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1. Introduction

A facility is called semi-obnoxious, semi-desirable or push—pull (to use the expressive terminology introduced in [15])
when it gives a service to demand in its neighborhood but is also felt as obnoxious, potentially or outrightly noxious to the
environment, or needs to be protected from potential threats. For instance hospitals, airports, train stations, radio or wireless
stations and alarm sirens are examples of semi-obnoxious facilities, since they are useful and necessary for the community,
but are also a source of negative effects, such as noise or electromagnetic energy, and therefore considered as NIMBY (not
in my backyard) facilities.

Since the early work on modeling the optimal location in such situations as surveyed in general in [7] and in a discrete
setting in [20], the last decade has known many more publications around this difficult topic. The research presented in this
paper falls within this general framework but presents several distinctive features, as shortly described next, and more in
detail in the next section.

In our problem, a semi-obnoxious facility must be located in the plane with regards to two different sets. On the one hand,
we have the demand points served by the proximity of the facility that is therefore pulled towards them, so should be as
close as possible to all of them. On the other hand, a repelling region should be protected from the (ob)noxious effects coming
from the facility, or it is the facility that should be protected from possible threats out of this region. Therefore the facility
should be as far as possible from all points of the region. As usual the region is described as in a Geographical Information
System (GIS) as a union of polygons. So the demand points must lie well covered within a circle centered at the facility,
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Fig. 1. Two possible separating balls.

while the region should remain well outside this same circle. Both the push and pull objectives are thus considered to be
of Rawlsian nature [15] using Euclidean distances, yielding a new continuous covering location model of the kind reviewed
in [29].

The three last examples cited higher typically present such features. The quality of connection with a wireless station
sharply depends on the Euclidean distance to it, but is also considered as harmful when living too close by, so highly popu-
lated areas should be touched only at low level. Also if some countries neighboring a region form a possible threat of attack
to the facility or may be a source of spying by listening in to the emissions of the station, the facility should lie at some largest
possible Euclidean distance from it. Similarly an alarm siren should be well heard by the whole community, but should not
trouble too much the wildlife in the nature reserves around, while noise decays uniformly in all directions.

As far as we are aware no earlier work seems to have been published with all the same characteristics. The major differ-
ences with mainstream work in semi-obnoxious models are as follows.

e Our model is about location in a continuous space, contrary to many studies in a discrete or a network environment
[6,16,2,3].

e We use Euclidean distance, instead of other (less realistic) distance measures [23,18].

e At least the pull part of the objective is often considered of minsum type (Weber-like) see [14,9,31,34,19], whereas we
use minmax.

e The problem is usually seen as biobjective and the efficient set or a finite approximation of it [24,4,26,25] is sought, but
we seek one explicit solution.

e We consider repelling regions, as in [4], instead of repelling points (see [8,18,5,1,22,21]).

In the next section, we introduce a formulation of our problem using the popular quadratic margin maximization method
of Support Vector Machine in Machine Learning. This formulation enables the construction of an exact global optimal
solution, without resorting to the use of cumbersome global optimization methods that yield only approximations as in
[28,32,13,5]. The structural properties derived in Section 3 lead to a finite dominating set, the enumeration of which yields
a finite and polynomial method detailed in Section 4, that is tested on some artificial databases in Section 5.

2. The model
2.1. The basic aim

Consider G and G_, two groups of objects in the Euclidean plane, where G, is a finite set of points G, = {xq, ..., %;} C
R?, and G_ is a set of compact convex polygonal areas G_ = {S;,...,Syn} C R? (with n,m > 3). The points of G,
represent individual customers to be serviced by the facility, while the polygons represent areas to be protected from the
inconveniences of the semi-obnoxious facility to be located. The points of G are assumed not to be contained in any element
of G_. Also the polygons in G_ are assumed to have pairwise disjoint interiors. Note that this is not a restriction because any
(possibly disconnected) polygonal region can be decomposed into a finite set G_ which satisfies our assumptions.

