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1Research Group on Natural Computing
Dept. of Computer Science and Artificial Intelligence

Universidad de Sevilla, Av. Reina Mercedes s/n, 41012, Sevilla, Spain
E-mail: {dorellana, lvalencia, ariscosn, marper}@us.es

Abstract. Complexity class DP is the class of “differences” of any two languages in
NP. It verifies that NP∪ co-NP ⊆ DP ⊆ PNP, where PNP is the second level of the
polynomial hierarchy, specifically, it is the class of languages decidable by a deterministic
polynomial-time Turing machine having access to an NP oracle. The unique sastifiability
problem (UNIQUE SAT) is a well known DP problem which has been proved to be co-NP-
hard. In this paper, a uniform and polynomial time solution for the UNIQUE SAT problem
is given by a family of polarizationless P systems with active membranes and division rules
only for elementary membranes, without dissolution rules but using minimal cooperation and
minimal production in object evolution rules.
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1. Preliminaries
An alphabet Γ is a non-empty set and their elements are called symbols. A string u over Γ is

an ordered finite sequence of symbols, that is, a mapping from a natural number n ∈ N onto Γ.
The number n is called the length of the string u and it is denoted by |u|. The empty string (with
length 0) is denoted by λ. The set of all strings over an alphabet Γ is denoted by Γ∗. A language
over Γ is a subset of Γ∗.

A multiset over an alphabet Γ is an ordered pair (Γ, f) where f is a mapping from Γ onto the
set of natural numbers N. The support of a multiset m = (Γ, f) is defined as supp(m) = {x ∈
Γ | f(x) > 0}. A multiset is finite (respectively, empty) if its support is a finite (respectively,
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empty) set. We denote by ∅ the empty multiset. Let m1 = (Γ, f1), m2 = (Γ, f2) be multisets
over Γ, then the union of m1 and m2, denoted by m1 +m2, is the multiset (Γ, g), where g(x) =
f1(x) + f2(x) for each x ∈ Γ.

1.1. Decision problems and languages
Roughly speaking, a decision problem X is one whose solution/answer is either “yes” or

“no”. This can be formally defined by an ordered pair (IX , θX), where IX is a language over a
finite alphabet ΣX and θX is a total Boolean function over IX . The elements of IX are called
instances of the problem X . Each decision problem X has associated a language LX over the
alphabet ΣX as follows: LX = {u ∈ ΣX | θX(u) = 1}, that is, LX is the set of inputs for
which the answer is affirmative. Conversely, every language L over an alphabet Σ has associated
a decision problem XL = (IXL

, θXL
) as follows: IXL

= Σ∗ and θXL
(u) = 1 if and only if

u ∈ L. Then, given a decision problem X we have XLX
= X , and given a language L over an

alphabet Σ we have LXL
= L.

The complement problem X of a decision problem X = (IX , θX) is the decision problem
(IX ,¬θX), that is for each instance the answer of X is “yes” if and only if the answer of X is
“no”.

1.2. The Cantor pairing function
The Cantor pairing function encode pairs of natural numbers by single natural numbers and

it is defined as follows: for each n, p ∈ N

〈n, p〉 =
(n+ p)(n+ p+ 1)

2
+ n

The Cantor pairing function is a primitive recursive bijective function from N×N onto N. Then,
for each t ∈ N there exist unique natural numbers n, p ∈ N such that t = 〈n, p〉.

2. Minimal cooperation and minimal production in polariza-
tionless P system with active membranes

Membrane Computing is an emergent branch of Natural Computing providing distributed
parallel non deterministic computing models whose computational devices are called membrane
systems, containing processing units called compartments. This computing paradigm is inspired
by some basic biological features, by the structure and functioning of the living cells, as well as
from the cooperation of cells in tissues, organs, and organisms. There exist basically two ways to
consider computational devices: cell-like membrane systems and tissue-like membrane systems.
The first one, using the biological membranes arranged hierarchically, inspired from the structure
of the cell, and the second one using the biological membranes placed in the nodes of a graph,
inspired from the cell inter-communication in tissues. We refer the interested reader to [9,11] for
more details of these models.

