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a b s t r a c t 

In this paper, we address the problem of visualizing a frequency distribution and an adjacency relation 

attached to a set of individuals. We represent this information using a rectangular map, i.e., a subdivi- 

sion of a rectangle into rectangular portions so that each portion is associated with one individual, their 

areas reflect the frequencies, and the adjacencies between portions represent the adjacencies between 

the individuals. Due to the impossibility of satisfying both area and adjacency requirements, our aim is 

to fit as well as possible the areas, while representing as many adjacent individuals as adjacent rectan- 

gular portions as possible and adding as few false adjacencies, i.e., adjacencies between rectangular por- 

tions corresponding to non-adjacent individuals, as possible. We formulate this visualization problem as 

a Mixed Integer Linear Programming (MILP) model. We propose a matheuristic that has this MILP model 

at its heart. Our experimental results demonstrate that our matheuristic provides rectangular maps with 

a good fit in both the frequency distribution and the adjacency relation. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

It is critical to enable analysts to observe and interact with data,

using appropriate visualization tools ( Keim et al., 2008; Liu, Cui,

Wu, & Liu, 2014 ). Operations Research arises as a powerful area

of knowledge to give answers to new challenges in Visualization

( Mortenson, Doherty, & Robinson, 2015; Olafsson, Li, & Wu, 2008 ). 

A natural and frequent task is to depict a set of individuals

 = { v 1 , . . . , v N } , to which there is attached a frequency distri-

bution, ω = (ω 1 , . . . , ω N ) , with 

∑ N 
r=1 ω r = 1 , see, e.g., Spence and

Lewandowsky (1991) . Market share, vote intention or population

rates, just to name a few, are usual examples. In order to visual-

ize frequencies, a common approach is to consider a bounded re-

gion of the plane and to subdivide it into portions P = (P 1 , . . . , P N )

of common shape whose areas represent the frequencies. Well-

known visualization tools for this kind of data are the classic pie

or fan charts, Fig. 1 (a) and (b) respectively, and rectangular maps

( Baudel & Broeksema, 2012; Heilmann, Keim, Panse, & Sips, 2004 ),

see Fig. 1 (c) and (d). In this kind of representations, holes are not

allowed, thus, receiving the name of planar space-filling visualiza-

tion maps. 
∗ Corresponding author. 
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A planar space-filling map to visualize the frequencies attached

o individuals in a bounded set � of the plane can be found by

onstructing the portions of the desired area and putting them to-

ether to fill �. This is straightforward in the case of the pie or

an charts: for a permutation σ (1) , σ (2) , . . . , σ (N) of the indices

 , 2 , . . . , N, portions of areas proportional to ω σ (1) , ω σ (2) , . . . , ω σ (N)

re placed sequentially in �. The only freedom in such planar

pace-filling visualization maps is thus the choice of the permu-

ation, which can be made according to different seriation crite-

ia as exposed in Hahsler (2017) . For the case of rectangular maps,

here � is the unit square and portions are rectangles, the same

pproach, illustrated in Fig. 1 (c), can be used, where the rectangu-

ar portions go all the way from North to South (or, by rotation,

rom West to East, for instance). While pie and fan charts only

dmit different sequential arrangements, rectangular maps allow

ore freedom than the choice of a permutation, as illustrated in

ig. 1 (d). The flexible layout offered by rectangular maps is also de-

irable when, in addition to frequencies, we are interested in visu-

lizing proximity, measured by adjacencies, which is the subject of

his paper. 

The nature of the proximity can be diverse, a classical ex-

mple being geographical proximity. A well-known problem in

artography is the representation of geographical regions with

elatively simple shapes, such as rectangles, whose areas rep-

esent a magnitude such as population rates or vote intention,

s well as the relative position between regions is maintained,

http://dx.doi.org/10.1016/j.ejor.2017.07.023
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2017.07.023&domain=pdf
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(a) Pie Chart (b) Fan Chart

AL CA CO GR HU JA MA SE

(c) Rectangular map
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(d) Rectangular map

Fig. 1. Examples of planar space-filling visualization maps. 
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 Nusrat & Kobourov, 2016; Tobler, 2004 ). One of the most pop-

lar visualization tools for this is rectangular cartograms, which

ere first introduced in Raisz (1934) and have been further in-

estigated in, e.g., Buchin, Speckmann, and Verdonschot (2012) ;

ppstein, Mumford, Speckmann, and Verbeek (2009) ; Heilmann

t al. (2004) ; Kreveld and Speckmann (2007) . The approaches de-

eloped in the literature to obtain rectangular cartograms take ad-

antage of the geographical relative positions of the individuals

countries, cities, etc.) to obtain a cartogram, and thus their ap-

roaches cannot be directly extended to more general data struc-

ures. Fig. 2 depicts a rectangular cartogram for the geographical

rea of the states in the U.S. built using the Recmap package in R

 Panse, 2016 ), see Fig. 2 (b). 

When dealing with proximity, a common approach in the litera-

ure has been to represent close individuals as close portions in the

isualization map, see Abbiw-Jackson, Golden, Raghavan, and Wasil

2006) ; Carrizosa, Guerrero, and Romero Morales (2017a) ; 2017b );

uarte, Sikansi, Fatore, Fadel, and Paulovich (2014) ; Gómez-Nieto

t al. (2014) ; Hahsler (2017) and references therein. A grid map
 Eppstein, van Kreveld, Speckmann, & Staals, 2015 ) is a visualiza-

ion tool that represents as accurately as possible the adjacencies

resent in a geographical dataset by assigning exactly one cell of

he grid to each individual, although frequencies are not taken into

ccount. Fig. 2 (c) depicts the grid map built for the 48 contiguous

tates in the U.S., see Fig. 6 - L 2 2 in Eppstein et al. (2015) , representing

6 adjacencies of the 105 present in the actual map, see Fig. 2 (a).

ith the methodology described in Section 4 , we are able to rep-

esent 63 adjacencies of the 105 present in Fig. 2 (a), see Fig. 2 (d).

n this paper, our goal is to propose a mathematical optimization

ormulation and a suitable solution approach to build rectangular

aps to visualize the frequency distribution ω = (ω 1 , . . . , ω N ) and

he proximity between the individuals, measured by an adjacency

atrix E = (e rs ) . As far as the authors are aware, this is a novel

roblem in the literature. 

