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ETSI Informática, Av. Reina Mercedes, s/n,

41012, Sevilla, Spain

Abstract—The reconstruction of particle trajectories, tracking,
is a central process in the reconstruction of particle collisions in
High Energy Physics detectors. At the LHCb detector in the
Large Hadron Collider, bunches of particles collide 30 million
times per second. These collisions produce about 109 particle
trajectories per second that need to be reconstructed in real time,
in order to filter and store data. Upcoming improvements in the
LHCb detector will deprecate the hardware filter in favour of a
full software filter, posing a computing challenge that requires a
renovation of current algorithms and the underlying hardware.

We present Search by triplet, a local tracking algorithm
optimized for parallel architectures. We design our algorithm
reducing Read-After-Write dependencies as well as conditional
branches, incrementing the potential for parallelization. We
analyze the complexity of our algorithm and validate our results.

We show the scaling of our algorithm for an increasing number
of collision events. We show sustained tests for our algorithm
sequence given a simulated dataflow. We develop CPU and GPU
implementations of our work, and hide the transmission times
between device and host by executing a multi-stream pipeline.

Our results provide a reliable basis for an informed assessment
on the feasibility of LHCb event reconstruction on parallel
architectures, enabling us to develop cost models for upcoming
technology upgrades. The created software infrastructure is
extensible and permits the addition of subsequent reconstruction
algorithms.

I. INTRODUCTION

LHCb is a large particle physics detector operating at the

CERN Large Hadron Collider [1]. From 2020 on it will

produce data at a rate of 40 Tbit/s [2]. A data selection will

be performed in order to record interesting events 1 from a

particle physics standpoint. The data acquisition system will

be upgraded [3] to process all events in a commodity processor

farm, deprecating the current hardware trigger. The increase

in data rate and the removal of the hardware trigger pose a

real-time computing challenge.

Different solutions are being studied to be able to process

this enormous volume of data. The current LHCb trigger farm

is composed solely of Intel Xeon-based servers, however the

recent adoption of alternative architectures and accelerators

in other detectors’ data acquisition systems are an indication

that other solutions may also be feasible [4] [5] [6]. Software

1An event corresponds to a single crossing of the Large Hadron Collider
proton beams.

demonstrators are fundamental towards implementing new ar-

chitectures to the LHCb trigger farm, where price performance

and software maintainability aspects should be taken into

account.

Track reconstruction consists in determining the trajectories

of particles from the signal pixel hits left on their path. The up-

graded vertex locator (Velo) detector will span 52 consecutive

silicon pixel modules, placed very closely to the interaction

point [7]. The Velo reconstruction constitutes the first stage

of tracking in LHCb. Tracks created at this stage are used

for determining the locations of the collisions, and serve as a

seed and are extended to subsequent LHCb tracking detectors.

Hence, the Velo reconstruction is fundamental for the correct

functioning of LHCb.

Various track reconstruction techniques have been explored

in literature. Local methods find tracks iteratively. The base-

line LHCb Velo reconstruction algorithm consists in a track
forwarding technique, based on finding candidate pairs and

extending them over iterative detector modules [8]. The need

for flagging visited hits sequentially makes this technique

unsuitable without modification to parallel architectures. Find-

ing all compatible triplets can be parallelized dropping the

flagging mechanism, like in the seeding phase of [9]. How-

ever, this is inefficient for densely populated detectors. Local

methods are commonly used in conjunction with an estimator

like the Kalman filter [10] to fit forming tracks and select

hits [11]. Spatial reductions like KD-tree structures [12] or

search windows help reduce the dimensionality of hits under

consideration.

On the other hand, global methods adapt an equivalent

formulation of the problem, where solutions map to tracks.

The Hough transform [13] [14] converts all hit points into a

histogram representation in polar coordinates, where peaks are

equivalent to compatible hits. The Retina algorithm [15] builds

a heatmap for each hit to determine compatible tracks. The

automata technique [16] [4] consists in creating a weighted

graph representing the connectivity of every hit, and traversing

it to find the best tracks.

