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Abstract. An optimization spiking neural P system (OSNPS) provides

a novel way to directly use a P system to solve optimization problems. This

paper discusses the practical application of OSNPS for the first time and uses

it to solve the power system fault section estimation problem formulated by an

optimization problem. When the status information of protective relays and

circuit breakers read from a supervisory control and data acquisition system is

input, the OSNPS can automatically search and output fault sections. Case

studies show that an OSNPS is effective in fault sections estimation of power

systems in different types of fault cases: including a single fault, multiple faults

and multiple faults with incomplete and uncertain information.

Key-words: Membrane computing, optimization spiking neural P system,

fault section estimation, power systems, fault diagnosis.



Fault Section Estimation of Power Systems with OSNPS 241

1. Introduction

Membrane computing is an attractive branch of natural computing, initiated by
Gh. Păun in [1], aiming at abstracting innovative computing models or computing
ideas from functioning and structures of living cells, as well as from the way the cells
are organized in tissues or other higher order structures [2]. The obtained models,
called membrane systems or P systems, are distributed and parallel computing models.
Currently, there are three basic types of P systems: cell-like P systems, tissue-like P
systems and neural-like P systems [3, 4].

In recent years, the research on neural-like P systems mainly focused on spiking
neural P systems (SN P systems), which were introduced in [5]. An SN P system
is a class of distributed and parallel computing devices which are inspired by the
way neurons communicate by means of electrical impulses (spikes). Since then, SN P
systems have become a hot topic in membrane computing [6–21] and an overview of
this field can be found in [3], with up-to-date information available at the membrane
computing website (http://ppage.psystems.eu).

In [18], an extended spiking neural P system (ESNPS) was proposed by introduc-
ing the probabilistic selection of evolution rules and multi-neurons output and corre-
spondingly a novel way to design a P system for directly obtaining the approximate
solutions of combinatorial optimization problems without the aid of evolutionary oper-
ators was introduced. Besides, a family of ESNPS, called optimization spiking neural
P systems (OSNPS), were further designed by introducing a guider to adaptively ad-
just rule probabilities to approximately solve combinatorial optimization problems.
This is the first time that a strategy to design SN P systems capable of solving op-
timization problems is proposed. Experimental results on knapsack problems in [18]
proved the viability and effectiveness of OSNPS. Moreover, the proposed future work
in [18] pointed out that OSNPS can be used to solve various application problems,
such as fault diagnosis of electric power systems.

Strictly speaking, fault diagnosis of power systems includes fault detection, fault
section estimation, fault type identification, failure isolation and recovery [19, 22].
Among the five processes, fault section estimation is especially important [19, 23].
Fault section estimation (FSE) identifies the fault section in power systems by using
the status information of protective relays and circuit breakers (CBs) obtained from
supervisory control and data acquisition (SCADA) systems [24]. So far, various ap-
proaches have been proposed to solve this problem, such as expert systems (ES) [25],
fuzzy logic (FL) [26], fuzzy Petri nets (FPN) [23], artificial neural networks (ANN)
[27], multi-agent systems (MAS) [28], optimization methods (OM) [22], [29–31]. Each
method has its own pros and cons [19]. Therefore, improving the aforementioned
methods and developing new ones to solve fault section estimation problems is a hot
topic in the research field of electrical power systems.

The power system fault section estimation problem can be effectively solved by
formulating it into a 0-1 integer programming problem. In [18], only the widely used
benchmark problems, knapsack problems, were applied to verify the OSNPS effective-
ness and the authors pointed out that OSNPS can be used to solve various application
problems. However, until now there is not any work about the real application of OS-
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NPS. This paper discusses the application of OSNPS to fault section estimation of
power systems. This is the first time to use OSNPS to solve real application prob-
lems. When the status information of protective relays and circuit breakers read from
a supervisory control and data acquisition system is input, OSNPS can automatically
search and output fault sections. Case studies show that OSNPS is effective in fault
sections estimation of power systems in different types of fault cases including single
fault, multiple faults and multiple faults with incomplete and uncertain information.

This paper is structured as follows. Section 2 states the problem to solve. Section 3
presents the fault section estimation method based on OSNPS. Subsequently, three
case studies are provided in Section 4. Conclusions are finally drawn in Section 5.