P systems with active membranes were first introduced by Gh. Păun [10], introducing electri-
cal charges (polarizations) associated to membranes, but the rules are non-cooperative and there
are no priorities. Nevertheless, the class of all problems solvable in a uniform way in polynomial
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time by means of families of P systems with active membranes which use division for elementary
and non-elementary membranes coincides with PSPACE [13]. Consequently, the usual frame-
work of P systems with active membranes for solving decision problems is too powerful from
the computational complexity point of view.

Polarizationless P systems with active membranes were initially studied in [1, 2]. However,
this initial approach proposed to replace polarizations by a somehow equivalent or even more
powerful ingredient: the ability to change the label of the membranes.

Throughout this paper, P systems with active membranes but no electrical charges nor mem-
brane relabelling are considered. When dissolution rules are forbidden in this framework, only
problems in class P can be solved in an efficient way [5]. In order to get the presumable efficiency
(ability to solve NP-complete problems in a uniform way in polynomial time) of these systems,
minimal cooperation and minimal production in object evolution rules are allowed.

Definition 1. A polarizationless P system with active membranes, without dissolution, with di-
vision rules for elementary membranes and making use of minimal cooperation and minimal pro-
duction in object evolution rules of degree q ≥ 1, is a tuple Π = (Γ, H, µ,M1, . . . ,Mq,R, iout),
where:

• Γ is a finite alphabet whose elements are called objects.

• H is a finite alphabet such that H ∩ Γ = ∅ whose elements are called labels.

• µ is a labelled rooted tree (called membrane structure) consisting of q nodes injectively
labelled by elements of H (the root of µ is labelled by rµ).

• M1, . . . ,Mq are multisets over Γ.

• R is a finite set of rules, of the following forms:

? [ a → c ]h or [ a b → c ]h , where h ∈ H , a, b, c ∈ Γ (object evolution rules).

? a [ ]h → [ b ]h, where h ∈ H \ {rµ}, a, b ∈ Γ (send–in communication rules).

? [ a ]h → b [ ]h, where h ∈ H , a, b ∈ Γ (send–out communication rules).

? [ a ]h → [ b ]h [ c ]h, where h ∈ H \ {iout, rµ}, a, b, c ∈ Γ and h is the label of an
elementary membrane µ (division rules for elementary membranes).

– iout ∈ H ∪ {env}, where env is the label of the environment (if iout ∈ H then iout is the
label of a leaf of µ).

The semantics of this kind of P systems follows the usual principles of P systems with ac-
tive membranes [10]. We denote by DAM0(mcmp,+c,−d,−n) the class of all recognizer
polarizationless P system with active membranes, without dissolution, with division rules for el-
ementary membranes and which makes use of minimal cooperation and minimal production in
objects evolution rules,

Recognizer membrane systems were introduced in [12] and they provide a natural framework
to solve decision problems. This kind of systems are characterized by the following features:

– the working alphabet Γ has two distinguished objects yes and no;
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– there exists an input alphabet Σ strictly contained in Γ;

– there exists an input compartment labelled by iin ∈ H;

– iout = env, that is, the output “zone” is the enviroment;

– the initial contents of the compartments are multisets over Γ \ Σ;

– for each multisetm over Σ the initial configuration of Π with input multisetm isM1, . . . ,Miin+
m, . . . ,Mq , that is, the input multisetm is added to the contents of the input compartment;

– all computations of the system Π + m halt, where Π + m denotes the membrane system
Π with input multiset m; and

– for each computation of Π + m, either object yes or object no (but not both) must have
been released into the environment, and only at the last step of the computation.

3. The complexity class DP

The class DP was introduced by C.H. Papadimitriou and M. Yannakis in 1982 [6], as the
class of “differences” of any two decision problems in NP. Roughly speaking, class DP tries to
capture the complexity of problems that most likely can not be decided by any non-deterministic
Turing machine working in polynomial time.

Formally, a language L is in the class DP if and only if there are two languages L1 and L2

such that L1, L2 ∈ NP and L = L1 \ L2. Equivalently, a language L is in the class DP if and
only if there are two languages L1 and L2 such that L1 ∈ NP, L2 ∈ co-NP, and L = L1 ∩ L2.
It is easy to proof that NP∪ co-NP ⊆ DP. The class DP can defined in terms of decision
problems as follows: a decision problem X is in class DP if and only if there are two decision
problems X1 = (IX1

, θX1
) and X2 = (IX2

, θX2
) such that X1 ∈ NP, X2 ∈ co-NP, and

LX = LX1 ∩ LX2 .