We present Search by triplet, a fast local method optimized

for Velo track reconstruction on parallel architectures. We

sort hits in all modules and define tight search windows. We

adapt the track forwarding technique to expose parallelization
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with an iterative two-step tracking. We iterate over each

detector module only once, maximizing temporal and spatial

locality. We flag hits while maintaining parallelizability of

each individual step, avoiding Read-After-Write (RAW) data

dependencies. We employ a least-squares fit for track fitting,

given the expected tracks in the Velo region are straight lines

due to the lack of magnetic field interaction. We use Monte
Carlo simulation of LHCb particle collisions. This allows us to

validate our algorithm by comparing trajectories generated by

the simulation, also referred to as true particle trajectories,

against the reconstructed tracks obtained as output of our

algorithm.

We develop our algorithm using the SIMT programming

model [17], targeting GPGPUs. In order to efficiently use the

resources available on GPUs, we create a software framework

for performing data parallel event reconstruction. We employ

a dynamic GPU memory manager to handle algorithmic

data requirements, which allocates and frees GPU memory

segments based on a data dependency tree. Our framework

can run several GPU streams in parallel. We hide the latency

of data transmissions by employing a pipeline that reconstructs

events while performing memory read and write operations.

We translate our algorithm to the SPMD programming

model [18], producing a vectorized algorithm suitable for

CPUs. We discuss the design of our algorithm and assess

its performance and scalability on modern CPUs and GPUs.

We run our software in several streams and study how many

concurrent streams are required for saturating our GPUs.

Our work will directly impact the decision on what hard-

ware to acquire for the upcoming upgrade of the processing

farm of LHCb. The developed GPU framework is extensible

and allows for other parts of the reconstruction to be imple-

mented and evaluated on many-core architectures.

II. VELO RECONSTRUCTION

The upgraded Velo detector will be a pixel-based particle

detector [7], spanning a total of 52 detector modules. A

schematic of the detector is shown in Figure 1. The detector

modules are placed in two sides, with 26 modules on each side.

The interaction region marks where the collisions are expected

to occur. The nominal acceptance angle of the LHCb detector

is 15−300 mrad in the forward region. The Velo detector will

detect by design all particles produced in primary vertices2 in

the LHCb coverage angle on at least 3 modules [19].

In the Velo region, the effect of the LHCb magnet is

negligible. Particle tracks detected in the Velo detector are

therefore expected to be straight lines. Reconstructed Velo

tracks serve as seeds for reconstructing particle trajectories

through the other LHCb tracking detectors, and allow the

reconstruction of vertices where the collisions happened.

Additionally, Velo reconstruction occurs early in the LHCb

reconstruction process. Therefore, the Velo reconstruction is

of paramount importance towards a successful trigger.

2A primary vertex is the reconstructed location of an individual particle
collision.
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Figure 1: A schematic of the upgraded Velo detector. The

top image shows a section in the XZ plane, with detector

modules laying in two sides. The images at the bottom show a

frontal view of each module in the XY plane, with subdivisions

indicating detector chips. Each detector chip has a resolution

of 256× 256 pixels.

The physics quality of found tracks can be evaluated

according to three indicators [20]. Particles are considered

reconstructible in the Velo subdetector if at least three hits

were left in different modules on its path.

• The track reconstruction efficiency is the probability to

reconstruct a particle travelling through the detector, and

can be determined by the ratio between the reconstructed

tracks of reconstructible particles, over all the recon-

structible particles:

Nreconstructed and reconstructible

Nreconstructible

(1)

• The fake track fraction is the ratio between the recon-

structed tracks that are not associated to any Monte Carlo

particle (fake tracks), and all the reconstructed tracks:

Nfake tracks

Nreconstructed tracks

(2)

• Finally, the clone track fraction refers to the fraction of

tracks associated to the same Monte Carlo particle as

another reconstructed track:

Nclone tracks

Nreconstructed tracks

(3)

In spite of the simplicity of Velo trajectories, Velo track

reconstruction should maximize reconstruction efficiency, min-

imize fake fraction and clone fraction at a rate of up to 109

tracks per second. The Velo reconstruction algorithm is one

of the main time contributors in the current first stage of

software trigger [3], also referred to as High Level Trigger 1,

and therefore it would have a high theoretical speedup if it

were parallelized according to Amdahl’s law [21].



A. Sequential algorithm

Track forwarding is a local method consisting in finding

track candidates and forwarding them over the rest of detector

modules. The nominal LHCb algorithm [8] finds a candidate

pair of hits fulfilling a compatibility condition in neighbouring

modules on the same side. Then, the forwarding phase con-

sists in extrapolating the candidate’s trajectory to subsequent

modules, finding hits that fulfill an extrapolation condition.