2. Problem Description

The aim of fault section estimation (FSE, for short) problem in power systems
based on optimization methods (OM) is to obtain a fault hypothesis which can ex-
plain warning signals (status information) with a maximum degree of confidence.
Specifically, fault section estimation can be abstracted as a 0-1 programming problem
with an objective function (error function), as shown in (1), which is obtained accord-
ing to the causality between a fault and the statuses of protection devices including
protective relays and circuit breakers (CBs) [30]. Then, an optimization method is
used to find the fault hypothesis, i.e. the minimal value of the expression:

E(S) =

nc∑
j=1

∣∣cj − c∗j (S,R)
∣∣+ nr∑

k=1

|rk − r∗k(S)|, (1)

where:

(1) nc and nr represent the numbers of circuit breakers (CBs) and protective relays,
respectively;

(2) E(S) represents a status function of all the sections in a power system;

(3) S is an n-vector representing the status of sections in a power system and n
represents the number of sections: if section i is faulty, then si = 1; otherwise,
si = 0, i = 1, . . . , n;

(4) cj (1 ≤ j ≤ nc) is the jth element of an nc-vector and represents the real status
of the jth circuit breaker in a protection system. If CBj trips, then cj = 1;
otherwise, cj = 0;

(5) c∗j (S,R) (1 ≤ j ≤ nc) is the jth element of an nc-vector and represents the
expected status of the jth circuit breaker in a protection system. If CBj should
trip, then c∗j = 1; otherwise, c∗j = 0;

(6) rk (1 ≤ k ≤ nr) is the kth element of an nr-vector and represents the real status
of the kth protective relay in a protection system. If the kth protective relay
operates, then rk = 1; otherwise, rk = 0;
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(7) r∗k(S) (1 ≤ k ≤ nr) is the kth element of an nr-vector and represents the expected
status of the kth protective relay in a protection system. If the kth protective
relay should operate, then r∗k = 1; otherwise, r∗k = 0.

In this study, OSNPS is used to fulfill fault section estimation in power systems by
minimizing E(S) in (1). Specifically, the expected status of protective relays and CBs
can be obtained according to their operation principles and the protection structure of
a power system. The real status of protective relays and CBs are normally read from
a power SCADA system. When all the expected status and real status of protections
are obtained, we can use an OSNPS to find the minimal value of E(S) in (1). The
aim of fault section estimation is to obtain vector elements of S corresponding to the
minimum value of (1).

Fig. 1. A simple power network.

Table 1. Labels of sections and protective devices

Sections/devices A B C L1 L2 Am Bm Cm L1Am

Labels S1 S2 S3 S4 S5 r1 r2 r3 r4

Devices L1Bm L2Bm L2Cm L1Ap L1Bp L2Bp L2Cp L1As L1Bs

Labels r5 r6 r7 r8 r9 r10 r11 r12 r13

Devices L2Bs L2Cs CB1 CB2 CB3 CB4 CB5 CB6 -

Labels r14 r15 C1 C2 C3 C4 C5 C6 -

To illustrate the operational rules of different levels of protections and how to
compute protective expected values c∗j (S,R) (1 ≤ j ≤ nc) and r∗k(S) (1 ≤ k ≤ nr)
in (1), a simple power network is used and is shown in Figure 1. This power net-
work includes five system sections, six CBs and fifteen protective relays. For the
convenience of description, some notations are described as follows. The five sec-
tions are A, B, C, L1 and L2, which are labeled as S1, . . . , S5. The six CBs are
CB1, CB2, CB3, CB4, CB5, CB6, which are labeled as C1, . . . , C6. The fifteen protec-
tive relays are composed of seven main ones (Am, Bm, Cm, L1Am, L1Bm, L2Bm, L2Cm),
which are labeled as r1, . . . , r7, four first backup ones (L1Ap, L1Bp, L2Bp, L2Cp), which
are labeled as r8, . . . , r11 and 4 second backup ones (L1As, L1Bs, L2Bs, L2Cs), which
are labeled as r12, . . . , r15. All the labels of sections and protective devices are shown
in Table 1. The detail operational rules of different types of protective devices, please
see [19], [22]. For the simple system in Figure 1, the operational rules of main pro-
tections and backup protections are shown in Table 2 and Table 3, respectively.
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Table 2. Operational rules of main protections