Throughout this paper, the weighted graph G = (V, E, ω) will

odel the set V of individuals, attached with the binary relation

adjacency) E and the frequency distribution ω. Similarly, we de-

ote by G 

P = (V, E P , ω 

P ) , the weighted graph associated with the
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Fig. 2. Visualizations for the U.S. 
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rectangular map, denoted by P = (P 1 , . . . , P N ) . The binary relation

in G 

P is defined as follows, (v r , v s ) ∈ E P if portions P r and P s are ad-

jacent, i.e., their borders intersect in more than one point, while for

the node weights ω 

P , ω 

P 
r is equal to the area of the rectangle P r . In

general, one cannot guarantee the existence of a rectangular map

that satisfies area and adjacency requirements on the rectangles,

i.e., ω 

P = ω and E P = E, see Kreveld and Speckmann (2007) . This

is especially the case when the graph G to be represented is not

planar. See Alam et al. (2013) ; Biedl and Genç (2005) for further

complexity results on rectangular maps. Due to this impossibility,

we seek to represent as many adjacent individuals as adjacent rect-

angles as possible, and to have as low as possible both the number

of rectangular adjacent portions corresponding to non-adjacent in-

dividuals and the total deviation of the areas of the portions from

the frequencies. This optimization problem is very hard. The com-

putational burden might be strongly reduced if additional informa-

tion could be added to reduce the number of possible layouts. This

is done in rectangular cartograms by imposing each rectangle to

contain a point, which is usually chosen as the centroid of the ge-

ographical region ( Duarte et al., 2014; Heilmann et al., 2004; Wood

& Dykes, 2008 ). In this paper, we develop a new tool to find such

a set of points, having valuable information about the adjacencies

and the frequencies, which can be applied to any type of individu-
ls, i.e., not only for geographical data, as long as they have a dis-

imilarity measure attached to them ( Carrizosa, Martín-Barragán,

lastria, & Romero Morales, 2007 ). 

Although not focused on Visualization, the case in which there

re no frequencies (weights) attached to the individuals, and the

raph G is planar, has been studied in the literature and it has

any applications, for instance, in Very Large Scale Integration cir-

uits design ( Anjos & Liers, 2012; Tani, Tsukiyama, Shinoda, & Shi-

akawa, 1991 ). The usual approach there is to find a rectangular

ual of a planar graph , which consists of a subdivision of the unit

quare in such a way that each vertex (individual) corresponds

o a different rectangle in the subdivision and, if v r and v s are

inked, then the corresponding portions P r and P s are adjacent in

he subdivision. Some characterizations of planar graphs that ad-

it a rectangular dual can be found in de Berg, Mumford, and

peckmann (2009) ; Biedl and Genç (2005) ; Ko ́zmi ́nski and Kin-

en (1985) . Rectangular duals are also related with Facility Layout,

 Anjos & Vieira, 2016; Jankovits, Luo, Anjos, & Vannelli, 2011; Sher-

li, Fraticelli, & Meller, 2003 ), whose aim is to find a layout which

inimizes the flow between a set of facilities of given areas, and

raph Drawing ( Dörk, Carpendale, & Williamson, 2012; Klimenta &

randes, 2013; Owen-Smith, Riccaboni, Pammolli, & Powell, 2002;

amassia, 2013 ). These frameworks use very ad-hoc approaches
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nd either disregard the proper representation of adjacencies, fre-

uencies, or are not space-filling. 

In this paper, the problem of building rectangular maps which

imultaneously optimizes the fit in the adjacencies and areas for

eighted graphs G , not necessarily planar, is modeled by means

f Mathematical Optimization. We consider the unit square �

plit into K rows and L columns, each cell representing thus a

00/( K × L )% of the total area of �, yielding the so-called ( K , L )-

ectangular maps . This grid structure, also proposed in e.g. Abbiw-

ackson et al. (2006) ; Eppstein et al. (2015) ; Fried, DiVerdi, Halber,

izikova, and Finkelstein (2015) ; Liu, Hu, North, and Shen (2015) ;

trong and Gong (2014) , allows us to easily measure areas, and

implifies the notion of adjacency, since two portions are adjacent

f they touch in, at least, one cell. 

We formulate the problem of building ( K , L )-rectangular maps

s a Mixed Integer Linear Program (MILP). However, such MILP

s a difficult problem and thus there is a need for developing a

ophisticated matheuristic solution approach to find good ( K , L )-

ectangular maps. To do so, first, we introduce the concept of lo-

ating cells , which reduce the number of possible layouts by fix-

ng the relative positions between the rectangles, and, as will be

een in our numerical experience, they speed up the computation

f the ( K , L )-rectangular maps. Second, we design a tailored Multi-

imensional Scaling (MDS) ( Kruskal & Wish, 1978 ), to choose these

ocating cells by taking into account the adjacencies and area devi-

tions measures. This MDS can handle any set of individuals with

requencies and an adjacency relations attached, and not necessar-

ly of geographic nature, as is the case for rectangular cartograms

 Raisz, 1934 ). 

Since our visualization model is a novel one, there are no ready

vailable techniques for it in the literature. Therefore, we compare

ur rectangular maps with those obtained by solving the MILP for-

ulation with a commercial solver under a time limit. In our ex-

erimental section we present results for three examples and con-

lude that we obtain a better fit in area and adjacency relation in

ess computing time. 

The remainder of the paper is structured as follows. In

ection 2, we introduce the optimization model to build ( K , L )-

ectangular maps. In Section 3, we formulate the problem as

n MILP. In Section 4, we present an algorithm to compute

 K , L )-rectangular maps. Section 5 is the experimental section.

ection 6 concludes the paper with a summary and lines for fu-

ure research. Finally, the Appendix includes the values of the fre-

uencies for the three datasets considered in the experimental

ection. 

. The problem 

Given a set of individuals V = { v 1 , . . . , v N } , a ( K , L )-rectangular

ap has associated a weighted graph G 

P = (V, E P , ω 

P ) , in which

(v r , v s ) ∈ E P if portions P r and P s are adjacent, i.e., they touch in at

east one cell, and ω 

P denotes the rectangles’ areas. An ideal ( K ,

 )-rectangular map representation of a given graph G = (V, E, ω)

hould satisfy the following conditions: 

(C1) The portions in P = (P 1 , . . . , P N ) form a partition of

� = [0 , 1] × [0 , 1] . 

(C2) P r is a rectangle made up of a collection of cells of the

( K , L )-grid in which � is divided, r = 1 , . . . , N. 

(C3) E P = E

(C4) ω 

P 
r = ω r , namely 1 

K×L | P r | = ω r , where | P r | denotes the num-

ber of cells in P r , r = 1 , . . . , N. 

Constructing ( K , L )-rectangular maps which satisfy conditions

C1) and (C2) is straightforward. One simply needs to allocate cells

elonging to the same portion forming rectangles, as in Fig. 1 (c).

owever, including conditions (C3) and (C4) as hard requirements
ay make the problem infeasible ( Kreveld & Speckmann, 2007 ).

hus, we model conditions (C3) and (C4) as soft constraints,

nd consider their violation, combined through a scaling vector

= (λ1 , λ2 , λ3 ) , λt ≥ 0 , t = 1 , 2 , 3 , as the objective to be opti-

ized. This yields the λ-Rectangular Map model ( RM ) λ, stated as

ax λ1 | E ∩ E P | − λ2 | E ∩ E P | − λ3 

∑ N 
r=1 | ω 

P 
r − ω r | 

.t. P = (P 1 , . . . , P N ) satisfying (C1), (C2) . 
(RM) λ

On one hand, the resemblance between E and E P , i.e. (C3), is

odeled by means of the cardinality of the sets E ∩ E P and E ∩ E P 

eighed through parameters λ1 and λ2 , respectively, where E de-

otes the complement of E . This way, the number of adjacencies

n E that are also in the rectangular map and those that are not

n E but do appear in the map are counted. On the other hand,

he condition (C4) is stated as the sum of the deviations from the

requencies in ω to the area of the rectangles in ω 

P weighed by

arameter λ3 . Thus, different values of λ yield different rectangu-

ar maps, highlighting the different aspects involved. 

