Fig. 3 it can be said that both the MAP, and
Gamma models perform similarly in terms of the obtained mean
squared errors. The MAP, seems to match better the observed
extremes for those series where the maximum daily amounts are
smaller than 100 mm, but the Gamma model outperforms the
MAP, for maximum daily amounts larger than 180 mm, approxi-
mately. Also, it is observed that the MAP, underestimates the ob-
served extremes in more series than the Gamma model does. On
the contrary, the Gamma model sometimes generates largest val-
ues which are larger than the real ones. The ME model presents
the poorest results: in all series the observed extremes are under-

represented (very significantly in some cases). These facts are sup-
ported by the previous discussion about the estimated coefficients
of asymmetry shown in Tables 2-5.

Two additional experiments to examine the extreme-value
characteristics were considered. In both of them, two stations per
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Fig. 3. Relationships between the largest observed daily precipitation amounts
(vertical) and the corresponding (through Eq. (9)) model-derived extremes (hor-
izontal) for the MAP, model (top panel), Gamma distribution (central panel), and
Mixed Exponential distribution (bottom panel).



468 P. Ramirez-Cobo et al./Journal of Hydrology 510 (2014) 459-471

season were randomly selected, for which three samples of length
equal to that of the observed data (n = 3749 for winter series,
n = 3833 for spring series, n =3979 for summer series, and
n = 3780 for fall series) were generated according to the estimated
MAP,, Gamma and ME models. Fig. 4 shows the box and whisker
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plots of the four series: the real daily precipitation amounts series
at each considered station, and the synthetic precipitation
amounts series generated by the estimated Gamma, ME and
MAP, model. The dots in the plots represent the series’ extreme
values.
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Fig. 4. Box and whisker plots of original daily precipitation amounts series and of generated series according to the estimated ME, Gamma and MAP, models. Each row
corresponds to two random stations per season (Jerez and Mélaga in winter, Grazalema and Jerez in spring, Granada and Grazalema in summer, and Almeria and Cazalla in
fall).
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Note how the MAP, model seems to generate samples of the
same order as the original data in the considered eight simulated
series; in the case of the Gamma distribution, larger values than
those in the original series are sometimes generated, while in gen-
eral, the ME model generates data with lighter tails. Note too that
for some series the Gamma and MAP, perform similarly (Jerez in
spring, Granada in summer), and the ME and MAP, also do in some
cases (Malaga in winter or Jerez in spring).

In the third experiment, the 95th, 99th and 99.5th percentiles of
the real and synthetic precipitation amounts series were computed.
They are shown in Fig. 5, where the square, star, circle and diamond
symbols represent the percentiles of the real and generated series
according to the MAP,, Gamma and ME models, respectively. As
shown by the box and whisker plots in Fig. 4, the considered models
seem to generate extremes values under different patterns, and
therefore differences in the highest percentiles are expected.
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Fig. 5. 95th, 99th and 99.5th percentiles of the real daily precipitation amounts series ((J) and of the generated series from the estimated MAP, (*), Gamma (o) and ME (<)
models. Each row corresponds to two random stations per season (Jimena and Tarifa in winter, Cérdoba and Pontones in spring, Granada and Jimena in summer, and Cazalla

and Malaga in fall).
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Indeed, the higher the values of g, the most differences are found
between the models. As a general rule, the 99th and 99.5th percen-
tiles obtained under the Gamma distribution seem to be larger than
they are under the MAP, or ME models, while those from the ME
model are the smallest ones (being the summer season an excep-
tion). The MAP, seems to correctly fit the percentiles in the eight
considered series but shows a poorer performance in comparison
with the other approaches in summer station.

5. Discussion

In this work we present the two-state MAP as a stochastic mod-
el for the daily precipitation intensity. An estimation approach
based on a moments matching method has been described and ap-
plied to fit the MAP; to a set of 44 real daily precipitation amounts
series. The MAP, is compared to benchmark models for daily pre-
cipitation intensity suggested in the literature, as the Gamma
and Mixed Gamma distributions. The results show that it performs
similarly or better when modeling the marginal distribution of the
series and it has a similar performance to the Gamma distribution
if the extreme characteristics are examined. However, unlike the
competing approaches the MAP, not only captures the marginal
statistical pattern of the data as the mean, variance and coefficient
of asymmetry, but it also correctly fits the empirical persistence
which, as shown by the numerical results, may be significative.

A number of extensions to this work are possible. First, we plan
to explore the capability of the MAP, as a model for precipitation
occurrence. Dry spells of Mediterranean climates are known to
be difficult to model by popular probability distributions (as the
Geometric, Mixture of two Geometric components or Negative
Binomial distribution). It is natural to wonder if a better perfor-
mance of the MAP, would be obtained under a different optimiza-
tion criteria (for example, the maximization of the likelihood
function of the spell lengths). We also find of interest to investigate
the suitability of the MAP, in other climatology contexts where the
assumption of independence is not realistic. It would be desirable
as well to study the potential of the MAP, as a model for prediction
and classification purposes. Given that the problem of missing data
is not infrequent in precipitation series, a different and promising
research line consists in generalizing our estimation methodology
for data presenting missing values, by applying an inference tech-
nique along the lines of the well-known Expectation-Maximiza-
tion (EM) algorithm. Finally, the increasing interest in climate
change leads to the study of models able to detect trend changes,
and the authors believe the MAP, could be used with that end.
Work on these issues is underway.

In the spirit of a reproducible research the codes utilized in
this paper to simulate and estimate the MAP, are available at
http://personal.us.es/jrcobo/www/Software.html as a stand-alone
MATLAB® toolbox.
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