Main protections Operational rules

Am when A has a fault, Am operates to trip CB1 and CB2

Bm when B has a fault, Bm operates to trip CB3 and CB4

Cm when C has a fault, Cm operates to trip CB5 and CB6

L1Am when L1 has a fault, L1Am operates to trip CB2

L1Bm when L1 has a fault, L1Bm operates to trip CB3

L2Bm when L2 has a fault, L2Bm operates to trip CB4

L2Cm when L2 has a fault, L2Cm operates to trip CB5

Table 3. Operational rules of main protections

Main protections Operational rules

L1Ap
when L1 has a fault and its main protections fail, L1Ap operates to

trip CB2

L1Bp
when L1 has a fault and its main protections fail, L1Bp operates to

trip CB3

L2Bp
when L2 has a fault and its main protections fail, L2Bp operates to

trip CB4

L2Cp
when L2 has a fault and its main protections fail, L2Cp operates to

trip CB5

L1As
when B has a fault and CB3 fails or L2 has a fault and CB3 and

CB4 fail, L1As operates to trip CB2

L1Bs when A has a fault and CB2 fails, L1Bs operates to trip CB3

L2Bs when C has a fault and CB5 fails, L2Bs operates to trip CB4

L2Cs
when B has a fault and CB4 fails or L1 has a fault and CB3 and

CB4 fail, L2Cs operates to trip CB5

In this study, the protective relays consist of main protective relays (MPRs), first
backup protective relays (FBPRs) and second backup protective relays (SBPRs).
According to the operational rules of main and backup protections, we obtain the
computational formulas of expected values of protective relays (r∗k, 1 ≤ k ≤ 15) and
CBs (c∗j (S,R), 1 ≤ j ≤ 6) and are shown in Table 4. Therefore, according to Table
4, the respected value for every protective relay or circuit breaker is acquirable.

3. Fault Section Estimation Based on OSNPS

3.1. Optimization Spiking Neural P Systems

First, let us recall the concept of extended spiking neural P systems introduced in
[18] (it is depicted in Figure 2).
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Table 4. Computational formulas of expected values of protective relays
and CBs

Protective devices Computational formulas

MPRs

r∗1(S) = s1

r∗2(S) = s2

r∗3(S) = s3

r∗4(S) = s4

r∗5(S) = s4

r∗6(S) = s5

r∗7(S) = s5

r∗8(S) = s4(1− r4)

r∗9(S) = s4(1− r5)

r∗10(S) = s5(1− r6)

FBPRs r∗11(S) = s5(1− r7)

and SBPRs r∗12(S) = 1− [1− s2(1− c3)][1− s5(1− c3)(1− c4)]

r∗13(S) = s1(1− c2)

r∗14(S) = s3(1− c5)

r∗15(S) = 1− [1− s2(1− c4)][1− s4(1− c3)(1− c4)]

CBs

c∗1(S,R) = s1r1

c∗2(S,R) = max⟨s1r1, s4r4, s4(1− r4)r8,

{1− [1− s2(1− c3)][1− s5(1− c3)(1− c4)]}r12⟩

c∗3(S,R) = max⟨s2r2, s4r5, s4(1− r5)r9, s1(1− c2)r13⟩

c∗4(S,R) = max⟨s2r2, s5r6, s5(1− r6)r10, s3(1− c5)r14⟩

c∗5(S,R) = max⟨s3r3, s5r7, s5(1− r7)r11,

{1− [1− s2(1− c4)][1− s4(1− c3)(1− c4)]}r15⟩

c∗6(S,R) = s3r3

Definition 1. An extended spiking neural P system (ESNPS, for short) of degree
m ≥ 1, is a tuple Π = (O, σ1, . . . , σm+2, syn, I0), where:

(1) O = {a} is the singleton alphabet (a is called spike);

(2) σi, 1 ≤ i ≤ m, are neurons σi = (1, Ri, Pi), where Ri = {r1i , r2i }, r1i = {a → a},
r2i = {a → λ}, and Pi = {p1i , p2i } is a finite set of probabilities (pji is associated

with rule rji , 1 ≤ j ≤ 2) such that p1i+p2i=1;

(3) σm+1 = σm+2 = (1, {a → a});

(4) syn = {(i, j) | (i = m+ 2 ∧ 1 ≤ j ≤ m+ 1) ∨ (i = m+ 1 ∧ j = m+ 2)};
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(5) I0 = {σ1, . . . , σm} is a finite set of output neurons, i.e., the output is a spike train
formed by concatenating the outputs of σ1, . . . , σm.
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Fig. 2. The ESNPS structure.