UNIQUE SAT is the problem of deciding whether a Boolean formula given in conjunctive
normal form has exactly one satisfying truth assignment. This problem is in class DP because
UNIQUE SAT= SAT ∩X , being X the co-NP problem of deciding whether a Boolean formula
given in conjunctive normal form has not two different satisfying truth assignment. UNIQUE
SAT is a co-NP hard problem [3]. Indeed, let us recall that UNSAT is the problem of deciding
whether a given a Boolean formula in conjunctive normal form is unsatisfiable. It is well known
that UNSAT is a co-NP-complete problem. The function f from the set of instances of UNSAT
to the set of instances of UNSAT defined by

f(ϕ(x1, . . . , xn)) = [ϕ(x1, . . . , xn) ∧ z] ∨ [(¬z) ∧ x1 ∧ · · · ∧ xn]

being z a propositional variable not in the set {x1, . . . , xn}, is a polynomial-time reduction from
UNSAT to UNIQUE SAT. Then, UNIQUE SAT is a co-NP hard problem but it is unknown what
is its precise complexity. However, UNIQUE SAT is a DP-complete problem under randomized
polynomial-time reductions (see [16] for details).
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4. A solution to UNIQUE-SAT by membrane systems
In this section a uniform polynomial-time solution to the UNIQUE SAT problem is pro-

vided by means of a family of recognizer polarizationless P systems with active membranes,
without dissolution rules, with minimal cooperation and minimal production in objects evolu-
tion rules which use only division for elementary membranes, that is, by a family of systems
DAM0(mcmp,+c,−d,−n). For that purpose, the solution to the SAT problem given in [14]
and to the #SAT given in [15] are adapted, basically, in what concerns to the output stage.

The family Π = {Π(t) | t ∈ N} is defined in such a manner that a system Π(t) will process
any Boolean formula ϕ in conjunctive normal form (CNF) with n variables and p clauses (so
that t = 〈n, p〉) provided that the appropriate input multiset cod(ϕ) is supplied to the system
(through the corresponding input membrane). Then, system Π(t) will answer how many truth
assignments make true the input formula ϕ.

Thus, for each n, p ∈ N, we consider the recognizer P system

Π(〈n, p〉) = (Γ,Σ, H, µ,M1,M2,R, iin)

from DAM0(mcmp,+c,−d,−n), defined as follows:

– Working alphabet

Γ = Σ ∪ {β , \ , yes , yes′ , no , γ0} ∪ {αi | 0 ≤ i ≤ n+ 2p+ 1}∪
{δi | 0 ≤ i ≤ n+ 2p+ 3} ∪ {ai,j | 0 ≤ i ≤ n− 1, 0 ≤ j ≤ i}∪
{bi,k | 1 ≤ i ≤ n, 1 ≤ k ≤ i} ∪ {cj | 1 ≤ j ≤ p} ∪ {dj | 2 ≤ j ≤ p}∪
{ti,k, fi,k | 1 ≤ i ≤ n, i ≤ k ≤ n+ p− 1}∪
{Ti,k, Fi,k | 1 ≤ i ≤ n, 0 ≤ k ≤ n− 1} ∪ {Ti, Fi | 1 ≤ i ≤ n}∪
{xi,j,k, xi,j,k, x∗i,j,k | 1 ≤ i ≤ n, 1 ≤ j ≤ p, 0 ≤ k ≤ n+ p}.

– Input alphabet Σ = {xi,j,0, xi,j,0, x∗i,j,0 | 1 ≤ i ≤ n, 1 ≤ j ≤ p}.

– H = {1, 2}.

– Membrane structure: µ = [ [ ]2 ]1, that is, µ = (V,E) where V = {1, 2} and E =
{(1, 2)}.

– Initial multisets:M1 = {α0, δ0},M2 = {β, bi,1, T pi,0, F
p
i,0 | 1 ≤ i ≤ n }.