Tracks are forwarded until either no modules remain, or no

hits fulfilling the extrapolation condition are found on two

consecutive modules on the same side. Hits are flagged upon

finding tracks of 4 or more hits, so they are not considered

for other tracks. The process is repeated until no candidates

remain.

Additional design decisions specific to the Velo detector

have been taken in the sequential algorithm. Tracks are re-

quired to consist of at least three hits. Three-hit tracks are

required to have no flagged hits and to pass a fit cut, since

they could potentially be formed out of noise. This is less

likely on tracks with more hits, as each additional track hit

has to fulfill the extrapolation condition.

A number of modules can be missed in the forwarding

phase. This stems from a physical condition: A particle may

not leave a signal on a module in its path. The probability of a

track missing a signal in a module while having left signals in

the precedent and posterior modules is under 1%. However,

the probability of a track missing two consecutive modules

on the same side is under 0.01%. Therefore, the sequential

algorithm allows for a missing module on the last signal side.

The sequential algorithm has been validated to deliver the

required physics performance. However, in our opinion there

are some fundamental design shortcomings. It should be noted

that the solution found by the algorithm is deterministic,

although it depends on the order in which hits are considered.

Hits are sorted prior to the reconstruction taking place, and

the order must be strictly followed for the results to be

reproducible. Additionally, hits are required not to be flagged

before checking the compatibility or extrapolation conditions.

These two facts are implicit RAW dependencies, and make

parallelization in the algorithm unfeasible without blocking

conditions.

III. SEARCH BY TRIPLET

We propose a data parallel approach to Velo reconstruction.

Events are physically independent, and can be reconstructed in

parallel. Within an event, several tracks can be reconstructed

in parallel. Also, events are sufficiently small that they are

amenable to be processed by relatively small kernels, avoiding

register spilling.

The Search by triplet algorithm is composed of five sub-

algorithms that are described independently. For all complexity

considerations, we generalize our algorithm to m consecutive

detector modules, and an average number of hits in each

module n.

Sort by phi
Given a list of module hits as input, no assumption can

be made as to the order of hits inside each module. This

algorithm sorts each of the module hit sets increasingly

according to ϕ, calculated as the 2-argument arctangent for

each hit with respect to the origin of coordinates. Given

the expected number of hits is small, a method employing

shared memory3 is used for storing the newly calculated ϕ
and finding the sort permutation. The permutation is then

applied to hit coordinates, yielding sorted Structure of Arrays
for each module. A parallel insertion sort method has been

implemented for calculating the permutation. The complexity

of this algorithm is O(m · n2).

Find candidate windows
In order to minimize the amount of candidates considered

in subsequent steps, the first and last hits in the region

of acceptance in the preceding and following modules are

calculated for every hit. Figure 2 depicts this process. Hit c0
would have one candidate on both the preceding and following

modules, whereas c1 would have one and two respectively.

This process is repeated for every hit in every module that has

a preceding and following module. All modules are processed

in parallel. In order to find the first and last candidate, a binary

search in ϕ is performed. The complexity of this algorithm is

therefore O(m · n · log(n)).

z

0

0 window

1 window
1

c0

c1

Figure 2: Three consecutive modules with hits are depicted.

For hits c0 and c1, their respective ϕ angles and opening win-

dows in the preceding and following modules are highlighted.

c0 has a compatible hit in the preceding module and another

one in the following module, on the left and right respectively.

c1 by contrast has one hit in the preceding module and two in

the following module.

Track seeding and track forwarding
The track seeding algorithm operates on three consecutive

modules at a time. It assigns threads4 to hits in the middle

3In our GPU implementation, the configurable L1-cache shared memory
is employed, due to its low latency and high throughput. In our CPU
implementation, main memory is employed.

4The CUDA terminology thread and block is employed here. Equivalently
for the CPU implementation, program instance and gang [18].



module, and each of these threads checks the preceding

and following modules for compatible hits. The previously

calculated ϕ windows are employed to this end. For every hit

in the middle module, all triplets in the search window are

fitted and compared, and the best one is kept as a track seed.

If there are no hits in either of the search windows, or the

least-squares fit χ2 is over a certain compatibility threshold,

no track is formed for that hit.

