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In this note we address the problem of determining selection probabilities for multipurpose surveys,
when the aim is the simultaneous minimization of variances for each variable under study. A character-
ization of the set of Pareto-optimal designs is given for designs with replacement and also for a class of
designs without replacement, namely, Poisson designs.

As an application, we describe a problem encountered in Auditing, where both the fraction of misstate-
ments, and the average amount of such misstatements are of interest.

� 2009 Elsevier B.V. All rights reserved.
1. The problem

Let U ¼ fu1; . . . ;uNg be a finite population. Associated with each
ui we have an r-valued vector Yi ¼ ðYi1;Yi2; . . . ;YirÞ: The vector # of
means,

# ¼ ð#1; . . . ; #rÞ ¼
1
N

XN

i¼1

Yi1;
1
N

XN

i¼1

Yi2; . . . ;
1
N

XN

i¼1

Yir

 !
ð1Þ

is estimated by drawing from U a sample with replacement of size
n, and considering as estimator b# the r-dimensional Hansen–Hur-
witz estimator, [9], b# ¼ ðc#1 ; . . . ; b#rÞ with

b#j ¼
1
N

XN

i¼1

Yijfi

nai
; j ¼ 1;2; . . . ; r: ð2Þ

Here fi denotes the frequency of ui in the sample, and ai is the deci-
sion variable denoting the probability of selection of ui at each
draw. Since ða1; . . . ;aNÞ represents a probability vector, it is con-
strained to belong to the unit simplex DN ,

DN ¼ ðb1; . . . ;bNÞ :
XN

j¼1

bj ¼ 1; 0 6 bj 6 1 8j ¼ 1;2; . . . ;N

( )
: ð3Þ

In this paper the Yij are assumed to be mutually independent
random variables, with expected value EðYijÞ ¼ lij < þ1 and finite
variance varðYijÞ ¼ EðY2

ijÞ � l2
ij ¼ r2

ij P 0: For simplicity we assume
in what follows:

l2
ij þ r2

ij > 0 8i; j; ð4Þ
ll rights reserved.
which holds when each Yij is not degenerate to zero. Observe also
that the case of a fixed positive value for Yij is obtained by assuming
that rij ¼ 0:

When the coefficients Yij are given, then each b#j is unbiased for
#j,

E
1
N

XN

i¼1

Yijfi

nai

�����ðY1j; . . . ;YNjÞ
 !

¼ 1
N

XN

i¼1

Yij ð5Þ

and the (design) variance of b#j is given by

E
1
N

XN

i¼1

Yij �
1
N

XN

i¼1

Yijfi

nai

!2
0@ ������ðY1j; . . . ;YNjÞ

0@ 1A
¼
XN

i¼1

Y2
ij

N2nai

� 1
N2n

XN

i¼1

Yij

 !2

; ð6Þ

see p. 52 of [19].
For a given vector ða1; . . . ;aNÞ 2 DN of selection probabilities, let

ejða1; . . . ;aNÞ denote the expected squared error in the j-th compo-
nent if the sample is drawn with probabilities aj at each stage, and
we consider as random variables (under the above-mentioned
assumptions) Yij and fi as well, i.e., the expectation is computed
with respect to both the sampling design and the distribution of
the variables Yij :

ejða1; . . . ;aNÞ ¼ E
1
N

XN

i¼1

Yij �
1
N

XN

i¼1

Yijfi

nai

 !2
0@ 1A: ð7Þ

By (6), and, since, for fixed j, variables Yij are assumed to be mutu-
ally independent, one has that
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ejða1; . . . ;aNÞ ¼ E E
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ð8Þ

One seeks a probability vector ða1; . . . ;aNÞ 2 DN making small all er-
rors ej given in (7). In other words, one faces the multiple-objective
problem of simultaneous minimization of all errors, when the prob-
abilities aj are the decision variables. Observe that, by (8), those de-
signs with some ai equal to 0 yield an infinite value for each ej, and
thus will be automatically discarded for optimality.