Fig. 3 illustrates the concept of ( K , L )-rectangular map, using as

 the weighted graph plotted in Fig. 3 (a), where N = 6 , | E| = 9 and

 = (0 . 3 , 0 . 15 , 0 . 1 , 0 . 15 , 0 . 1 , 0 . 2) . Fig. 3 (b) represents G as a (5, 10)-

ectangular map, where the K = 5 rows are numbered from top to

ottom and the L = 10 columns from left to right. We may observe

hat 8 out of the 9 true adjacencies, i.e., the adjacencies in E , are

eproduced by E P , which are shown as solid edges in the graph in

ig. 3 (c). There is only one true adjacency missing in E P : v 3 and v 4 
re adjacent in G but their associated rectangles P 3 and P 4 are not

n the (5, 10)-rectangular map. (Note that if two cells touch only in

 corner, they are not considered adjacent.) The (5, 10)-rectangular

ap adds a false adjacency, i.e., an adjacency which was not in E ,

hich is drawn as a dashed edge in Fig. 3 (c): v 2 and v 4 are not ad-

acent in G but P 2 and P 4 are in the (5, 10)-rectangular map. Finally,

nd with respect to the weights, the (5, 10)-rectangular map ap-

roximates them. For instance, v 4 has a weight equal to ω 4 = 0 . 15 ,

hile the area of P 4 is equal to 4 / 50 = 0 . 08 . 

. An MILP formulation for building rectangular maps 

In this section, we formulate the problem ( RM ) λ as an MILP. We

resent the decision variables in Section 3.1 , the objective function

n Section 3.2 , and the constraints in Section 3.3 . The complete for-

ulation is given in Section 3.4 . In what follows, indices r and s are

sed for portions, i for rows of the grid and j for columns. 

.1. Decision variables 

The binary variables which control whether the cell ( i , j ) be-

ongs to the portion P r or not are stated as x rij and defined as 

 ri j = 

{
1 if cell (i, j) belongs to portion P r 

0 otherwise. 

Thanks to these variables, a portion P r can be expressed as

 r = { (i, j) : x ri j = 1 , i = 1 , . . . , K, j = 1 , . . . , L } . 
In order to model adjacencies between portions P r and P s , bi-

ary variables z rs are defined as 

 rs = 

{
1 if portion P s is adjacent to portion P r 

0 otherwise. 

bserve that x and z -variables are closely related: if P r and P s 
re two adjacent portions, then z rs = 1 and x ri j = x si ′ j ′ = 1 , where

 i ′ , j ′ ) is either equal to (i − 1 , j) or (i + 1 , j) or (i, j + 1) or

(i, j − 1) . 
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Fig. 3. A (5, 10)-rectangular map for G ; | E ∩ E P | = 8 , | E ∩ E P | = 1 , 
∑ N 

r=1 | ω 

P 
r − ω r | = 0 . 24 . 
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The variables u l 
rsi j 

indicate whether portions r and s are adja-

cent at cell ( i , j ) from above, below, to the right or to the left, re-

spectively. Thus, 

u 

1 
rsi j = 

{ 

1 if portion P s is adjacent to portion P r at cell 
(i, j) from above 

0 otherwise. 

Similarly, we can define u 2 
rsi j 

, u 3 
rsi j 

, and u 4 
rsi j 

, which indicate if

portions P r and P s are adjacent from below, to the left or to the

right, respectively. Observe that also x and u -variables are closely

related, since u 1 
rsi j 

= x ri j · x si −1 j , u 2 
rsi j 

= x ri j · x si +1 j , u 3 
rsi j 

= x ri j · x si j+1

and u 4 
rsi j 

= x ri j · x si j−1 . 

Finally, ϕr and ψ r are positive real variables to lin-

earize the area deviation | ω 

P 
r − ω r | , i.e., | ω 

P 
r − ω r | = ϕ r + ψ r and

ω 

P 
r − ω r = ϕ r − ψ r . 

We illustrate these variables using the (5, 10)-rectangular

map in Fig. 3 (b). For instance, rectangle P 4 has four cells de-

fined by x 427 = x 428 = x 437 = x 438 = 1 . Moreover, P 4 has four ad-

jacent rectangles: P 1 , P 2 , P 5 and P 6 . Thus, z 41 = z 42 = z 45 =
z 46 = 1 and u 1 

4527 
= u 1 

4528 
= u 2 

4627 
= u 2 

4637 
= u 3 

4238 
= u 3 

4228 
= u 4 

4137 
=

u 4 4138 = 1 . The remaining binary variables of the form x 4 ij , z 4 s and

u l 
4 si j 

are zero. Finally, ϕ 4 = 0 and ψ 4 = 0 . 07 . 

3.2. Objective function 

Because of the definition of the variables, it is straightforward

to see that the objective function in Problem ( RM ) λ (written in

maximization form) is, 

λ1 

∑ 

r,s =1 , ... ,N 
(r,s ) ∈ E 

z rs − λ2 

∑ 

r,s =1 , ... ,N 
(r,s ) ∈ E 

z rs − λ3 

∑ 

r=1 , ... ,N 

(ϕ r + ψ s ) , (1)

for fixed scaling nonzero vector λ = (λ1 , λ2 , λ3 ) ,

λt ≥ 0 , t = 1 , 2 , 3 . 

3.3. Constraints 

We now write the constraints in Problem ( RM ) λ using the deci-

sion variables above, and give a brief explanation of each group of

constraints. ∑ 

r=1 , ... ,N 

x ri j = 1 , i = 1 , . . . , K, j = 1 , . . . , L, (2)