Our aim is to locate a single semi-obnoxious facility, xo € R?, which is as near as possible to the points of G_. (attracting
elements) in order to receive a high-quality service, and far from the polygons of G_ (repelling elements).

As explained in the Introduction, all distances are measured in the Euclidean way. Therefore the location of the facility
will be decided through the construction of a ball B(xg, r), with x, € R? and r € R, such that every point of G, is deeply
contained in the ball and every polygon of G_ lies far outside the ball.

In Fig. 1, an example of the problem is depicted. The black points represent the attracting points of G, whereas the gray-
colored areas represent the repelling elements of G_. Our problem is to build a ball containing all the points well inside
while remaining well away from any polygon.
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Different solutions may exist separating the elements in G, and G_. For instance, in Fig. 1 two possible circles separating
the two groups have been depicted. In order to single out one ball, we follow the strategy that is successfully used in Support

Vector Machines, [10,33], and maximize a quadratic margin as defined in the next section. Following this strategy, the
smallest circle in Fig. 1 will be preferred.

2.2. The optimization problem

Given the elements of the two groups, G and G_, the following constraints are desirable,

X — x> <% Vx; € Gy, (1)
min ||xo — x||* > r* VSjeG_, (2)
XES;

where || - || is the Euclidean norm.

Constraints (1)-(2) are equivalent respectively to

= |lxo — xill> > 0 Vx; € G4 & min(? — [lxo — xi|*) > 0, 3)
xi€Gy

min(flxo — x[|> —=r*) > 0 VS; € G- < min min(|lxo — x]|* — r*) > 0. (4)

XES; SjeG_ XeS;

We propose to maximize the (quadratic) margin A, which is the minimum of the two positive amounts described in
(3)-(4). The optimization problem we have to solve is then

max A (5)
X0,T
where
_ . . 2 2 . . 2 2
A =min { min (" — ||xo — x;]|“), min min(||xo — x||“ — 1) ¢ . (6)
xieGy SjeG- X€Sj

This may be rewritten as

max A
XQ.T,A
st. A< min(? — ||xg — xi]%) (7)
Xi€Gy
A < min min(||xy — x||* — %)
SjeG- xes;
or equivalently,
max A
XQ.1,A
st. A<r?—|x—x]® Vx;eGy (8)
A<|xo—x|*—1* VxeS;, VSjeG_.
2 2
If we denote r3 = r?> — Aand r2 = r? + A, the objective function of Problem (8) changes into A = r*2r+, and the
problem can be reformulated as
2 2
max rZ-—r
X0, T4, — - +
s.t. lXo — xill <714 VX € Gy (9)
lXo —x|| > 71— Vx €S, VS; € G_
ry,r— > 0.
2, 124

and if needed one may recover r* as ——-, if A is positive.

Indeed, Problem (9) is in fact more general since it also encompasses situations with negative optimal value, that
correspond to the (frequent) situations of unfeasibility of previous constraints sets (1)-(2), (3)-(4), or those of problem (7).
This new formulation is never unfeasible, and indicates what should be considered as optimal (or rather least undesirable)
in these latter cases.

It will follow from Theorem 1 below that the optimal radii r and r_ are easily defined as a function of the center x,, and
Problem (9) can be reformulated further with an objective depending on x, only, as follows
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a b
Fig. 2. The two separating concentric balls with maximum margin. (a) Feasible case, (b) unfeasible case.
max  f(xo)
xg€R?

st f(x) = r(x) — r2(x)
I+ (Xo) = max [[xo — x|
x;jeGy

r_(xo) = min min ||xg — x||.
SjeG_ XeS;

(10)

Hence we may view our problem as obtaining two concentric balls B(xo, r;) and B(xg, r_), where the ball B(xq, r_) does
not contain strictly any points of the polygons of G_, the ball B(xy, r;) contains every point x; belonging to G, and the
difference between the squares of the first and second radius is as large as possible.