– The set of rulesR consists of the following rules:

R.1 Rules for a general counter.

[ αk −→ αk+1 ]1 for 0 ≤ k ≤ n+ 2p

[ δk −→ δk+1 ]1 for 0 ≤ k ≤ n+ 2p+ 2

R.2 Rules to generate all truth assignments.
[ bi,i ]2 −→ [ ti,i ]2 [ fi,i ]2 , for 1 ≤ i ≤ n
[bi,k −→ bi,k+1 ]2 , for 2 ≤ i ≤ n, 1 ≤ k ≤ i− 1
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R.3 Rules to generate suitable objects in order to start the next stage.
[ti,k −→ ti,k+1 ]2
[fi,k −→ fi,k+1 ]2

}
1 ≤ i ≤ n− 1, i ≤ k ≤ n− 1

[Ti,k −→ Ti,k+1 ]2
[Fi,k −→ Fi,k+1 ]2

}
1 ≤ i ≤ n, 0 ≤ k ≤ n− 2

[Ti,n−1 −→ Ti ]2
[Fi,n−1 −→ Fi ]2

}
1 ≤ i ≤ n

R.4 Rules to produce exactly p copies of each truth assignment.
[ti,k Fi −→ ti,k+1 ]2
[fi,k Ti −→ fi,k+1 ]2

}
1 ≤ i ≤ n, n ≤ k ≤ n+ p− 2

[ti,n+p−1 Fi −→ \ ]2
[fi,n+p−1 Ti −→ \ ]2

}
1 ≤ i ≤ n

R.5 Rules to prepare the input formula for check clauses:
[ xi,j,k −→ xi,j,k+1 ]2
[ xi,j,k −→ xi,j,k+1 ]2
[ x∗i,j,k −→ x∗i,j,k+1 ]2

 1 ≤ i ≤ n, 1 ≤ j ≤ p, 0 ≤ k ≤ n+ p− 1

R.6 Rules for the first checking stage.
[Ti xi,j,n+p −→ cj ]2
[Ti xi,j,n+p −→ \ ]2
[Ti x

∗
i,j,n+p −→ \ ]2

[Fi xi,j,n+p −→ \ ]2
[Fi xi,j,n+p −→ cj ]2
[Fi x

∗
i,j,n+p −→ \ ]2


1 ≤ i ≤ n, 1 ≤ j ≤ p

R.7 Rules for the second checking stage.
[c1 c2 −→ d2 ]2

[dj cj+1 −→ dj+1 ]2 , for 2 ≤ j ≤ p− 1

R.8 Rules to prepare objects in the skin membrane.

[ β dp −→ γ0 ]2

[ γ0 ]2 −→ γ0 [ ]2 , for 0 ≤ i ≤ n− 1

R.9 Rules to produce the output.

[ αn+2p+1 γ0 −→ yes′ ]1

[ yes′ γ0 −→ no ]1

[ δn+2p+3 yes
′ −→ yes ]1

[ αn+2p+1 δn+2p+3 −→ no ]1

[ yes ]1 −→ yes [ ]1

[ no ]1 −→ no [ ]1

– The input membrane is the membrane labelled by 2 (iin = 2) and the output region is the
environment.
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4.1. An overview of the computation
It is easy to check that for each pair of natural numbers n, p, the system Π(〈n, p〉), previously

defined, is deterministic.
We consider the polynomial encoding (cod, s) from UNIQUE SAT in Π defined as follows:

let ϕ be a Boolean formula in conjunctive normal form. Let V ar(ϕ) = {x1, . . . , xn} be the
set of propositional variables and {C1, . . . , Cp} the set of clauses of ϕ. Let us assume that the
number of variables and the number of clauses of the input formula ϕ, are greater than or equal
to 2. Then, we define s(ϕ) = 〈n, p〉 and

cod(ϕ) = {xi,j,0 | xi ∈ Cj} ∪ {xi,j,0 | ¬xi ∈ Cj} ∪ {x∗i,j,0 | xi /∈ Cj ,¬xi /∈ Cj}

Notice that we can represent this multiset as a matrix, in such a way that the j-th row (1 ≤ j ≤ p)
encodes the j-th clause Cj of ϕ, and the columns (1 ≤ i ≤ n) are associated with variables. We
denote by codk(ϕ) the multiset cod(ϕ) with the third index of all objects x, x, x∗ being k.