The multiplicity of triplets to be analyzed varies from hit to

hit. A variable workload has a negative impact on performance

in parallel architectures, as threads in a block would become

idle until all workloads are finished. For this reason, multiple

threads can be assigned to process the same hit. In this fashion,

if there is one hit with a very high workload, its performance

impact is diminished as it will be processed in parallel. The

amount of threads assigned to each hit is configurable in our

algorithm. Additionally, in cases where the number of hits is

under a certain threshold, threads are dynamically reassigned

to process one of the hits left, minimizing idle threads.

Since several threads may process the same hit, a synchro-

nization mechanism is required in order to guarantee that only

the best triplet for every one middle hit is kept as a track

seed. This synchronization mechanism utilizes shared memory,

where every thread stores its best found triplet, alongside its

fit χ2. Once all threads have computed their assigned triplets,

the χ2 values assigned to the same middle hit are compared,

and only the best fits for each middle hit are kept. After all

found triplets have been checked, threads assign to the next

hit.

This tiled processing mechanism for finding triplets is ap-

plied in first instance to the modules that are further apart from

the collision point, as they present the lowest hit multiplicity.

This algorithm yields a deterministic solution, that is, the

obtained set of triplets is independent of the order in which

hits are processed. Each triplet is the seed of a forming track,

and in the forwarding phase we will try to extend them by

looking for hits on the following modules.

Track forwarding operates on forming tracks and forwards
them to a specified module. Threads are assigned to forming

tracks. For every track, the segment defined by its last two hits

is extrapolated to the working module. Then, a binary search

is performed in ϕ in the module. The extrapolated segment is

checked against the hits as a function of their distance in the

module (dx, dy) and the distance along the beam axis from

the last hit to the current one (dz):
dx2 + dy2

dz2
. The hit that

minimizes the extrapolation function and is under a certain

threshold is then appended to the forming track, which is kept

for a posterior track forwarding step. A configurable number of

modules with no compatible hits are allowed when forming a

track. If this number is exceeded, three-hit tracks are stored in

a weak tracks container for posterior consideration, and tracks

with four or more hits are stored in the final tracks container.

When a compatible hit is found, track forwarding flags all

hits of the forming track. The flag can then be used in the

track seeding algorithm, imposing the condition that all hits

in a track seed be unflagged. Flags are populated in track

forwarding, and are read in track seeding. Therefore, this

imposes a Read-After-Write dependency between forwarding

and seeding, and the requirement of inter-algorithm synchro-

nization.

0

1

2

3

t0

t1

t2

t3

(a)

0

1 c1

c0

(b)

t0

t1

t2

t3

t4

t5

0

1

2

3

4

5

(c)

Figure 3: Three processing stages of Search by triplet are

depicted. (a) Track forwarding operates on the second module

from the left. For each track ti, the segment given from its last

two hits is extrapolated to the processing module, and ϕi is

calculated. A search window is opened and the hit within this

window that minimizes the extrapolation function is chosen. If

a compatible hit is found, all hits in the track are flagged. (b)

Track seeding operates in the middle module. The highlighted

hits ci are considered for creating new seeds. Flagged hits

are ignored. (c) Track forwarding in the leftmost module. All

forming tracks are considered for the search. Since tracks

t3 and t4 present overlapping search windows, they may be

extended with the same hit.



Track seeding and track forwarding are the building blocks

of our tracking algorithm. Figure 3 depicts five consecutive

modules being processed. A track seeding stage (b) is in-

terleaved between track forwarding stages (a) and (c). This

mechanism benefits from temporal and spatial locality, since

the data-flow is such that module hits are revisited after

every forwarding stage. The module processed in the track

forwarding stage in Figure 3a is revisited in the subsequent

track seeding stage in Figure 3b. This control-flow is com-

patible with our flagging mechanism, and guarantees flags be

populated prior to seeding stages.

Both seeding and forwarding exploit intra-event parallelism,

and several independent events are assigned to independent

blocks, for inter-event parallelism. The worst-case complexity

of track seeding is O(m · n3). Track forwarding performs a

binary search on every module, and the maximum number of

tracks created is bound by m · n. Therefore, its worst-case

complexity is O(m2 · n · log(n)).
Weak track filter

The weak track filter algorithm operates on three-hit tracks,

and appends them to the final tracks container given that two

conditions are met: (1) all three hits must not be flagged, and

(2) the least-squares fit χ2 of the track must be under a certain

threshold.