A first approach to address such multiple-objective problem
would consist of reducing the problem to one single-objective opti-
mization problem, as largely discussed in the literature of Multi-
ple-Objective Optimization. In this sense, one error measure
could be minimized imposing that the remaining errors are below
specified threshold values, as suggested e.g. in [3,5,6,12,14]. This
yields a problem of the form

min elða1; . . . ;aNÞ
s:t ejða1; . . . ;aNÞ 6 bj 8j–l;

ða1; . . . ;aNÞ 2 DN

ð9Þ

for given bounds bj, where DN is defined in (3).
Alternatively, one can minimize a weighted sum of the errors. In

other words, an optimization problem of the form

min
Xr

j¼1

xjejða1; . . . ;aNÞ

s:t ða1; . . . ;aNÞ 2 DN

ð10Þ

for given non-negative weights x1; . . . ;xr , is considered. See e.g.
[5,6]. Another option, e.g. [11], might be to minimize the highest er-
ror, i.e., to solve the optimization problem

min max
r

j¼1
ejða1; . . . ;aNÞ

s:t ða1; . . . ;aNÞ 2 DN :

ð11Þ

Instead of using scalar problems as those mentioned above, we
follow a multicriteria approach, and seek selection probabilities
a1; . . . ;aN minimizing simultaneously the r criteria. In other words,
we consider the nonlinear multiple-objective optimization
problem

min e1ða1; . . . ;aNÞ; e2ða1; . . . ;aNÞ; . . . ; erða1; . . . ;aNÞð Þ
s:t ða1; . . . ;aNÞ 2 DN

ð12Þ

and we seek the set P of Pareto-optimal solutions to (12).
We recall that ða�1; . . . ;a�NÞ 2 DN is said to be Pareto-optimal if

there exists no ða1; . . . ;aNÞ 2 DN satisfying

ejða1; . . . ;aNÞ 6 ejða�1; . . . ;a�NÞ; j ¼ 1;2; . . . ; r; ð13Þ

with at least one inequality strict. See e.g. [3,7,11,13,20,21] for other
multiple-objective design problems and [4] for an introduction.
2. Results

2.1. Sampling with replacement

Define, for each j ¼ 1; . . . ;N, the scalars kj; cj as
kj ¼
1

N2n
;

cj ¼ �
1

N2n

XN

i¼1

r2
ij þ

XN

i¼1

lij

 !2
0@ 1A: ð14Þ

By construction, each kj is strictly positive. Moreover, (8) implies
that

ejða1; . . . ;aNÞ ¼ kj

XN

i¼1

r2
ij þ l2

ij

ai
þ cj: ð15Þ

This simple form of the objectives involved enables us to character-
ize P, as shown below.

Proposition 1. Optimal solutions to (9)–(11) are elements of P:

Proof. By (14), each ej is a strictly convex function, and thus the
optimization problems (9)–(11), with objectives monotonic in
the errors ej, have a unique optimal solution, which is then Par-
eto-optimal, [4]. h

We now give a characterization of Pareto-optimality.

Proposition 2. Given ða�1; . . . ;a�NÞ 2 DN; the following statements are
equivalent.

1. ða�1; . . . ;a�NÞ 2 P:

2. There exists ðx1;x2; . . . ;xrÞ;
Pr

j¼1xj ¼ 1; xj P 0 8j, such that

a�i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPr
j¼1xj r2

ij þ l2
ij

� �r
PN

l¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPr
j¼1xj r2

lj þ l2
lj

� �r ; i ¼ 1;2; . . . ;N: ð16Þ

Proof. Consider a scalarized version of (12) in the form (10) for
some non-negative x1; . . . ;xr ,

Pr
j¼1xj ¼ 1: Problem (10) can be

analytically solved. Indeed, dropping the nonnegativity constraint,
we have a convex problem with one linear constraint. Necessary
and sufficient optimality conditions are given by taking Lagrange
multipliers, yielding the ða�1; . . . ;a�NÞ in (16) as unique optimal solu-
tion, which also satisfies the non-negativity constraints. In other
words, such ða�1; . . . ;a�NÞ is the unique optimal solution to (10).
See [16] for a similar result on a related problem. This implies in
particular that, for each ðx1; . . . ;xrÞ, the optimal solution to (10)
is Pareto-optimal.