Incaser_ > ry,i.e. when the original problem is feasible, this geometrically means that the area of the annulus between
the two circles is as large as possible (see Fig. 2(a)), showing that our problem is somewhat related to the so-called largest
empty annulus problem [12]. (In that model, however, only a set of points is given and an annulus of maximal area without
such points in its interior is sought, and no regions are considered.)

In case r_ < ry, when the original problem is unfeasible, the area of the annulus should be as small as possible (see
Fig. 2(b)).

Note that the use of the squared radii in the objective seems particularly suited to the main kinds of applications
mentioned in the Introduction, since effects like noise and electro-magnetic energy decay quadratically with distance.

3. Necessary conditions for optimality

We now derive a number of necessary optimality conditions, based on the notion of active element as defined below. We
will write (xq, 14, r—) to either denote a finite feasible solution of Problem (9) or assume that r, = r (xg) and r— = r_(xo)
as defined in Problem (10).

A point x; from G, is an active point for the solution (xq, ry, r_) iff the distance from x; to the center x; is exactly r,, that
is, d(xo, X;) = |lxo — xi|| = r. Thus, the set of active points of G, denoted by A (xo), consists of the points lying on the
boundary of the ball B(xo, ).

In the same way, a polygon S; from G_ is an active polygon for (xo, ry, r_) iff the distance from S; to x is exactly r_, that
is, d(xo, Sj) = minxesj |lXo — x|| = r—. We denote by A_(xo) the set of active polygons from G_.

When X, is clear from the context, we will simply write A, and A_.

Showing that a feasible solution (xq, 1, r_) is not optimal may be done in two ways: either find another feasible solution
(xg, 1, ) with a better objective value or exhibit a direction of increase of f at xq.

Theorem 1. If (xo, 1y, ) is an optimal solution, there exists at least one active element in each group G, and G_, that is, the
sets A, and A_ are non-empty.

Proof. Suppose that A, is an empty set. Since (xo, 1y, r_) is a feasible solution of Problem (9), all the points of the group
G, must be (due to the emptiness of A ) contained strictly in the ball B(xq, ), that is, [|xo — X;|| < 4, Vx; € G,. Then, itis
sufficient to take

' =ry(xo) = max ||xg — xill,

L= 1) = max o — xil

which is strictly smaller than r, and we obtain (xo, 1’y , r_), a feasible solution improving strictly the value of the objective
function.
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x0'

Fig. 3. Proof of Theorem 2, casery <r_.

On the other hand, suppose that A_ is empty. Due to the feasibility of (xq, r;, r_), the distance from x, to every polygon
of G_ is strictly greater than r_, that is, d(xo, S;) > r—, VS; € G_. Thus, it is sufficient to consider

r’ =r_(X) = min d(xp, S}) = min min ||xo — x]|,
5j€G7 SJ'EC;7 XESJ'

which is strictly greater than r_, and the solution (xq, r,, r") strictly improves the objective function.
In both cases, we conclude that the initial solution (xq, ry, r—) cannot be optimal. O

Theorem 2. For any optimal solution (xg, r4, r_) one has

1. If rp. < r_, then there must exist at least two active polygons in G_.
2. If ry > r_, then there must exist at least two active points in G...

Proof. By Theorem 1 there exists at least one active point a in G, and one active polygon S in G_.

1. In case ry < r_, suppose S is the only polygon in A_. Let y be the projection of Xy on S, i.e. the point in S such that
d(xg, S) = minyes d(Xo, x) = d(Xo, y) and consider the direction p = xo — y. We will show that this vector p represents a
direction of improvement for the objective function.

If we move Xy an amount € > 0, small enough (for not finding any new active element), in the direction u =
obtain thatxy = xo + euandr. =r_ +e€.

The other radius r/. must be measured as the maximum distance from x; to the points belonging to A, (xo).