Additionally, a least-squares fit is calculated for every

accepted track, required for subsequent reconstruction algo-

rithms, and stored in an SOA container. The complexity of

the weak track filter is O(m2 · n).
IV. GPU SEQUENCE FRAMEWORK

We have developed an extensible GPU sequence frame-

work5 in order to perform parallel event reconstruction on

many-core architectures. Our framework utilizes CUDA to

offload computation to a GPU accelerator. We present here

the results of the Velo reconstruction, although an evolving

codebase is under development in order to accommodate the

entire first stage of the software trigger High Level Trigger 1.

Figure 4 depicts an architectural view of the framework.

Our framework reads simulated Monte Carlo events from input

binary files, which have been generated in the LHCb recon-

struction framework. Geometry descriptions of the detector are

also read in this fashion, and are kept constant throughout the

execution of the reconstruction sequence.

Control flow

Our framework is multi-threaded. Each of the CPU threads

employs one GPU stream to guarantee asynchronous execution

of events. A configurable number of events is executed in

parallel on every GPU stream. Since every event is physically

independent, no communication is required between CPU

threads or GPU streams.

The reconstruction of physics events is performed in a

sequence of algorithms executed on one CPU thread - GPU

5The GPU sequence framework and Search by triplet are available under
https://gitlab.cern.ch/dcampora/search by triplet, tag v1.0.

GPU sequence framework

Streams

Sequence

Handlers

Algorithms

Scheduler

Memory manager

Figure 4: A schematic of the GPU sequence framework.

Our software reads binary input files containing simulated

Monte Carlo events. Several GPU streams can be executed in

parallel, each of them with their own sequence of algorithms.

The memory required by every algorithm in the sequence is

managed by the scheduler, which employs a memory manager
with a predetermined memory availability.

stream pair. This sequence is configurable, and consists in

device-to-host and host-to-device data transmissions, as well

as data decoding and reconstruction algorithms. In order to

prevent execution stalls, all data transmissions are invoked

through their GPU stream. A pipeline is effectively created

when three or more thread-stream pairs are created, allowing

for concurrent two-way transmission and execution.

The sequence operates through handlers that encapsulate

algorithms. A handler provides a common façade to an ar-

bitrarily complex control-flow. Code repetition is avoided by

encapsulating common tools behind handlers for algorithms

such as prefix sum or sorting, that would otherwise require

explicitly instantiating various algorithms.

Data flow

In CUDA, dynamic memory allocation operations such as

cudaMalloc or cudaFree cannot be executed asynchronously,

and require all streams to synchronize. The data flow has been

developed to solve this central issue. We configure the amount

of data to be reserved for every thread-stream pair and allocate

it prior to launching the thread. An upper bound for the entire

algorithm sequence is therefore necessary, and is currently

obtained experimentally.

We have developed a memory manager that operates with

the allocated memory of the thread-stream. It keeps a view of

the memory in segments, and provides non-blocking malloc
and free implementations.



Data dependencies are known a priori for each algorithm.

Upon configuring the sequence, the scheduler iterates the

dependencies and determines when arguments need to be

allocated or freed. Prior to the execution of every algorithm

in the sequence, the scheduler is invoked in order to prepare

the required arguments. The scheduler employs an instance

of the memory manager to achieve asynchronous memory

management.

V. CPU IMPLEMENTATION

We have translated our code to the Single Program Multiple
Data (SPMD) format employed by the Intel SPMD Program
Compiler [18] 6. This method allows our algorithm to be

executed on any available ISPC target CPU 7, while preserving

our algorithm design with minimal modifications, yielding the

exact same result as the GPU counterpart.

The resulting SPMD code is vectorized by the ISPC

compiler. The execution model of ISPC executes a gang of
program instances in parallel, using the vector units available

in a processor. The execution of every instruction is masked,

similarly to how a warp executes threads on a GPU. ISPC al-

lows compilation with a configurable execution mask size and

gang size. Additionally, the desired set of vector extensions8

can be configured.

Our CPU implementation is compatible with the Monte

Carlo events and geometry descriptions of the GPU sequence

framework. We have predefined the Velo sequence, with

the same set of algorithms as the many-core model. Events

are executed in parallel across different CPU threads via a

minimal multi-threading wrapper, while intra-event parallelism

is handled by ISPC assigning work to vector units. In order to

be able to rigorously compare both implementations, we have

avoided any usage of the C++ standard library for common

algorithms.