∑ 

i =1 , ... ,K 
j=1 , ... ,L 

x ri j ≥ 1 , r = 1 , . . . , N, (3)
∑ 

min { i,i ′ }≤i ′′ ≤max { i,i ′ } 
min { j, j ′ }≤ j ′′ ≤max { j, j ′ } 

x r i ′′ j ′′ ≥ (| i − i ′ | + 1) · (| j − j ′ | + 1) ·

(x ri j + x ri ′ j ′ − 1) , r = 1 , . . . , N, (4)

i, i ′ = 1 , . . . , K, 

j, j ′ = 1 , . . . , L, ∑ 

i =2 , ... ,K 
j=1 , ... ,L 

u 

1 
rsi j + 

∑ 

i =1 , ... ,K−1 
j=1 , ... ,L 

u 

2 
rsi j + 

∑ 

i =1 , ... ,K 
j=1 , ... ,L −1 

u 

3 
rsi j + 

∑ 

i =1 , ... ,K 
j=2 , ... ,L 

u 

4 
rsi j ≥ z rs , 

r, s = 1 , . . . , N, r � = s, (5)

 ri j + x s i −1 j ≤ z rs + 1 , 

r, s = 1 , . . . , N, r � = s, i = 2 , . . . , K, j = 1 , . . . , L, (6)

 ri j + x s i +1 j ≤ z rs + 1 , 

r, s = 1 , . . . , N, r � = s, i = 1 , . . . , K − 1 , j = 1 , . . . , L, (7)

 ri j + x s i j+1 ≤ z rs + 1 , 

r, s = 1 , . . . , N, r � = s, i = 1 , . . . , K, j = 1 , . . . , L − 1 , (8)

 ri j + x s i j−1 ≤ z rs + 1 , 

r, s = 1 , . . . , N, r � = s, i = 1 , . . . , K, j = 2 , . . . , L, (9)

 

1 
rsi j ≤ x ri j , 

r, s = 1 , . . . , N, r � = s, i = 1 , . . . , K, j = 1 , . . . , L, (10)

 

1 
rsi j ≤ x s i −1 j , 

r, s = 1 , . . . , N, r � = s, i = 2 , . . . , K, j = 1 , . . . , L, (11)

 ri j + x s i −1 j ≤ u 

1 
rsi j + 1 , 

r, s = 1 , . . . , N, r � = s, i = 2 , . . . , K, j = 1 , . . . , L, (12)

 

2 
rsi j ≤ x ri j , 

r, s = 1 , . . . , N, r � = s, i = 1 , . . . , K, j = 1 , . . . , L, (13)

 

2 
rsi j ≤ x s i +1 j , 

r, s = 1 , . . . , N, r � = s, i = 1 , . . . , K − 1 , j = 1 , . . . , L, (14)

 ri j + x s i +1 j ≤ u 

2 
rsi j + 1 , 

r, s = 1 , . . . , N, r � = s, i = 1 , . . . , K − 1 , j = 1 , . . . , L, (15)
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3 
rsi j ≤ x ri j , 

r, s = 1 , . . . , N, r � = s, i = 1 , . . . , K, j = 1 , . . . , L, (16) 

 

3 
rsi j ≤ x s i j+1 , 

r, s = 1 , . . . , N, r � = s, i = 1 , . . . , K, j = 1 , . . . , L − 1 , (17) 

 ri j + x s i j+1 ≤ u 

3 
rsi j + 1 , 

r, s = 1 , . . . , N, r � = s, i = 1 , . . . , K, j = 1 , . . . , L − 1 , (18) 

 

4 
rsi j ≤ x ri j , 

r, s = 1 , . . . , N, r � = s, i = 1 , . . . , K, j = 1 , . . . , L, (19) 

 

4 
rsi j ≤ x s i j−1 , 

r, s = 1 , . . . , N, r � = s, i = 1 , . . . , K, j = 2 , . . . , L, (20) 

 ri j + x s i j−1 ≤ u 

4 
rsi j + 1 , 

r, s = 1 , . . . , N, r � = s, i = 1 , . . . , K, j = 2 , . . . , L, (21) 

1 

KL 

∑ 

i =1 , ... ,K 
j=1 , ... ,L 

x ri j − ω r = ϕ r − ψ r , r = 1 , . . . , N, (22) 

 ri j , z rs , u 

l 
rsi j ∈ { 0 , 1 } , 

r, s = 1 , . . . , N, r � = s, i = 1 , . . . , K, j = 1 , . . . , L, l = 1 , . . . , 4 , 

(23) 

 r , ψ r ≥ 0 , r = 1 , . . . , N. (24) 

Firstly, note that condition (C1) is satisfied thanks to the defi-

ition of the x -variables and constraint (2) , which forces that ev-

ry cell must belong to exactly one portion, and thus, the resulting

ap is space-filling. Since all the individuals must appear in the

ectangular map, constraint (3) ensures that at least one cell is al-

ocated for every individual. The rectangular-shaped requirement

n (C2) is stated by constraint (4) , which forces that for every pair

he cells ( i , j ) and ( i ′ , j ′ ) belonging to the same portion, P r , all the

(| i − i ′ | + 1) · (| j − j ′ | + 1) cells in-between them must belong also

o P r . Constraint (5) models the correctness of z rs = 1 , i.e., if vari-

ble z rs takes the value 1, then, there must be two adjacent cells

elonging to portions P r and P s respectively. Note that two rectan-

les can be only adjacent on one side, namely, from above, below,

o the left or to the right. Each of those relative positions are mod-

led through each summation on the left hand side in constraint

5) . On the other hand, constraints (6) –(9) model the correctness

f z rs = 0 , this means that if two portions are not adjacent neither

rom above, below, left or right, there must not exist contiguous

ells belonging to those portions. Constraints (10) –(21) model the

act that variables u are the product of two x variables, as noted in

ection 3.1 ( McCormick, 1976 ). Constraint (22) ensures the correct-

ess of the absolute value in the area deviation in the objective

unction. Finally, the variables’ type is modeled with constraints

23) and (24) . 

.4. Writing the problem as an MILP 

Thus, given a weighted graph G = (V, E, ω) , Problem ( RM ) λ can

e formulated as the following MILP 

ax (1) 
.t. (2) − (24) . 

(RML) λ

In a first attempt, we solved ( RML ) λ using a commercial MILP

olver under a time limit. In our experimental section, we will il-

ustrate that even very small instances of ( RML ) λ turned out to

e too hard for this solver. In the following section we propose a
atheuristic for our visualization problem, which achieves a good

t in the adjacencies and the areas for the three datasets used in

ur experimental section. The matheuristic has ( RML ) λ at its heart,

ince this MILP formulation, with a few decision variables fixed to

 given value, is solved in each iteration. 

. Algorithmic approach 

The formulation ( RML ) λ has a hard combinatorial structure

hich mainly comes from the lack of information about how the

 portions could fit together into � to form a ( K , L )-rectangular

ap. If valuable knowledge about the relative positions among the

ortions were provided, the number of possible layouts would be

ramatically reduced and Problem ( RML ) λ would become compu-

ationally tractable. Similar ideas can be found in Facility Layout,

here customized procedures are designed to determine a reli-

ble relative positioning among the facilities, see Anjos and Vieira

2016) , and Cartography, where it is customary to impose that each

ortion must contain a point, which is usually the centroid of

he geographical region ( Duarte et al., 2014; Heilmann et al., 2004;

ood & Dykes, 2008 ). 