In case | < ry, because the new center is closer to all the points in A, (Xo), the radii /. and r” will have decreased and
increased respectively, and consequently the objective function will also have strictly improved.

Otherwise, the radius r, will be the distance from x; to the point a of A, (xo) that is now the furthest one (see Fig. 3).
Due to the triangle inequality on a, xo and x;, one has that r}, < r + ¢, and the value of the objective function is strictly
improved as soonasr, < r_, since

2 — rf > (r_+¢€)? — (ry + €)?

2 2 2 2
=1 —ry+2(_—ry)>12 =17

p
w
e WE

But also if . = r_ the points x, a and y cannot be collinear since this would mean that a = y, contrary to our general
assumption that no point of G belongs to an element of G_. Therefore x;, a and y are not collinear, so by the strict triangle
inequality we have r, < ry 4 ¢, and thus

r’f—r’+2 > (r_—i—e)z—(rj_i-e)2 =0=rf—ri.

2. When ry > r_, suppose there is only one active point a in A;.. Then, the vector p = a — X, will be shown to represent a
direction of improvement.
If xo is moved an amount € > 0, small enough for not having new active elements, in the direction u = H%II' we obtain
that r,. = ry — €. The radius r_ will be the minimum distance from Xy = Xo + €u to the polygons in A_(xo). If now
r’ > r_, that is the new center is further from all the polygon candidates to become active, the two radii r; and r’ have
improved and so also the objective function has. Any active polygon S for the center xo will also be the polygon closest
to the new center x;, since there are no new active polygons in G_. Let y be the projection of x, on S, i.e., the point of S
such that d(xg, S) = minyes d(Xo, x) = d(Xo, y). Now the objective function can be expressed as follows:

2 —r} = lxo —ylI* — llxo — all*.

Three different situations must be considered.
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Fig. 4. Proof of Theorem 2, case ry > r_: the distance to the polygon is measured in the vertex.

Fig. 5. Proof of Theorem 2, case ry > r_: the distance to the polygon is measured in the edge.

e If y is a vertex of the polygon S and xj is strictly contained in the normal cone of S in y (denoted by Ns(y)), that is, xo
satisfies (xo — y)'(y —s) > 0Vs € S, then, for ¢ > 0 small enough, x; will also be contained strictly in this normal
cone, and d(xg, S) = minyes d(xg, x) = d(xg, ¥) (see Fig. 4).

In that case, due to the triangle inequality, one has that r_ < r’ + € and consequently, r’ > r_ — ¢, and the value of
the objective function is improved in case ry > r_, because
=1t > (o =€) —(ry — )’

=r— ri +2e(ry —r_) > — ri. (11)

Forry = r_, we know that r_ < r_ + ¢, except for the case when x;, y and a are collinear. But this situation is not
possible for r;. = r_, because it would mean that a € S, which is not allowed by assumption. Therefore,

= > - —(rp—e)? =12 -1l (12)

e If the point y is not a vertex of S it lies on (the relative interior of) an edge of S and the value ¢ > 0 may be chosen
small enough so that the point z of S closest to the new center lies on the same edge of the polygon (see Fig. 5).
Using the definition of r_ and the triangle inequality on xo, z and x; we obtain

r_ =mind(x, X) <d(xp,2) <1 +e€.
Xxes

Thusr’ > r_ — e and we obtain again the same inequalities as in (11) showing that the objective function is improved
forry >r_.
In caser, = r_, we may again rule out xq, y and a collinear because it would meana = y € S, contrary to assumptions.
Therefore we obtain as above inequality (12), showing that the objective function is also improved.

e If y is a vertex of S and x, is on the boundary of the normal cone of S in y, then the projection of the new center x; on
S will be either the same vertex y or a point z on an adjacent edge of S, depending on the position of a. Hence, one of
the two arguments used previously applies to find a solution with a better value of the objective function. O
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x0' x0 z0 y0

Fig. 6. Proof of Theorem 4, second part.