This system contains the subsystem consisting of neurons σm+1 and σm+2, and
this subsystem is used as a step by step supplier of spikes to neurons σ1, . . . , σm. In
the subsystem, there are two identical neurons, each of which fires at each moment
of time and sends a spike to each of neurons σ1, . . . , σm, and reloads each other
continuously. At each time unit, each of neurons σ1, . . . , σm performs the firing rule
r1i by probability p1i and the forgetting rule r2i by probability p2i , i = 1, 2, . . . ,m. If
the ith neuron spikes, we obtain its output 1, i.e., we obtain 1 by probability p1i ,
otherwise, we obtain its output 0, i.e., we obtain 0 by probability p2i , i = 1, 2, . . . ,m.
Thus, this system outputs a spike train consisting of 0 and 1 at each moment of time.
If we can adjust the probabilities p11, . . . , p

1
m, we can control the output spike train.

So, a method to adjust the probabilities p1i , . . . , p
1
m by introducing a family of ESNPS

is presented and described as follows.
A certain number of ESNPS can be organized into a family of ESNPS (called OS-

NPS) by introducing a guider to adjust the selection probabilities of rules inside each
neuron of each ESNPS. The structure of OSNPS is shown in Figure 3, where OSNPS
consists of H ESNPS, ESNPS1, ESNPS2, . . . , ESNPSH . Each ESNPS is identical
with the one in Figure 2 and the pseudocode algorithm of the guider algorithm is
illustrated in Figure 4. For detail explanation about the guider algorithm and more
information about ESNPS and OSNPS, please see [18].

ESNPS2 ESNPSH
…ESNPS1

Spike trains 

Guider 

Rule probabilities 

Fig. 3. OSNPS.
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Input: Spike train Ts, p
a
j , ∆, H and m

1: Rearrange Ts as matrix PR

2: i = 1
3: while (i ≤ H) do
4: j=1
5: while (j ≤ m) do
6: if (rand < paj ) then
7: k1, k2 = ceil(rand ∗H), k1 ̸= k2 ̸= i
8: if (f(Ck1) > f(Ck2)) then
9: bj = bk1

10: else
11: bj = bk2

12: end if
13: if (bj > 0.5) then
14: p1ij = p1ij +∆
15: else
16: p1ij = p1ij −∆
17: end if
18: else
19: if (bmax

j > 0.5) then

20: p1ij = p1ij +∆
21: else
22: p1ij = p1ij −∆
23: end if
24: end if
25: if (p1ij > 1) then

26: p1ij = p1ij −∆
27: else
28: if (p1ij < 0) then

29: p1ij = p1ij +∆
30: end if
31: end if
32: j = j + 1
33: end while
34: i = i+ 1
35: end while
Output: Rule probability matrix PR

Fig. 4. Guider Algorithm

3.2. Fault Section Estimation Based on OSNPS

The process of OSNPS applied to the FSE problem can be illustrated by the
sketch map in Figure 5, which depicts how to estimate fault sections using OSNPS.
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To clearly present the process in Figure 5, a detailed description is given as follows.
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Fig. 5. The sketch map of fault section estimation based on OSNPS.

Step 1: Input data
To start the method, SCADA data, parameters of OSNPS and initial value of

the fitness function are required. Thus, the input data block/process consist of three
parts which are described as follows.

1) Read SCADA data. The status information including the status of protective
relays and CBs, the topological connection of a given power system and its protection
system structure information are read from an SCADA system;

2) Set parameters of OSNPS. The parameters refer to the number of ESNPS (H),
the dimension of each ESNPS (m), the learning probabilities, the learning rate, the
rule probability matrix, maximum iterations and so on;

3) Initial fitness function. Above mentioned data are used to initial fitness function
of the FSE problem according to (1).