VI. PERFORMANCE ANALYSIS

We have carried out a performance analysis over a variety

of hardware, described in tables I and II. The CPUs under

analysis are from two different vendors, Intel and AMD.

The Skylake processor Silver 4114 supports the AVX512

instruction set, whereas the Broadwell and EPYC processor

only support AVX2. A dual-socket configuration for each

server has been tested, with two identical processors of each

kind.

The GPUs have different memory types, gaming cards have

GDDR5 whereas the scientific card Tesla V100 is equipped

with High Bandwidth Memory (HBM2). The 10-series gaming

cards implement the NVIDIA Pascal architecture, the scientific

card implements the Volta architecture, and the RTX 2080 Ti
implements the more recent Turing architecture. The CUDA

6Search by triplet SPMD is available under https://gitlab.cern.ch/dcampora/
search by triplet spmd, tag v1.0.

7At the time of writing, ISPC supports as targets: x86 with SSE2, x86-64,
ARM and NVIDIA PTX.

8The following vector extensions were tested: SSE2, SSE4, AVX, AVX2,
AVX512 (Skylake).

compute capability of either of the cards is enough to support

our implementation of Search by triplet. The memory of the

cards impacts the amount of streams and events that can be

executed concurrently.

Feature Intel Xeon Intel Xeon AMD
Broadwell E5-2630 Silver 4114 EPYC 7301

# cores 20 20 16
Max freq. 3.1 GHz 3.0 GHz 2.7 GHz
Cache (L3) 25 MB 13.75 MiB 64 MiB
DRAM 64 GiB 64 GiB 64 GiB
SIMD AVX2 AVX512 AVX2
capability
MSRP 667 $ 694 $ 948 $

Table I: CPU hardware used for our tests. We compare a

Broadwell processor (Intel Xeon E5-2630), a Skylake proces-

sor (Intel Xeon Silver 4114) and an AMD processor.

Feature Geforce Geforce Geforce Tesla
GTX 1060 GTX 1080 Ti RTX 2080 Ti V100

# cores 1280 3584 4352 5120
(CUDA) (CUDA) (CUDA) (CUDA)

Max freq. 1.81 GHz 1.67 GHz 1.545 GHz 1.37 GHz
Cache (L2) 1.5 MiB 2.75 MiB 6 MiB 6 MiB
DRAM 5.94 GiB 10.92 GiB 10.92 GiB 32 GiB

GDDR5 GDDR5 GDDR5 HBM2
CUDA 6.1 6.1 7.5 7.0
capability
MSRP 249 $ 699 $ 1199 $ 8899 $

Table II: GPU hardware used for our tests. We compare a

mid-class gaming graphics card (Geforce GTX 1060), two

high-end gaming graphics card (Geforce GTX 1080 Ti and

Geforce RTX 2080 Ti) and a scientific card (Tesla V100).

We employ a validation method based on well-established

metrics for our algorithm (cref. section II). We obtain a

deterministic result across all devices. The use of Monte Carlo

data for validation is the standard for validating reconstruction

algorithms. The presented results have been validated to pro-

duce acceptable physics performance.

We run a configurable number of events s for a number

of repetitions r. In each repetition, event data submission

and retrieval are performed. The amount of streams t is also

configurable. We measure the performance of our sequence by

using external counters. We obtain the wall clock execution

time, and factor in the number of events that have been

processed. Our framework presents the performance of a run

as the number of events executed per unit of time, measured

as frequency (Hz).

Search by triplet presents several free parameters that alter

the computing performance. Each of the discussed algorithms

are encapsulated in one CUDA kernel, and can be tweaked

with respect to the number of blocks and number of threads

on each invocation. We have identified, by using local search,

the parameter values that provide best performance for the

entire sequence, and the resulting configuration is shown

in table III. Even though individual kernels may be faster

under other configurations, these values empirically showed



the best performance-to-resource-usage ratio, resulting in a

more efficient CUDA scheduler resource assignment. We have

found this configuration to provide best performance across all

tested devices.

Kernel # blocks # threads
sort by phi # events in execution 64
find candidate windows {# events in execution, 128

# Velo middle modules}
track seeding and # events in execution 32
track forwarding
weak track filter # events in execution 256

Table III: Best configuration found in local search for each

CUDA kernel. We have optimized our configurations min-

imizing the overall wall clock execution time. Individual

algorithms may get faster with different configurations, but the

effect on the overall performance is also impacted by resource

usage, since other concurrent streams may be blocked.