The Boolean formula ϕ will be processed by the system Π(s(ϕ)) with input multiset cod(ϕ).
Next, we informally describe how that system works.

The solution proposed consists of the following stages:

• Generation stage: by applying division rules from R.2, all truth assignments for the vari-
ables {x1, . . . , xn} associated withϕ are produced. This stage takes exactly n computation
steps and at the i-th step, 1 ≤ i ≤ n, of this stage, division rule is triggered by an object bi,i
over each membrane labelled by 2, producing two new membranes with all its remaining
contents replicated in the new membranes labelled by 2. Simultaneously to these divisions,
objects ti,k, fi,k, Ti,k, Fi,k (by applying rules from R.3) and objects xi,j,k, xi,j,k, x∗i,j,k
(by applying rules from R.5) evolve during this stage in such a manner that at configura-
tion Cn the following holds:

(a) There is a membrane labelled by 1 which contains n copies of object αn.

(b) There are 2n membranes labelled by 2 such that each of them contains: a copy of
object β, the set codn(ϕ), the multiset {T pi , F

p
i | 1 ≤ i ≤ n}; and a different subset

{r1,n, . . . , rn,n}, being r ∈ {t, f}.

• Production of enough copies for each truth assignment: in this stage p copies (p is
the number of clauses of ϕ) of each truth assignment are produced, in order to allow the
checking of the literal associated with each variable in each clause. By using minimal
cooperation and minimal production (applying rules from R.4), objects ti,k (respectively,
objects fi,k) are used to remove all copies of Fi (respectively, Ti). This stage takes exactly
p steps, and at configuration Cn+p the following holds:

(a) The root membrane (labelled by 1) contains n copies of object αn+p.

(b) There are 2n membranes labelled by 2 such that each of them contains: a copy of
object β, n copies of the garbage object \, the set codn+p(ϕ), and a different multiset
{Rp1, . . . , Rpn}, being R ∈ {T, F}.

• First Checking stage: by applying rules from R.6, we check whether or not each clause
of the input formula ϕ is satisfied by the truth assignments generated in the previous stage,
encoded by each membrane labelled by 2. This stage takes exactly one computation step,
and at configuration Cn+p+1:
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(a) The root membrane (labelled by 1) contains n copies of object αn+p+1.

(b) There are 2n membranes labelled by 2 such that each of them contains: a copy of
object β, many copies of the garbage object \ (which they will not evolve in the rest
of the computation), and copies of objects cj whose presence means that clause Cj
is true for the truth assignment encoded by that membrane.

• Second Checking stage: by applying rules from R.7, we check whether or not all clauses
of the input formula ϕ are satisfied by some truth assignment encoded by a membrane
labelled by 2. This stage takes exactly p−1 steps and at configuration Cn+2p the following
holds:

(a) The root membrane (labelled by 1) contains n copies of object αn+2p.

(b) There are 2n membranes labelled by 2 such that each of them contains: a copy of
object β, many copies of the garbage object \ (which they will not evolve in the rest
of the computation), and copies of objects dj and cj , in such manner that the truth
assignment encoded by such membrane makes true ϕ if and only if contains some
object dp.

• Output stage.

Affirmative answer. If there exists exactly one input assignment that makes true the in-
put formula, at configuration Cn+2p+1 there will be exactly one object γ0 at the skin
membrane. Then, by applying the first rule from R.9, an object yes′ will be produced,
while δn+2p+1 evolves into δn+2p+2. In the next step, only object δn+2p+2 can evolve
into δn+2p+3, since there are no objects that can interact with object yes′. Finally, rule
[ δn+2p+3 yes

′ −→ yes ]1 will be fired, and will produce an object yes in the skin mem-
brane, and it will be released to the environment in the last step of the computation. It takes
4 computation steps.

Negative answer. There are two possibilities:

? Case 1: No truth assignment exists making the input formula true. In this case, object
γ0 will not appear in the skin membrane at configuration Cn+2p+1. Then, in the next
two steps, object δn+2p+1 will change to δn+2p+2 and δn+2p+3. These two objects
will interact by means of the rule [ αn+2p+1 δn+2p+3 −→ no ]1, and object no just
created will be sent out to the environment and the system will halt, taking 4 steps of
computation.