Conversely, the objectives ej are strictly convex, and thus any
Pareto-optimal solution to (12) is optimal solution to some
problem of type (10), e.g. [4].

Hence, the set P coincides with the set of solutions of the form
(16), as asserted. h

This result implies that, if the unit simplex is discretized by gen-
erating a dense enough grid of points x, and for each such x the
corresponding a from (16) is constructed, then one obtains a finite
set of Pareto-optimal solutions which approximates accurately P:

In the bivariate case, one can plot the trade-off curve for e1; e2, as
in Fig. 1.

2.2. Application in auditing

As an application, consider an Auditing problem, in which one
has a population U of N items to be audited. For each item ui, the
reported book value Xi > 0 is known, and two parameters are of
main interest, [8]:

� Fraction of misstated items;
� Average amount of misstatement per item.



Fig. 1. Trade-off curve.
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PPS sampling, frequently referred in this context as Dollar-Unit
Sampling, amounts to choosing individuals with probabilities pro-
portional to their book value Xi, and seems to be specially suited
for the second objective, whereas a simple random sampling
(SRS) might be more convenient for the first criterion, unless the
likelihood of misstatement can be related with the book value.
Whether a PPS design, a SRS, or a different design ‘‘in between”
these two extreme designs is implemented, may be left to the ana-
lyst. For instance, in an real Auditing problem the author has re-
cently been involved on European Regional Development Funds,
the Commission Regulation (EC) 1828/2006, [17], states in its Arti-
cle 17 that

The method used to select the sample and to draw conclusions
from the results shall take account of internationally accepted
audit standards and be documented. Having regard to the
amount of expenditure, the number and type of operations
and other relevant factors, the audit authority shall determine
the appropriate statistical sampling method to apply.

Hence, ample room exists to decide which sampling design
should be used. We consider here the problem of describing the
Pareto-optimal designs when two criteria are considered: minimi-
zation of the variance of the Hansen–Hurwitz estimators of the
fraction of misstated items, and the average amount of misstate-
ment per item.

Misstatement of item ui is modeled as a Bernoulli variable Yi1,
with common success probability li1 ¼ l, and thus common vari-
ance r2

i1 ¼ lð1� lÞ:
Misstatement amount in a misstated unit with book value x is

assumed to be a random variate, with second moment uðxÞ: For in-
stance, one may impose the second moment uðxÞ to be propor-
tional to x2,

uðxÞ ¼ sx2 ð17Þ

for a given s which, in practice, should be estimated from a test
sample m0 of misstated units, via, for instance, a ratio estimator,

bs ¼Pk2m0
y2

kP
k2m0

x2
k

; ð18Þ

where the pairs ðxk; ykÞ represent the book value and misstatement
in each unit in m0:

Define Yi2 as the amount of misstatement of unit ui: We have
that
EðY2
i2jYi1 ¼ 1Þ ¼ uðXiÞ; ð19Þ

thus

EðY2
i2Þ ¼ lEðY2

i2jYi1 ¼ 1Þ ¼ luðXiÞ: ð20Þ

By Proposition 2, a vector ða�1; . . . ;a�NÞ is Pareto-optimal iff it is of the
form (16), which in this setting amounts to saying that there exists
x; 0 6 x 6 1, such that, for each i ¼ 1;2; . . . ;N, a�i has the form

a�i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�xÞlþxluðXiÞ

pPN
l¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�xÞlþxluðXlÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�xþxuðXiÞ

pPN
l¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�xþxuðXlÞ

p :