Remark 3. It can be proved that, when points of G are allowed to lie in some polygon of G_, Theorem 2 still holds in case
of strict inequalities. However, when r;. = r_ one may only conclude existence of an optimal solution with two active
elements in G, and of a (possibly different) optimal solution with two active elements in G_.

Theorem 4. For any optimal solution (xq, r4, r—) the convex hulls CH(A) and CH(A-) of the two groups of active elements
intersect.

Proof. Assume contrarily that CH(A,) N CH(A_) = . Then a straight line h of equation p‘x = ¢ can be found which strictly
separates these two convex hulls. We may choose p as a unit vector and ¢ € R, such that the halfplane containing CH (A, )
is defined by {p‘x > c}. Consider the straight line g : {x = xo + Ap, A € R}. We now show that the objective function will
be improved by moving xy along this straight line a certain amount € > 0.

Denote by S an active polygon from A_(xo) which is the closest one to the new center x, = o + €p, and by a a point
from A (xo) which maximizes the distance from x;, to A (xo). Denote by a, the orthogonal projection of a on g. Let y be the
point of S such that d(xg, S) = minyes d(xo, x) = d(xg, y) and yy its orthogonal projection on the straight line g. With this
notation, the objective function can be expressed as follows:

2 2 2 2
rZ =11 =X = ylI° = lixo — al

= [Ix0 = yol* + llyo — ¥I* — llxo — aol* — llao — al®.
If we move xq to x; along the straight line g, to measure the new radius r’, three different situations must be analyzed.

e In case the point y is a vertex of the polygon and xg is strictly contained in the normal cone of S in y, then, for an amount
€ > 0 small enough, the new center x; will also be contained strictly in the normal cone, and the distance from x; to S
will continue being the distance from x; to the vertex y, that is, d(x;, S) = minyes d(xg, x) = d(xg, ¥).

Then, since p = -2=20- (gbserve that ay # yo, because g is orthogonal to the separating hyperplane and hence, ay and

Yo are also separauggd_ylgg‘/ the straight line h), the following calculation shows that the objective function improves,
2 =1 = |lxo + €p = yol* + Ivo — ¥II* — lIxo + €p — aolI> — llao — all?
= lIxo = Yol + 2€(xo — ¥0)'p + Yo — Y1 = llxo — aol|> — 2€(xo — a0)'p — llao — al?
=12 —r2 +2e(ao —yo)tM
llao — yoll

=12 =12 +2¢llag — yol > 12 — 3.
e If the point y is not a vertex of S it lies on (the relative interior of) an edge of S and the value € > 0 may be chosen small
enough so that the point z of S closest to the new center x; lies on the same edge of this polygon. (See Fig. 6.)

Consider the orthogonal projection zy of z on the straight line g. Observe thatp = HZEZZ i (ap # zo,because g is orthogonal

to h and h separates a and z) and observe also that x, — y and z — y are orthogonal, because y is the projection of xo on
the edge containing z. Therefore, by Pythagoras’s Theorem, one has that

%o = zoll* + llz0 — zII* = lixo — 2|1 = llxo — yII* + Iy — 2|
= lxo = ¥II* = llxo = yoll* + llyo — yII*. (13)
The objective function at x;, is then

2

2 2 2 2 2
2 =1t = %o +ep —z2oll” + llzo — z||* — lIXo + €p — aoll* — [lao — all

2 2 2 2
= |IXo — zoll” + 2€ (X0 — 20)'p + llzo — z||* — [IXo — Ao l|* — 2€(Xo — a0)'p — llao — al|
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Fig. 7. Bisector of two polygons Sy and S,. Breakpoints e.

and using inequality (13) we obtain

2 2 2 2 2 2
2 =12 = lxo — yol® + lyo — yII* — lIXo — aoll* — llao — all* + 2€(ap — z0)'p

=r:— rfr + 2¢llag — zo|| > 1% — rfr.
e Incaseyis avertex of S and xo is on the boundary of the normal cone of S in y, then the projection of x; on S will be either
the vertex y or a point z on an edge of S, and, depending on the position of a, one of the two previous arguments applies
to find a solution which improves the objective function. O

Remark 5. For the following theorem, we consider the data to be in general position. This means that the following excep-
tional situations do NOT appear.