In a similar fashion, our solution approach to tackle ( RML ) λ is

ased on finding a set of points, called hereafter locating points ,

hich has valuable information about the frequencies and the ad-

acency relation between individuals. Due to the grid structure of

ur visualization model, we determine a set of locating cells in-

tead. Thus, let us assume that we have an external procedure

hat generates the locating points, q = { q 1 , . . . , q N } such that q r ∈ P r ,

 = 1 , . . . , N. We define the set of locating cells C as, 

 = { (r, i, j) : ∃ q r ∈ q which lies inside the cell (i, j) , 

1 ≤ r ≤ N, 1 ≤ i ≤ K, 1 ≤ j ≤ L } . 
Thus, solving Problem ( RML ) λ with locating cells becomes 

ax (1) 
.t. (2) −(24) 

x ri j = 1 (r, i, j) ∈ C. 

(RML ) λ, C 

The constraints related to the locating cells are heuristic, i.e.,

or arbitrary locating cells we cannot guarantee that the optimal

olution obtained for (RML ) λ, C is also optimal to ( RML ) λ. In order

o obtain a good solution to ( RML ) λ, we construct an initial set of

ocating cells and perturbe them via an iterative procedure to fur-

her improve the solution. The initial set of locating cells is built by

 new approach based on Multidimensional Scaling (MDS) ( Borg &

roenen, 2005 ), the MultiDimensional Scaling for ( K , L )-rectangular

aps, which can be applied as long as a dissimilarity measure is

iven ( Carrizosa et al., 2007 ). 

.1. MultiDimensional Scaling for ( K , L )-rectangular maps 

In order to find a set of points q that yields good ( K , L )-

ectangular maps, we propose a new approach based on solving a

onsmooth continuous optimization problem. This strategy arises

rom adapting the MDS framework to the special features of our

roblem by providing the points information about adjacencies

nd individuals’ frequencies. Thus, our tailored MDS takes into ac-

ount that the locating points are to be used by (RML ) λ, C , i.e.,

hey have to lie in the unit square � and be part of the non-

verlapping rectangular portions P r whose areas are close to ω r 

nd which are related through an adjacency relation. See Abbiw-

ackson et al. (2006) ; Klimenta and Brandes (2013) ; Liu, Hu, North,

nd Shen (2013) and references therein for other uses of MDS for

lanar visualization maps. 

Let D = (d rs ) be the shortest path distance matrix between

ll nodes of graph G = (V, E, ω) . We want to find N points,

 r = (q 1 r , q 
2 
r ) , which lie in � = [0 , 1] × [0 , 1] and are contained in
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q1

q2

q3

q4

q5

Fig. 4. MDS rectangles and their locating points. 
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N rectangles defined by their NW and SE corners, (a NW 

r , b NW 

r ) and

(a SE 
r , b SE 

r ) respectively. In other words, the following constraints

must be satisfied for r = 1 , . . . , N: 

0 ≤ a NW 

r ≤ q 1 r ≤ a SE 
r ≤ 1 , 

0 ≤ b SE 
r ≤ q 2 r ≤ b NW 

r ≤ 1 . 

These rectangles, called in what follows MDS rectangles, are

surrogate of the rectangular portions P r in ( RML ) λ, with some im-

portant differences. First, we do not impose that they are made of

cells of the region �, avoiding the difficulties of the combinatorial

part of Problem ( RML ) λ. Second, the MDS rectangles do not neces-

sarily cover �. Third, they may overlap. See Fig. 4 for an illustra-

tion. A related approach is developed in Anjos and Vieira (2016) in

facility layout context to determine the relative positions between

the departments. 

The locating points q are expected to be somehow central

points of portions P in (RML ) λ, C , and thus the distance ‖ q r − q s ‖ 1 
between locating points q r and q s should be proportional to the

distance d rs . Hence, one wants to make small the following crite-

rion: 

N ∑ 

r,s =1 

( κd rs − ‖ q r − q s ‖ 1 ) 
2 
, (25)

for some κ , to be optimized. Observe that the distances between

the locating points are measured according to the 	 1 norm. Al-

though the usual choice of distance in MDS is the 	 2 norm, con-

sidering the 	 1 norm has the advantage that our MDS model deals

with rectangles with sides parallel to the coordinate axes. See

Hubert, Arabie, and Hesson-Mcinnis (1992) ; Leung and Lau (2004) ;

Žilinskas and Žilinskas (2009) ; Žilinskas (2012) for other MDS ap-

plications using the 	 1 norm. 

In addition to criterion (25) , we have two others related to the

MDS rectangles. First, we want the area of the MDS rectangle as-

sociated with individual v r , namely (a SE 
r − a NW 

r )(b NW 

r − b SE 
r ) , to ap-

proximate ω r . This yields the following criterion: 

N ∑ 

i = r 

((
a SE 

r − a NW 

r 

)(
b NW 

r − b SE 
r 

)
− ω r 

)2 
. (26)
econd, we want the MDS rectangles not to overlap. Given MDS

ectangles associated to individuals v r and v s , if they overlap,

heir intersection is a rectangle with NW and SE corner points

ith coordinates given by 
(
max { a NW 

r , a s NW } , min { b NW 

r , b NW 

s } )
nd 

(
max { a SE 

r , a SE 
s } , min { b SE 

r , b SE 
s } 

)
, respectively. Thus, the

rea of their intersection is equal to zero if they do

ot overlap or max 
{

0 , min { a SE 
r , a SE 

s } − max { a NW 

r , a NW 

s } } ·
ax 

{
0 , min { b NW 

r , b NW 

s } − max { b SE 
r , b SE 

s } 
}

if they do. Making small

he all-pairs intersections yields the following criterion: 

N ∑ 

,s =1 

max 
{

0 , min { a SE 
r , a SE 

s } − max { a NW 

r , a NW 

s } }
· max 

{
0 , min { b NW 

r , b NW 

s } − max { b SE 
r , b SE 

s } 
}
. (27)

With this notation, the MDS for ( K , L )-rectangular maps is

tated as the problem of finding rectangles, identified by their

orner coordinates (a NW 

r , b NW 

r ) and (a SE 
r , b SE 

r ) , and points q r min-

mizing a weighted sum of criteria (25) –(27) . This is expressed as

he following nonlinear nonsmooth continuous optimization prob-

em: 

in γ1 

N ∑ 

r,s =1 

( κd rs − ‖ q r − q s ‖ 1 ) 
2 

+ γ2 

N ∑ 

i = r 

((
a SE 

r − a NW 

r 

)(
b NW 

r − b SE 
r 

)
− ω r 

)2 
(28)

+ γ3 

N ∑ 

r,s =1 

max 
{

0 , min { a SE 
r , a SE 

s } − max { a NW 

r , a NW 

s } }
· max 

{
0 , min { b NW 

r , b NW 

s } − max { b SE 
r , b SE 

s } 
}

s.t. 

 ≤ a NW 

r ≤ q 1 r ≤ a SE 
r ≤ 1 , r = 1 , . . . , N (29)

 ≤ b SE 
r ≤ q 2 r ≤ b NW 

r ≤ 1 , r = 1 , . . . , N (30)

≥ 0 , (31)

here γ 1 , γ 2 , γ 3 ≥ 0 are scaling constants which give a tradeoff

etween the criteria (25) –(27) . Note that we can use a hyperbolic

moothing to approximate the absolute value and max and min

unctions 

 y | ≈
√ 

y 2 + ε , 

ax { y, y ′ } = 

y + y ′ + | y ′ − y | 
2 

≈ y + y ′ + 

√ 

(y ′ − y ) 2 + ε 

2 

, 

in { y, y ′ } = 

y + y ′ − | y ′ − y | 
2 

≈ y + y ′ −
√ 

(y ′ − y ) 2 + ε 

2 

, 

here ε is a small positive number, say 10 −3 . 