The configuration of Search by triplet SPMD has also been

tweaked for each of the CPUs under consideration. A mask

of 32 bits was found to yield the best performance for all

processors. This is to be expected, as the ISPC guidelines state

the mask should have a length of the most used datatypes,

which are 32-bit types in our algorithm. The gang size and

vector extension has also been tested, and table IV depicts

the optimal configurations found for each processor. In the

AMD processor, the preferred vector extension and gang size

were AVX1 and four, in contrast with the Intel Broadwell

processor, which could be due to the differing number of ports

and functional units available on both processors.

Processor Vector extension Mask size Gang size
Intel Xeon AVX2 32 8
Broadwell E5-2630
Intel Xeon AVX512 32 16
Silver 4114
AMD AVX1 32 4
EPYC 7301

Table IV: Best configuration for Search by triplet SPMD for

each processor. Both Intel processors benefit from their latest

available instruction set. The AMD processor benefits from an

AVX1 configuration with a gang size of 4, despite supporting

AVX2. This could be due to particularities involving the

number of ports and functional units of the processor.

The peak performance configuration achieved with every

processor is compared in Figure 5. The AMD EPYC processor

underperforms when compared to its other CPU competitors.

The AVX512 vector extensions in the Skylake processor show

a discrete 6% performance speedup over the AVX2 Broadwell

processor. Even though our CPU solution is vectorized and

utilizes all available threads, all of the tested high-end and

scientific GPUs outperform the CPUs in consideration.
The mid-class Geforce GTX 1060 yields a similar per-

formance to the Intel processors under analysis. The pro-

jected speedup between the Geforce GTX 1060 and the

Figure 5: Speedup between the three CPU and the four GPUs

under consideration. For each CPU, the performance of a dual-

socket server, with the Search by triplet SPMD algorithm with

their best ISPC configuration is shown. For each GPU, the

performance of Search by triplet within the GPU sequence

framework with their best parameter configuration is shown.

CPUs underperform compared to GPUs. The performance

scales to higher-end GPU devices.

Geforce GTX 1080 Ti according to their number of cores and

maximum frequency is 2.58×, even though this does not take

into consideration cache size or base frequency. We observe

a speedup of 2.41×, showing our algorithm scales to higher-

end architectures. We attribute the difference in performance

across the two high-end gaming cards Geforce GTX 1080 Ti

and Geforce RTX 2080 Ti to be a combined effect of both

the increase in CUDA cores and in L2 cache, since we

observe a 1.93× speedup between them. The scientific card

tops our speedup chart showing only a 9% speedup over the

Geforce RTX 2080 Ti, despite being an older architecture.

When factoring in the MSRP of the devices under considera-

tion, the mid-class Geforce GTX 1060 becomes the graphics

card that delivers the best price-performance ratio. The scien-

tific card Tesla V100 delivers a worse price-performance than

the gaming cards, due to its high MSRP.

In order to understand the impact of our work in the field,

we can compare the performance obtained with the current

LHCb baseline implementation [22]. Our SPMD implemen-

tation presents a speedup of 1.46× over the LHCb base-

line, under the same hardware configuration of a dual-socket

Intel Xeon Broadwell E5-2630. The Geforce RTX 2080 Ti

presents a speedup of 6.23×, and the Tesla V100 a speedup

of 6.77× when compared to the baseline results. We ac-

knowledge the physics quality of the results are not identical

between the baseline and our implementation, and that the



LHCb codebase is in active development and its performance

has improved since. Nevertheless, we attribute the presented

speedup to the combined impact of data structures, locality

and vectorization of our algorithm design.

Figure 6 shows a breakdown of the contribution of each

algorithm to the overall timing of the Velo track reconstruction.

We observe our sequence is dominated by track seeding and

track forwarding, as was to be expected from the computa-

tional complexity analysis. The weak track filter time fraction

is negligible, since it operates in a small subset of leftover

3-hit tracks.

Figure 6: The contribution of each algorithm to the timing of

the sequence is shown. Track seeding and track forwarding

compose a single kernel and are therefore shown together.

The track reconstruction sequence is dominated by track

seeding and track forwarding, as would be expected from the

complexity analysis.

A. GPU sequence results

A percentual comparison of profiled sequence execution and

memory transmission data is shown in Figure 7. The sequence

execution dominates the time distribution of the GPU. Given

that we have created an effective asynchronous pipeline,

memory submissions and memory retrievals are hidden behind

the execution time of our sequence.