? Case 2: More than one truth assignment make this formula true. In this case, more
than one object γ0 will appear in the membrane labelled by 1 at configuration Cn+2p+1.
As in the affirmative answer case, objectsαn+2p+1 and γ0, selected non-deterministically
from the existent ones, will create an object yes′. Besides this, object δn+2p+1

evolves into δn+2p+2. But in the next step, by the presence of another object γ0,
rule [ yes′ γ0 −→ no ]1 will be fired, and will produce an object no. This object
will not interact with the recently evolved object δn+2p+3, that will be released into
the environment in the last step on the computation, and then the system halts. This
case takes 3 steps.
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5. Main result
In this section, the most important result of this work is presented; that is: the family of

polarizationless P systems from DAM0(mcmp,+c,−d,−n), designed in the previous section,
solves the UNIQUE SAT problem in a uniform way in polynomial time.

Theorem 1. UNIQUE SAT ∈ PMCDAM0(mcmp,+c,−d,−n).

Proof. The family Π = {Π(t) | t ∈ N} defined in the previous section verifies the following:

(a) Every system Π(t) of the family Π belongs to DAM0(mcmp,+c,−d,−n).

(b) The family Π is polynomially uniform by Turing machines because for each n, p ∈ N, the
amount of resources needed to build the system Π(〈n, p〉) is of a polynomial order in n
and p. Indeed,

– The size of the alphabet is of the order O(n2 · p2).

– The initial number of membranes is 2 ∈ Θ(1).

– The initial number of objects in membranes is 2np+ 2n+ 1 ∈ Θ(n · p).

– The number of rules is of the order O(n2 · p2).

– The maximal number of objects involved in any rule is 3 ∈ Θ(1).

(c) The pair (cod, s) of polynomial-time computable functions defined fulfills the following:
for each input formula ϕ of the UNIQUE SAT problem, s(ϕ) is a natural number, cod(ϕ)
is an input multiset of the system Π(s(ϕ)), and for each t ∈ N, s−1(t) is a finite set.

(d) The family Π is polynomially bounded. Indeed, for each input formula ϕ of the UNIQUE
SAT problem, the number of computation steps of the system Π(s(ϕ)) + cod(ϕ) is the
following: (a) at most n + 2p + 4 in the case of the input formula has not or has exactly
one truth satisfying truth assignment; and (b) n + 2p + 3 in the case that there are more
than one truth assignments making true ϕ.

(e) The family Π is sound and complete with regard to (X, cod, s). This can be informally
deduced from the overview of the computations previously described.

Therefore, the family Π of P systems designed in the previous section solves the UNIQUE SAT
problem in a uniform way in polynomial time.

6. Conclusions
Polarizationless P systems with active membranes and no dissolution rules are non efficient

computing models, in the sense that only problems in class P can be solved in an efficient way
by these P systems. In this paper, a uniform and polynomial time solution to the UNIQUE SAT
problem is provided by means of a family of polarizationless P systems when minimal coopera-
tion (the length of the left-hand side of a rule is at most 2) and minimal production (the length of
the right-hand side of a rule is 1) are considered in object evolution rules.

US is the class of problems that have a unique solution for each instance. It is easy to prove
that UNIQUE SAT is complete for this complexity class [3]. A very interesting open problem



The Unique Satisfiability Problem 297

in the framework of computational complexity theory is to know if a problem from NP can be
reduced in polynomial time to UNIQUE SAT, demonstrating not only that NP is a subclass of
US, but that DP = US. Using the framework of Membrane Computing can be useful as we can
extract some ideas comparing the solutions developed for SAT (in [14]) and UNIQUE SAT (in
this work) in the same framework, that is, DAM0(mcmp,+c,−d,−n).
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[12] M. J. PÉREZ-JIMÉNEZ, Á. ROMERO-JIMÉNEZ, F. SANCHO-CAPARRINI, Complexity classes in
models of cellular computing with membranes, Natural Computing, 2(3), 265–285, 2003.
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