Observe than in case there exist r � = s , where q r and q s belong to

he same cell in the ( K , L )-grid, then (RM) λ, C is infeasible. If this

appens, several strategies are possible to recover a feasible prob-

em. For instance, one could randomly perturb the locating points

 r and q s until they lie in different cells. Alternatively, one can re-

lace the constraint in (RM) λ, C related with locating points by a

eaker constraint of the form 

 r ∈ P r , ∀ r ∈ R, (32)

here the set R ⊂ { 1 , . . . , N} is such that the different locating

oints belong to different cells. 
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Fig. 5. Cell Perturbing Algorithm (CPA) pseudocode. 

(a) N1 (b) N2

Fig. 6. N 1 and N 2 neighborhoods of locating cells C = { (3 , 2) , (2 , 9) , (6 , 5) , 

(9 , 1) , (8 , 8) } . 
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.2. Cell Perturbing Algorithm 

In order to find a good solution to Problem ( RML ) λ, we pro-

ose an iterative algorithm that solves (RML ) λ, C for different set

f locating cells C. Let RML λ, C be the optimal solution to problem

(RM L ) λ, C , v 
(
RM L λ, C 

)
its objective value, and C 0 the incumbent set

f locating cells. 

We start with C 0 = C MDS , the set of locating cells built by

he MDS framework described in Section 4.1 . At each iteration

f the procedure, the incumbent set is perturbed, yielding C ∗,
nd (RML ) λ, C ∗ is solved. If the objective value improves, i.e.,

 ( RML λ, C ∗ ) > v ( RML λ, C 0 ) , we update C 0 . We refer to this proce-

ure as the Cell Perturbing Algorithm (CPA), whose pseudocode is

rovided in Fig. 5 . 

The perturb ( · ) procedure in CPA admits different designs and

urs uses a neighborhood structure in the ( K , L )-grid around the

urrent set of locating cells. We define the ρ-neighborhood of a

ell ( i , j ) as the set of cells formed by those which are at distance

ower or equal than ρ , namely 

 ρ ( (i, j) ) = 

{
(i ′ , j ′ ) : | i − i ′ | + | j − j ′ | ≤ ρ

}
. 

ig. 6 illustrates the N 1 and N 2 neighborhoods (shaded cells) of the

et of locating cells C = { (3 , 2) , (2 , 9) , (6 , 5) , (9 , 1) , (8 , 8) } (marked

ith “ × ”) in Fig. 6 (a) and (b), respectively, on a (10, 10)-grid. Ob-

erve that the 	 1 norm is considered to measure the distance be-

ween a pair of cells. 
The perturb ( · ) procedure we have used in our experimental re-

ults consists of, given a set of locating cells C, N new locating

ells are selected randomly, with uniform probabilities, each one

elonging to its corresponding ρ-neighborhood. It is worth noting

hat only movements which are consistent with constraint (2) are

llowed, namely there cannot be a locating cell belonging to two

ectangles simultaneously. Other more sophisticated designs of the

erturb ( · ) procedure are possible, such as assigning nonuniform

robabilities the cells in the neighborhood, but our experimental

esults are satisfactory with the choice above. 

Having a good initial set of cells, as the one given by our tai-

ored MDS, is essential to ensure a good solution to ( RML ) λ in a

ew iterations of the CPA. Note that if the optimal solution to Prob-

em ( RML ) λ were known and the set of locating cells C is chosen

y taking N cells of such solution, one per rectangle, then the opti-

al solution of the problem (RML ) λ, C would have the same objec-

ive value than the optimal solution of ( RML ) λ, although the lay-

ut might change. Thus, CPA would achieve the global optimum if

he whole space of possible locating cells were explored. Never-

heless, the size of such space explodes with the dimension of the

rid. 

.3. Embedded Cell Perturbing Algorithm 

Solving the MILPs involved in the CPA, namely (RML ) λ, C , for

 tight grid might be too time-consuming, and thus performing

any iterations of the CPA becomes a long task. In order to speed

p the algorithm for tight grids, we design the Embedded Cell Per-

urbing Algorithm (ECPA), which successively embeds coarser grids

nto tighter ones, by subdividing each cell into four new ones, and

erforming some iterations of CPA in-between. The ECPA pseu-

ocode is outlined in Fig. 7 . 

The subd i v id e (·) procedure arises from the requirement of

ransforming the set of locating cells from a coarser grid to a

ighter one when the grids are embedded. Our choice is mak-

ng such transformation in the simplest way, namely we randomly

ample, with equal probabilities, in the space of cells resulting

rom dividing the locating cells on the coarser grid to become cells

n the tight one. Since we consider embeddings in which each cell

s subdivided into four new cells (each row and each column is

plit into two to form the tighter grid), one of those four cells

s selected randomly to become locating cell in the tighter one.
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Fig. 7. Embedded Cell Perturbing Algorithm pseudocode. 

Fig. 8. Illustration of ECPA. 
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Other splitting procedures might be considered as well as nonuni-

form probabilities on the choice of the locating cells in the tighter

grid. 

Fig. 8 illustrates the ECPA algorithm with a (10, 10) and (20, 20)-

grids and 5 individuals. In Fig. 8 (a), the set of 5 locating cells, found

via the MDS procedure, are depicted as “ × ” on a (10, 10)-grid.

A (10,10)-rectangular map obtained by performing some iterations

of CPA is shown in Fig. 8 (b). Observe how the locating cells have

changed via the perturb ( · ) procedure in CPA in Fig. 8 (a) and (b).