Step 2: Fault section estimation with OSNPS
Perform OSNPS to produce and update spike trains to find the minimum value of

(1). As mentioned in Subsection 3.1, each ESNPS can produce a spike train, which
stores the needed result in binary encoding. H ESNPS are organized into an OSNPS
by a guider to adjust the selection probabilities of rules inside each neuron of each
ESNPS. The guider algorithm, as shown in Figure 4 and described in [18] in detail, is
used to help OSNPS getting the spike train which brings the minimum value of (1).

Step 3: Stopping condition
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The optimization process is terminated when either reaching the maximum itera-
tions or concluding that no better solution would appear in the following iterations.

Step 4: Output fault section estimation results

The spike train corresponding to the minimum value of (1) is outputted in an
n-vector S and Si = 1 is the ith faulty section, i = 1, . . . , n.

The pseudocode algorithm of the OSNPS fault section estimation algorithm is
illustrated in Algorithm 1, wherem represents the number of neurons in every ESNPS,
M represents iteration, paj , 1 ≤ j ≤ m represents learning probabilities, ∆ represents
learning rate and H represents the numbers of ESNPS.

4. Case studies

Figure 6 shows a typical 4-substation system including 28 system sections, 40 CBs
and 84 protective relays [19], [22]. For the convenience of description, some notations
are described as follows. The 28 sections are A1, . . . , A4, T1, . . . ,T8, B1, . . . , B8, L1,
. . . , L8 which are labeled as s1 ∼ s28 and the 40 CBs are CB1, . . . , CB40 which
are labeled as (C1 ∼ C40). The 84 protective relays are composed of 36 main ones
(A1m,. . . , A4m, T1m, . . . , T8m, B1m, . . . , B8m, L1Sm, . . . , L8Sm, L1Rm, . . . ,L8Rm)
which are labeled as r1, . . . , r36 and 48 backup ones: T1p, . . . , T8p, T1s, . . . , T8s, L1Sp,
. . . , L8Sp, L1Rp, . . . , L8Rp, L1Ss, . . . , L8Ss, L1Rs, . . . , L8Rs) which are labeled as
r37, . . . , r84.
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Fig. 6. A local sketch map of the protection system of an EPS.
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Algorithm 1 OSNPS fault section estimation algorithm

Input: m, M , paj , ∆ and H
1: set the generation counter t = 1
2: initial fitness function E(S) according to (1)
3: while (t ≤ M) do
4: generate dematrix B according to rule probability matrix PR: BH×m = rand() < PR,

5: for (j = 1; j ≤ H; j ++) do
6: calculate the fitness function value of ith ESNPS according to (1)
7: end for
8: update individual optimal value Bi

best. B
i
best represents historical optimal value of ith

ESNPS
9: update global optimal value Gbest. Gbest represents historical optimal value among H

ESNPSs in previous t iterations
10: i=1
11: while (i ≤ H) do
12: j=1
13: while (j ≤ m) do
14: if (rand < paj ) then
15: perform individual learning:
16: (1) choose two distinct individuals k1 and k2 among H ESNPSs, where 1 ≤

k1 ̸= k2 ̸= i ≤ H
17: (2) Compare historical optimal fitness function values corresponding to Bk1

best

and Bk2
best. If the fitness function value of k1 is better, then record the jth bits

of k1; otherwise, record the jth bit of k2
18: (3) update rule probability matrix PR

19: if (bj == 1) then
20: P t

ij = P t
ij +∆

21: end if
22: if (bj == 0) then
23: P t

ij = P t
ij −∆

24: end if
25: else
26: perform global learning:
27: Learning global optimal value Gbest and update rule probability matrix PR

28: if (Gj
best == 1) then

29: Gj
best == P t

ij +∆, where Gj
best represents the jth bit of Gbest

30: end if
31: if (bj == 0) then
32: P t

ij = P t
ij −∆, where Gj

best represents the jth bit of Gbest

33: end if
34: end if
35: end while
36: i = i+ 1
37: end while
38: t = t+ 1
39: end while
Output: global optimal value Gbest which is a m-vector and represent status of sections. If

Gbesti = 1, then the ith section is faulty; otherwise, it is not faulty.
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To test the effectiveness and superiority of OSNPS in fault section estimation,
three cases of the local power system in Figure 6 are considered. The status infor-
mation about protective relays and CBs of these cases is shown in Table 5, where
Case 1 has a single fault, Case 2 has multiple faults and Case 3 has multiple faults
with incompleteness and uncertainty. OSNPS is used to estimate fault sections for
the three cases, the estimation results are shown in Table 6 with a comparison with
three other fault section estimation methods, where “ − ” means that this case was
not considered in the corresponding reference.