ð21Þ

The two extreme cases for the parameter x, namely x ¼ 0 and
x ¼ 1, model the situations in which absolute priority is given,
respectively, to the analysis of the fraction of misstated units and
the average amount of misstatement per unit, and they yield, for

each i, a�i ¼ 1
N and a�i /

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uðXiÞ;

p
i.e., a�i /

ffiffiffiffiffiffiffiffi
sX2

i

q
/ Xi under (17). In

other words, the extreme cases of the trade-off parameter x yield
two well-known sampling schemes, namely, SRS and Dollar-Unit
Sampling, which are shown to be Pareto-optimal by Proposition
2. Depending on the importance given to the first criterion against
the second, one value of x should be taken, and thus one specific
sampling plan would be obtained by applying formula (21).

Another interesting consequence of (21) is the fact that the set
of Pareto-optimal vectors is independent of the expected fraction l
of items with misstatements, since each a�i is proportional toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�xþxuðXiÞ
p

:

2.3. Sampling without replacement. Poisson sampling

Addressing multipurpose survey designs via Multiple-Objective
methods is not restricted to designs with replacement, as analyzed
in Sections 2.1, 2.2 above. Indeed, if a sampling scheme without
replacement is used to estimate the r-dimensional parameter # gi-
ven in (1), instead of the Hansen–Hurwitz estimator, one can use
the so-called Horvitz–Thompson estimator [10],

b#j ¼
1
N

XN

i¼1

YijIi

pi
; j ¼ 1;2; . . . ; r; ð22Þ

where Ii is the random variate which takes the value 1 if ui is se-
lected and takes the value 0 otherwise, and pi denotes the probabil-
ity unit ui belongs to the sample, i.e., the so-called first-order
inclusion probability.

The multiple-objective problem to be addressed now has the
same form than (12), namely

min e1ðdÞ; e2ðdÞ; . . . ; erðdÞð Þ
s:t d 2 D;

ð23Þ

where D is a class of designs without replacement, and each ej rep-
resents the expected squared error under design d 2 D in the jth
component, if we consider as random variables Yij and Ii as well,
i.e., if the expectation is computed jointly with respect to the sam-
pling design and the distribution of the variables Yij,

ejðdÞ ¼ E
1
N

XN

i¼1

Yij �
1
N

XN

i¼1

YijIi

pi

 !2
0@ 1A

¼ 1
N2

XN

i¼1

1� pi

pi
ðr2

ij þ l2
ijÞ þ

1
N2

XN

i;k¼1
i–k

pik � pipk

pipk
lijlkj: ð24Þ

Here pik denotes the second-order inclusion probability, i.e., the
probability that units ui;uk are simultaneously in the sample. For
simplicity, we write pi and pik i.o. piðdÞ and pikðdÞ, although it
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should be clear that both the first and the second order inclusion
probabilities are design-dependent.

For a particular case of class of designs D, a characterization
similar to the one of Section 2.1 is easily obtained. Indeed, let us
consider the class D of Poisson designs, e.g. [2]: Scalars
ai; 0 6 ai 6 1 8i ¼ 1; . . . ;N are given, and each unit ui is selected
with probability ai, independently of the remaining units. Poisson
designs have the advantage that samples are easily drawn: inde-
pendent variables X1; . . . ;XN , uniformly distributed on ½0;1� are
generated; the sample consists of those ui with Xi 6 ai: Observe
that the size of the samples generated is a random variate, with ex-
pected value

PN
i¼1ai, and variance

PN
i¼1aið1� aiÞ:

For a Poisson design, (24) simplifies to

ejða1; . . . ;aNÞ ¼
1

N2

XN

i¼1

r2
ij þ l2

ij

ai
� 1

N2

XN

i¼1

r2
ij þ l2

ij

� �
: ð25Þ

Hence, ej has the form (14), and thus the arguments in Section 2.1
can be repeated to show the following:

Proposition 3. Given ða�1; . . . ;a�NÞ,
PN

i¼1a�i ¼ n; 0 6 a�i 6 1 8i, the
following statements are equivalent.