Figure 8 depicts two parameter scans for number of events s
and number of streams t, respectively. A configuration of

s = 4096, t = 3 turns out to be effective on all tested

hardware. The Geforce GTX 1060 only requires two streams

to achieve an effective pipeline. We attribute this to the lower

amount of streaming multiprocessors on that device, which

permits achieving a high occupancy with one stream, hiding

the transmissions on the other concurrent stream. A higher

number of streams does not increase the throughput. This

fact, together with the scaled performance to high-end devices,

indicate our software is compute bound.

VII. CONCLUSION

We have presented Search by triplet, a new algorithm to

efficiently perform track reconstruction on parallel architec-

tures. Our algorithm takes inspiration from track forwarding

Figure 7: Pipeline of Velo tracking sequence in the GPU

sequence framework. The timings of the pipeline were ob-

tained by the nvprof command in a full sequence execution.

The pipeline is dominated by code execution by a 78.20%

margin. The transmissions will be hidden if enough streams

are running asynchronously.

techniques. We have designed our algorithm removing RAW

dependencies and revisiting detector modules in subsequent

steps to maximize temporal and spatial locality. We have

discussed worst-case complexity for each of its constituent

parts. We have developed our algorithm in CUDA and we have

optimized the launch parameter configurations. The algorithm

has been validated against Monte Carlo simulated data.

We have presented Search by triplet SPMD, an SPMD

realization of our algorithm geared towards parallel SIMD

processors. We have carried over the design of our algorithm

to CPUs, and we have optimized our compilation options for

each of the processors under consideration.

We have compared the performance of our algorithm across

a variety of parallel architectures. Our algorithm benefits

from larger vector widths on Intel processors, and scales

to high-end GPU architectures. The algorithm performs the

Velo track reconstruction with a throughput of 57.36 kHz

(AMD EPYC 7301) through 74.17 kHz (Intel Xeon Sil-

ver 4114) on CPUs, and 71.75 kHz (Geforce GTX 1060)

through 326 kHz (Tesla V100) on the GPUs under consid-

eration.

We have assessed the impact of our algorithm design

decisions by comparing the performance of our SPMD imple-

mentation with the LHCb baseline implementation. We obtain

a 1.46× speedup with respect to the baseline implementation

running on the same hardware. We acknowledge this codebase

is in active development, and a dedicated study comparing

track reconstruction approaches should be pursued.

We have also presented a new framework to perform

physics reconstruction on many-core architectures GPU se-
quence framework. We have encapsulated our software into

this framework. We have performed a parameter scan over the

configurable number of events and streams of our application.

An effective pipeline has been created under all studied devices



(a)

(b)

Figure 8: Two parameter scans are shown for the GPU

sequence framework application. (a) The number of events

parameter is scanned for all devices under consideration. The

configuration used throughout all measurements is t = 3 and

r = 200. Performance caps with 1024 events for Geforce cards

and 2048 events for the Tesla card. (b) A scan of the number of

streams is depicted, with configuration s = 4096 and r = 200.

The Geforce GTX 1060 requires only 2 streams to achieve an

effective pipeline, in contrast with the 3 streams required by

the other cards. The memory capacity of each device limits the

maximum number of concurrent streams under the tested con-

figuration. The peak performances for the Geforce GTX 1060,

Geforce GTX 1080 Ti, Geforce RTX 2080 Ti and Tesla V100

are 71.75, 155.33, 299.94 and 326.26 kHz respectively.

that hides transmission times. We have profiled the algorithms

that conform our Velo reconstruction implementation, and

we have identified the main time consumers. Our framework

employs a custom memory manager to allocate and free

memory segments as required in an asynchronous manner.

Our track reconstruction algorithm is an indication that

other LHCb subdetectors may be amenable to be reconstructed

efficiently on many-core architectures. We have shown a trans-

lation of our GPU algorithm performs adequately on CPUs,

while maintaining the same SIMD-oriented design choices. We

will study the applicability of our design to other subdetector-

specific geometries and conditions.

Our framework can be extended with additional reconstruc-

tion algorithms. We intend to do a detailed cost-analysis of our

application for the upcoming LHCb upgrade. The performance

of our application will be a determining factor to adopt GPUs

in LHCb’s trigger server farm.
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