From Table 6, we can see that the estimation results of OSNPS, in Cases 1-2,
are the same as those of fuzzy logic [FL], genetic algorithm (GA) and FDSNP in
[26], [22] and [19], respectively. In other words, OSNPS is effective in fault section
estimation of power systems for single and multiple faults. In Case 3, the estimation
result of OSNPS is different from those in [26] and [22]. According to the results in
[19] and [30], we know that the result of OSNPS is correct. Therefore, from the three
typical cases, OSNPS is effective in fault section estimation of power systems for a
single fault, multiple faults and multiple faults with incomplete and uncertain alarm
information.

Table 5. Status information about protective relays and CBs

Cases
Status information

Operated relays Tripped CBs

1 B1m, L2Rs, L4Rs
CB4, CB5, CB7

CB9, CB12, CB27

2
B1m, L1Sm, L1Rp CB4, CB5, CB6

B2m, L2Sp, L2Rm CB7, CB8, CB9

CB10, CB11, CB12

3
T7m, T8P , B7m CB19, CB20, CB29, CB30

B8m, L5Sm, L5Rp CB32, CB33, CB34, CB35

L6Ss, L7Sp, L7Rm, L8Ss CB36, CB37, CB39

Table 6. Comparisons between OSNPS and three fault diagnosis methods

Cases
Diagnosis results

OSNPS FL [15] GA [23] FDSNP [13] GATS [21]

1 B1 B1 B1 B1 -

2
B1, B2 B1, B2 B1, B2 B1, B2 -

L1, L2 L1, L2 L1, L2 L1, L2

3

L5, L7 L5, L7 (1)L5, L7, B7, B8 L5, L7 L5, L7

B7, B8 B8, T7 T7, T8 B7, B8 B7, B8

T7, T8 T8 (2)L5, L7, T7, B8 T7, T8 T7, T8

In what follows, we use Case 1 as an example to illustrate how to use OSNPS
estimating fault section.

Case 1 : SCADA data. Operated relays: B1m, L2Rs and L4Rs. Tripped CBs:
CB4, CB5, CB7, CB9, CB12 and CB27.

The fault section estimation process is described as follows.
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1. Passive networks are searched according to network topology analysis method
which is descried in detail in [19]. The passive network is shown in Figure 7, where
B1, B2, L2 and L4 are candidate faulty sections and their corresponding status vector
is S = [s1, s2, s3, s4].

Fig. 7. Passive network.

2. According to SCADA data, the real status vector of CBs is C = [c1, c2, c3, c4, c5,
c6, c7, c8, c9] = [1, 1, 0, 1, 0, 1, 0, 1, 1], where c1 ∼ c9 represent CB4, CB5, CB7, CB9,
CB12, respectively. The real status vector of protective relays is R = [r1, r2, r3, r4, r5,
r6, r7, r8, r9, r10, r11, r12, r13, r14] = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1], where r1 ∼ r14
represent B1m, B2m, L2Sm, L2Rm, L4Sm, L4Rm, L2Sp, L2Rp, L4Sp, L4Rp, L2Ss, L2Rs,
L4Ss, L4Rs, respectively.

3. Compute expected status of protective relays and CBs. According to the oper-
ational rules of main and backup protections described in Section 2, we obtain the
computational formulas of expected values of protective relays (r∗k, 1 ≤ k ≤ 14) and
CBs (c∗j (S,R), 1 ≤ j ≤ 9) and are shown in Table 4.

4. According to the real status vector C of CBs, the real status vector R of protective

relays and computational formulas in Table 4, we get that E(S) =
9∑

j=1

∣∣cj − c∗j (S,R)
∣∣

+
14∑
k=1

|rk − r∗k(S)| = (1−s1)+s2+s3+s3+s4+s4+s3+s3+s4+s4+0+(1+s2)+0+(1+

s2)+(1−s1)+(1−s1)+max⟨{s1r1, s2r2}+(1−s1)+0+(1−s1)+0+s2(1−c5)+s1(1−c7)
= 7− 3s1 + 4s2 + 4s3 + 4s4.