In Fig. 8 (c), the candidates to become locating cells on a (20, 20)-

grid are dashed, whereas Fig. 8 (d) contains the resulting locating

cells from the subdividing procedure. Finally, Fig. 8 (e) includes a

(20, 20)-rectangular map obtained by some iterations of CPA,

where the set of locating cells on the (20, 20)-grid are highlighted

with a “ × ”. 
. Experimental results 

In this section, we illustrate the ECPA approach to generate ( K ,

 )-rectangular maps using three examples of diverse nature. The

rst one consists of visualizing the proportion of people in each

lood group in the U.S. and the compatibility between the groups.

he other two examples are cartographic applications. A ( K , L )-

ectangular map is presented for each dataset with K = L = 20 . In

ection 5.1, we describe the three datasets used in the experiments

nd in Section 5.2 how the ECPA has been implemented. We have

laimed that our MILP cannot be solved to optimality by commer-

ial solvers. This is shown in Section 5.3 , calling for sophisticated

atheuristic approaches. We then discuss the fit of the (20, 20)-

ectangular maps generated by ECPA in terms of the adjacency re-

ation and the areas. 
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(c) Graph associated with the
(20, 20)-rectangular map, GP

Fig. 9. Blood (20, 20)-rectangular map with | E ∩ E P | = 17 , | E ∩ E P | = 0 , 
∑ N 

r=1 | ω 

P 
r − ω r | = 0 . 072 . 
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(c) Graph associated with the
(20, 20)-rectangular map, GP

Fig. 10. Netherlands (20, 20)-rectangular map with | E ∩ E P | = 22 , | E ∩ E P | = 3 , 
∑ N 

r=1 | ω 

P 
r − ω r | = 0 . 122 . 
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limit. 
.1. Datasets 

The first example, Blood , consists of the weighted graph which

odels the proportion of people in the U.S. in each blood group

 Stanford Blood Center, 2014 ), taking into account the blood 

ompatibility between donor and recipient. In the Blood graph,

he nodes, and thus the individuals, are the blood groups, and

wo groups v r and v s are adjacent if either v r can donate blood

o v s , or viceversa. In the second example, Netherlands , the in-

ividuals are the provinces of The Netherlands, and the data rep-

esented is their (normalized) population, see ( Statistics Nether-

ands, 2013 ). The proximity measure considered is the geograph-

cal location, namely, two nodes are adjacent if the corresponding

rovinces are adjacent in the geographical map. The third exam-

le, Germany , is analogous to Netherlands but with a larger

mount of individuals and adjacencies and frequencies of a differ-

nt nature. The individuals are the 16 German federal states, and

he frequencies to be represented are the (normalized) geographi-

al area, see Destatis, Statistisches Bundesamt (2015) . 

Figs. 9 (a), 10 (a) and 11 (a) show, respectively, the Blood ,
etherlands and Germany graphs. The settings of each dataset

re included in Table 2 in the Appendix. 

.2. Experiments details 

A (20, 20)-grid is considered to build the rectangular maps,

ach cell thus representing a 0.25% of the area of the visualization

egion. In order to obtain (20, 20)-rectangular maps, we optimize

he fit in adjacencies and areas. These are modeled by means of

he number of adjacencies reproduced in the (20, 20)-rectangular
ap (| E ∩ E P |), the number of false adjacencies added in the

20, 20)-rectangular map ( | E ∩ E P | ), and the area deviation measure

 

∑ N 
r=1 | ω r − ω 

P 
r | ), as stated in conditions (C3) and (C4) in Section 2 .

inally, we consider λ = 

(
1 
| E| , 

1 

| E | , 1 
)
. 

The locating points are obtained by solving the MDS for rect-

ngular maps given by (28) –(31) with γ1 = γ3 = 1 and γ2 = 10 0 0 .

everal combinations of these scaling constants have been tried

ut in search of MDS rectangles that are good surrogates of rect-

ngular portions in P . Since it is a multimodal problem, a multi-

tart with 50 runs is executed. These continuous nonlinear prob-

ems have been solved with the IPOPT solver ( Wächter & Biegler,

006 ). 

The ECPA has been coded in AMPL ( Fourer, Gay, & Kernighan,

002 ), and all the MILPs involved have been solved with CPLEX

12.6, CPLEX (2014) , on a PC Intel ®Core TM i7-2600K, 16 gigabyte

f RAM. The time has been limited to ten minutes for the two

mallest datasets, Blood and Netherlands , and to fifteen min-

tes for the largest one, Germany . The algorithm has been per-

ormed with a hierarchy T = 2 levels, where the (10, 10)-grid is

mbedded into the (20, 20)-grid, by subdividing each cell into

our new ones. We have set the radius of perturbation ρ = 1 .

e have set a maximum number of iterations of CPA on the

10, 10)-grid for the three datasets equal to 50, and equal to 10

or the (20, 20)-grid in the Blood example. For the two largest

atasets, Netherlands and Germany , no cell perturbation was

erformed on the (20, 20)-grid. Please note that, for all datasets,

he optimal (10, 10)-rectangular map was obtained in each step

f the algorithm in a few seconds, and thus within the time
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Fig. 11. Germany (20, 20)-rectangular map with | E ∩ E P | = 28 , | E ∩ E P | = 7 , 
∑ N 

r=1 | ω 

P 
r − ω r | = 0 . 290 . 

Table 1 

CRUDE and ECPA heuristic approaches. 

| E ∩ E P | | E ∩ E P | 
N ∑ 

r=1 

| ω r − ω 

P 
r | Time 

Blood CRUDE 17 0 0.468 3 hours 

ECPA 17 0 0.072 2 hours 

Netherlands CRUDE 16 5 0.416 3 hours 

ECPA 22 3 0.122 21 minutes 

Germany CRUDE 14 14 0.438 3 hours 

ECPA 28 7 0.290 27 minutes 
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In order to demonstrate the need for a sophisticated matheuris-

tic such as ECPA, the quality of our solution approach is tested

against the so-called CRUDE heuristic, in which ( RML ) λ is solved

by an MILP commercial package using a time limit. In our exper-

imental results, we run CRUDE with a (20, 20)-grid using CPLEX

with a time limit of 3 hours. Note that our preliminary tests when

taking the same embedding as ECPA, with T = 2 levels, yielded no

solution. Therefore, we have been obliged to start with a coarser

grid, and thus use T = 3 levels. This means that we solve ( RML ) λ
in a (5, 5)-grid with a time limit of one hour, its solution is given

as starting to the (10, 10)-grid with a time limit of one hour, and

finally, its solution is given to the (20, 20)-grid with a time limit

of one hour. 

5.3. Results 

The performance of CRUDE and ECPA can be found in Table 1

for λ = 

(
1 
| E| , 

1 

| E | , 1 
)

. 

Clearly, the results of CRUDE are worse for each criterion, for

the three largest datasets. For Blood , which is the smallest, the

results are worse for the third criterion. In all cases, the overall

time is higher in CRUDE. Below, we illustrate that ECPA, although

of a heuristic nature, obtains good representations of the consid-

ered graphs as rectangular maps. Note that our visualization model

is a novel one, and therefore there are no other techniques we can

benchmark ECPA against ready available in the literature. 

For the Blood graph, ECPA obtained a (20, 20)-rectangular map

in which 17 out of 19 adjacencies are reproduced, no false adja-

cencies are added and with an area deviation of 0.072. The over-

all time to obtain this solution was approximately two hours. The

directions of the edges between the blood groups have been de-

picted with arrows on the (20, 20)-rectangular map. We note here

that our model does not take into account the nature of the graph

(directed or undirected). Observe that the relationships between
he different groups are well represented through the adjacency

elation in the (20, 20)-rectangular map, at the same time that the

ercentage of people belonging to each group is very accurately

epicted. This results have been generated with λ = 

(
1 
| E| , 

1 

| E | , 1 
)
,

uch that each criterion has a similar impact in the objective func-

ion (1) . Varying the value of λ we have been able to obtain (20,

0)-rectangular maps which either reproduce up to 17 adjacencies,

hich do not introduce any false adjacency or with a total area

eviation of 0.027. The so-obtained maps are not depicted in the

aper for the sake of abbreviation. 