1. One point of G and two vertices of two polygons of G_ are collinear.

2. One point of G and one vertex of a polygon of G_ define an orthogonal direction to an edge of a polygon of G_.
3. Two points of G, and one vertex of a polygon of G_ are collinear.

4. Two points of G, define an orthogonal direction to an edge of a polygon of G_.

Clearly these exceptional situations are non-generic in the sense of occurring with zero probability. Would they occur, any
small random perturbation of the data would destroy their presence. Therefore general position may be quite safely as-
sumed. In several cases, though, the effect of their occurrence will be discussed anyway.

Likewise, the concept of bisector for two convex polygons and breakpoints will be necessary for the proof of Theorem 7
(see [11,27] for a detailed description).

Definition 6. The bisector of two convex polygons S; and S, is the locus of points x € R? satisfying d(x, S;) = d(x, S,).
This bisector is a continuous unbounded curve consisting of linear and parabolic segments. The points at which two such
segments meet will be called breakpoints (see Fig. 7).

Theorem 7. When the data are in a general position one of the following situations arises for any optimal solution (xo, 11, 1_):

1. there exist at least four associated active elements;

2. there exist at least three active elements, two polygons S1,S, € A_ and one point a € Ay, satisfying that y,y, and a are
collinear, with y; such that d(xo, S;) = minyes; d(xo, X) = d(Xo,yi),i=1,2;

3. there exist at least three active elements, two polygons S, S, € A_ and one point a € A,, and x is a breakpoint.

Proof. In case the two radii are equal Theorem 2 immediately yields four active elements. Therefore the following two cases
remain.

1. Whenr, < r_, by Theorems 1 and 2, we know that an optimal solution must have at least two distinct active polygons
$1,S, € A_, and one active point, a € A,. Suppose an optimal solution (xq, r;, r_) has been obtained with only these
three active elements.

Since xo must be at the same distance from the two active polygons of A_, it must be along their bisector which is
composed of line segments and pieces of parabola. So X is either a breakpoint or an ‘inner point’ of such a segment
or piece.

It will suffice to show that the latter case cannot happen because a new better solution could then be found. To this end
the following different cases must be considered.
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y1

3

P

Fig. 8. Distances from x, to the polygons are the distances to two vertices.