1. A Poisson design with selection probabilities ða�1; . . . ;a�NÞ is a Par-
eto-optimal solution within the class of Poisson designs with
expected size n, i.e. ða�1; . . . ;a�NÞ is Pareto-optimal for

min e1ða1; . . . ;aNÞ; e2ða1; . . . ;aNÞ; . . . ; erða1; . . . ;aNÞð Þ

s:t
XN

j¼1
aj ¼ n;

0 6 aj 6 1; j ¼ 1; . . . ;N:

ð26Þ

2. There exists ðx1;x2; . . . ;xrÞ;
Pr

j¼1xj ¼ 1; xj P 0 8j, such that

a�i ¼ n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPr
j¼1xj r2

ij þ l2
ij

� �r
PN

l¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPr
j¼1xj r2

lj þ l2
lj

� �r ; i ¼ 1;2; . . . ;N: ð27Þ

Having random sample sizes, as happens with Poisson designs,
is seen as a serious drawback both from a managerial viewpoint
(the sample size, and thus the sampling cost is unknown in ad-
vance) and statistical viewpoint as well: the errors ej and its esti-
mates may be rather large. Different variants of Poisson designs
have been proposed to mitigate or avoid this undesirable effect
[1,2] the most popular being the conditional Poisson design, in
which samples are successively drawn from a Poisson design with
probabilities vector ða1; . . . ;aNÞ until a sample of size n is obtained.
First and second order inclusion probabilities are obtained from
the vector ða1; . . . ;aNÞ using a recursive procedure [1]. However,
the error functions ej do not have the nice and tractable form
(14). As a matter of fact, the functions ej are not necessarily
(quasi)convex. This is shown in Fig. 2 for a population U of
Fig. 2. Errors in conditional Poisson sampling.
N ¼ 10, n ¼ 2, and a variable Y1 ¼ 5;Y2 ¼ � � � ¼ YN�1 ¼ 20;YN ¼ 5:
The section of the function for a2 ¼ � � � ¼ aN�1 ¼ ðn� 0:5Þ=ðN � 2Þ
is depicted for varying a1:

Hence, one cannot guarantee that all Pareto-optimal solutions
can be obtained by minimizing a weighted sum of the errors [4].
Moreover, problems of type (9)–(11) are not so tractable, since lo-
cal search may not lead to global optima.

3. Discussion

In this note we have addressed the problem of finding multipur-
pose sampling designs using Multiple-Objective Programming
ideas. The main result, with implications in Auditing, is a charac-
terization of the set of Pareto-optimal designs when the designs
under consideration are with replacement. The characterization
obtained is given by a closed formula. It is then costless to get a
fine discrete approximation to the Pareto-optimal set, to plot
trade-off curves as in Fig. 1, and to analyze how the input param-
eters affect the Pareto set and the errors ej.

The same multiple-objective problem for designs without
replacement appears to be much harder, though, at the same time,
very interesting from both a theoretical and a practical viewpoint.
A characterization of Pareto-optimal designs within the class of
Poisson designs is given. However, for fixed-size sampling variants
of Poisson sampling, such as Conditional Poisson Sampling, a sim-
ilar analysis does not seem to be possible, since the error functions
are not even unimodal. Characterizing the Pareto-optimal designs
for other classes D, such as order sampling schemes, [18], deserves
attention, but it does not seem either to be an easy task, since even
the calculation of the probabilities is a hard problem [15].

Analysis of the problem using estimators different from the
Hansen–Hurwitz and Horvitz–Thompson estimators, or under sta-
tistical assumptions different to those addressed in this paper, re-
mains an open problem.
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