For the Netherlands graph, we obtained a (20, 20)-

ectangular map in which 22 out of 22 adjacencies are reproduced,

 false adjacencies are added and with an area deviation of 0.122.

he overall time to obtain this solution was approximately 21 min-

tes. Varying the value of λ we have been able to reproduce all the

djacencies involved in the graph, i.e., 22 adjacencies without in-

roducing any false adjacency. The lowest area deviation we have

ound is equal to 0.070. 

For the Germany graph, we obtained a (20, 20)-rectangular

ap in which 28 out of 28 adjacencies are reproduced, 7 false ad-

acencies are added and with an area deviation of 0.290. The over-

ll time to obtain this solution was approximately 27 minutes. For

ifferent values of λ, the maximum number of true adjacencies we

re able to reproduce is 28 out of 28, while the minimum number

f false adjacencies added is 2, and the minimum total area devi-

tion is 0.119. Augmenting the number of individuals to represent

ields worse error incurred in the representation of the areas when

he size of the grid is maintained. 

In view of the results obtained for the Blood , Netherlands ,
nd Germany , we conclude that our model and solution approach

re able to obtain good-quality ( K , L )-rectangular maps, in the

ense that a good fit in the adjacencies and areas as stated in (C3)

nd (C4) are obtained. In two out of three cases, Netherlands
nd Germany , we are able to reproduce 100% of adjacencies,

hereas a very small number of false adjacencies is introduced.

ndeed, in Blood and Netherlands the minimum area error ob-

ained is in an order of magnitude of 10 −2 . 

The output of our experimental results for ECPA is presented

n Figs. 9 –11 . Fig. 9 (a) depicts the Blood graph G , Fig. 9 (b) the

20, 20)-rectangular map obtained as detailed in Section 5.2 with

he locating cells marked with a “ × ”, and Fig. 9 (c) the graph as-

ociated to the (20, 20)-rectangular map, G 

P , in which the edges

hich are reproduced in the (20, 20)-rectangular map ( E ∩ E P ) are

epicted as a full line and those adjacent rectangles which are not

dges in G ( E ∩ E P ) are depicted as dashed lines. The same repre-



E. Carrizosa et al. / European Journal of Operational Research 265 (2018) 290–302 301 

Table 2 

Graphs settings. 

Blood Netherlands Germany 

N | E | | E | N | E | | E | N | E | | E | 
8 19 9 12 22 44 16 28 92 

ω ω ω 

O − 0.066 GR Groningen 0.035 HH Hamburg 0.0021 

O + 0.374 FR Friesland 0.038 NI Lower Saxony 0.1334 

A − 0.063 DR Drenthe 0.029 BE Berlin 0.0025 

A + 0.357 NH Noord Holland 0.163 SH Schleswig-Holstein 0.0441 

B − 0.015 FL Flevoland 0.024 MV Mecklenburg-Vorpommern 0.0649 

B + 0.085 OV Overijssel 0.068 HB Bremen 0.0011 

AB − 0.006 ZH Zuid Holland 0.212 ST Saxony-Anhalt 0.0573 

AB + 0.034 UT Utrecht 0.074 NW North Rhine-Westphalia 0.0955 

GE Gelderland 0.120 SN Saxony 0.0516 

ZE Zeeland 0.023 HE Hesse 0.0591 

NB Noord Brabant 0.147 TH Thuringia 0.0453 

LI Limburg 0.067 RP Rhineland-Palatinate 0.0556 

BY Bavaria 0.1976 

BW Baden-Württemberg 0.1001 

SL Saarland 0.0072 

BB Brandenburg 0.0826 
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entation is used for Netherlands and Germany datasets, which

an be found in Figs. 10 and 11 , respectively. 

. Conclusions and future research 

In this paper, we have developed a new Mathematical Op-

imization approach to address the problem of representing by

eans of rectangular maps a set of individuals, to which fre-

uencies and adjacencies are attached. This kind of data can be 

odeled as a weighted graph and thus, our aim is to obtain rect-

ngular maps in which the adjacencies in the graph are correctly

eproduced, whereas as few false adjacencies as possible are intro-

uced and the error incurred by approximating the frequencies by

he rectangles’ areas is as small as possible. The problem is for-

ulated as as an MILP. Due to its hard combinatorial structure, a

ailored MultiDimensional Scaling has been designed to determine

he relative positions of the rectangles in the map, and thus to re-

uce the number of possible layouts. This MDS acts as a surrogate

f the problem, whose partial solution (locating cells) becomes a

tarting point for an iterative algorithm to improve the set of lo-

ations cells. Our approach has been illustrated using three exam-

les, showing that our results are competitive, most of the true

djacencies (the ones in the original weighted graph) can be repro-

uced by the rectangular map, introducing only a few false ones,

nd with low area deviations. 

There are several interesting lines for future research, mainly

ased on the study of other applications of Mathematical Opti-

ization to visualization frameworks. First, ECPA could be embed-

ed into a metaheuristic such as Variable Neighborhood Search

 Mladenovi ́c & Hansen, 1997 ), to speed up the procedure. Sec-

nd, the so-called “segment moving heuristic” ( Kreveld & Speck-

ann, 2007 ), could be customized to our problem in order to im-

rove the approximation made in the areas after having a ( K , L )-

ectangular map. Nevertheless, even if we were able to detect the

ectangles whose sizes can be changed, and thus, the segments

hat can be moved without destroying the rectangular shapes, the

djacencies structure could be dramatically changed by such move-

ents. Hence, local changes are difficult to detect due to the rigid

tructure of the map and this approach deserves further study.

hird, we are studying the problem of representing each node of

he graph G by a connected union of grid cells, not necessarily

ith a rectangular shape ( de Berg et al., 2009; 2010 ). Having less

igid shapes than rectangles has two advantages, namely, the prox-

mities between individuals can be represented more accurately,
hile better results in terms of area deviations can be achieved.

ourth, we would like to customize the technique of represent-

ng a set of individuals with attached frequencies and proximities

s a rectangular map to detect communities in graphs ( Fortunato,

010 ), by analyzing the adjacencies represented in the rectangu-

ar map. Finally, our method can also be applied to visualize hi-

rarchical data, in which inside every rectangle a new rectangular

ap has to be represented by taking into account adjacencies with

eighboring rectangles and its inner rectangular maps ( Clémençon,

e Arazoza, Rossi, and Tran, 2011 ; Herman, Melançon, Marshall,

0 0 0 ; Shneiderman & Dunne, 2013 ). However, the mathematical

ptimization treatment of these extensions is not trivial and thus

urther research is still needed. 
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ppendix 

Table 2 contains, for each dataset used in Section 5 : The num-

er of individuals N , the number of edges and its complement,

he label of each individual, their full name in Netherlands and

ermany cases and the frequencies ω. 
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