5. Perform OSNPS fault section estimation algorithm in Section 3 to get the 0-1
vector S. If si = 1, then ith section has a fault; otherwise, the ith section is not
faulty.
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5. Conclusions

In this study, an optimization spiking neural P system (OSNPS) is applied to
fault section estimation of power systems. When status information of protection
devices (protective relays and CBs) are obtained from the SCADA system, OSNPS
can automatically get the minimal value of the objective function of the FSE problem
and accordingly determine fault sections. Three typical case studies show that OSNPS
is effective in fault section estimation of power systems. On the one hand, this study
provides an alternative method for solving the fault section estimation problem in
power systems. On the other hand, this study advances the work in [18] forward and
is of great significance in extending the application of P systems and variant SN P
systems.

This work focuses on the effectiveness of OSNPS in fault section estimation of
power systems. In the future, we will pay attention to explore superiority of OSNPS
in fault diagnosis of power systems and its availability in large-scale power grid and
complex power systems.
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[13] PENG H., WANG J., PÉREZ-JIMÉNEZ M.J., WANG H., SHAO J., WANG T., Fuzzy
reasoning spiking neural P system for fault diagnosis, Information Science, 235, pp. 106–
116, 2013.
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Diagnosis of Electric Power Systems Based on Fuzzy Reasoning Spiking Neural P Sys-
tems, IEEE Transactions on Power Systems, 30(3), pp. 1182–1194, 2015.

[20] ZHANG X., ZENG X., LUO B., PAN L., On some classes of sequential spiking neural
P systems, Neural Computation, 26(5), pp. 974–997, 2014.



Fault Section Estimation of Power Systems with OSNPS 255

[21] ZENG X., ZHANG X., SONG T., PAN L., Spiking Neural P Systems with Thresholds,
Neural Computation, 26(7), pp. 1340-1361, 2014.

[22] WEN F.S., HAN Z.X., Fault section estimation in power systems using a genetic algo-
rithm, Electric Power Systems Research, 34(3), pp. 165–172, 1995.

[23] SUN J., QIN S.Y., SONG Y.H., Fault diagnosis of electric power systems based on fuzzy
Petri nets, IEEE Transactions on Power Systems, 19(4), pp. 2053–2059, 2004.

[24] COROIU N., SCADA: supervisory control and data acquisition, Journal of Sustainable
Energy, 2(4), pp. 1–5, 2011.

[25] LEE H.J., AHN B.S., PARK Y.M., A fault diagnosis expert system for distribution
substations, IEEE Transactions on Power Delivery, 15(1), pp. 92–97, 2000.

[26] CHANG C.S., CHEN J.M., SRINIVASAN D., WEN F.S., LIEW AC., Fuzzy logic ap-
proach in power system fault section identification, IEE Proceedings-Generation Trans-
mission and Distribution, 144(5), pp. 406–414, 1997.

[27] CARDOSO G., ROLIM J.G., ZURN H.H., Identifying the primary fault section af-
ter contingencies in bulk power systems, IEEE Transactions on Power Delivery, 23(3),
pp. 1335–1342, 2008.

[28] ZHU Y.L., HUO L.M., LIU J.L., Bayesian networks based approach for Power Systems
Fault Diagnosis, IEEE Transactions on Power Delivery, 21(2), pp. 634–639, 2006.

[29] HUANG S.J., LIU X.Z., Application of artificial bee colony-based optimization for fault
section estimation in power systems, International Journal of Electrical Power & Energy
Systems, 44(1), pp. 210–218, 2013.

[30] LIN X.N., KE S.H., LI Z.T., WANG H.L., HAN X.H., A fault diagnosis method of
power systems based on improved objective function and genetic algorithm-tabu search,
IEEE Transactions on Power Delivery, 25(3), pp. 1268–1274, 2010.

[31] HE Z.Y., CHIANG H.D., LI C.W., Z Q.F., Fault-section estimation in power systems
based on improved optimization model and binary particle swarm optimization, Proceed-
ings of IEEE Power & Energy Society General Meeting, pp. 3572–3579, 2009.