e If the points of S; and S, closest to xq are vertices y; € S; and y, € S)Xg lies on the mediatrix r of y; and y, (see Fig. 8).
Suppose that the active point a € A, is nearer to S; than to S, (the other case is analogous by symmetry).
Define R as the convex region determined by those points nearer to S; than to S, which are in the normal cone of S; at
y1, thatis, R = {x : d(x, y1) < d(x,y2)} N N, (y1). In this region define the function
g = lIx—y1l> — x — all®* = 2x'(a = y1) + ly1 1> — lla]l*. (14)
One has that f(x) = g(x), Vx € R, with f the objective function of Problem (10), in particular, f (xo) = g(xo).
In order to find a direction of improvement for the objective function in the neighborhood of xq, we study the directional
derivatives of the objective function f at this point. The function g is differentiable in the region R with gradient
Vg(x9) = 2(a — y1) at xq. Since f = g in the convex region R the directional derivative along any vector v = y — Xg
with y € R equals
Vof (%) = Vg (x0) = Vg(x0)' - v = 2(a — y1)'v (15)
and to obtain a direction of improvement of f, it is sufficient to choose such a vector v for which the scalar product
(a — y1)'v is strictly positive.
Consider the straight line r : (a — y1)'(x — xo) = 0 through X, and orthogonal to the vector (a — y;) and construct
the region Z determined by those points in R that are also in the positive halfplane defined by the straight line r:
Z=RN{x: (a—y)"(x —x) > 0}. Except in case the straight line coincides with the mediatrix, for some small
enough € > 0 the intersection Z N B(xp, €) is not empty, and moving X, in direction of any point in this intersection
will improve the objective.
The exceptional case where r coincides with the mediatrix is only possible if y;, y,, and a are collinear, hence cor-
responding to the non-generic situation number 1 in Remark 5 that was ruled out. One may note, however, that in
this exceptional case, if we move x, along the mediatrix, the value of the objective function remains constant and the
optimal solution is not unique.
o If the points of S; and S, closest to xq are a vertex y; € S; and a point y, lying on the relative interior of an edge of S,
then xg is not a breakpoint of the bisector of S; and S, and lies on a parabolic piece of it, the parabola being the bisector
between the vertex y; and the edge of S, (see Fig. 9).
Suppose that the active point a € A, is nearer to S; than to S, (for the other situation, see the reasoning described for
the next case, with y; and y, lying on the edges of the polygons). Then a, y, and the parabola lie on the same side of
the mediatrix of y; and y,, and this mediatrix is tangent to the parabola at xg.
Define the convex set R = N, (y1) N {x : d(x,y1) < d(x,S;)} and the function g as above in (14). One has that
f(x) = g(x), Vx € R sufficiently close enough to xy not to introduce new active elements, and hence, the expression
(15) for the directional derivative of f at x, along any vector v = y — Xy with y € R remains valid and the objective
improves along any such direction v for which (a — y;)"v is strictly positive
Consider then the straight line r containing x, and orthogonal to (a — y;), so of equation (a — y;)*(x — xg) = 0.1t
cannot be tangent to the parabola since this would mean it coincides with the mediatrix of y; and y,, so that y{, a, Xy
and y, are collinear, and hence that a — y; would be orthogonal to the edge containing y-, a situation we ruled out as
non-generic case number 2 of Remark 5 (however, in that case a local optimum has been found).
Therefore the mediatrix of y; and y, and the line r cross at xo, implying we may find some z different from (but
close to) xo such that (a — y1)"(z — xo) > 0 and lying on the same side of the parabola as a, so for which we have
d(x,y1) < d(x,S,), thus lying in the interior of R (the set of points satisfying these two constraints is shown as Z in
Fig. 9). Hence the direction v = z — X, improves the objective strictly.
If the points y; of S; and y, of S, closest to xo are both on the relative interior of respective edges of S; and S,, X
lies on the bisectrix of the angle formed by these two edges, and this latter is the bisector of S; and S, within some
neighborhood of x, (see Fig. 10).
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Fig. 9. Distances from x to the polygons are the distances to a vertex and to an edge.

x0\ x0'y0 z0 a0

Fig. 10. Distances from x, to the polygons are the distances to two edges.

Suppose that the active point a € A, is nearer to S; than to S, (by symmetry, the other case is analogous).
Denote by ag and y, the orthogonal projections of a and y; on the bisectrix. Then, the objective function in xo can be
written as

r2—ri = |xo —y1l* — llxo — a)?

=[x — Yoll* + llyo — y1lI> — lIxo — aoll* — llao — all*.
We proceed to show that the vector p = ag — o, if non-zero (the opposite case is handled separately afterwards), is a
direction of improvement of the objective function.
Let us move xq along the direction p by an amount € > 0. Denote by z be the orthogonal projection of the new center
X, = Xo + €p on the edge of S; and by z, its orthogonal projection on the bisectrix. The new value of the objective
function in x; is
2 =12 = lIxo+ep — 20l + llzo — zII* — lIxo + €p — ao 1> — llap — al?

= [lxo — 2o/1* + 2€(Xo — 20)'P + l120 — zI|* — l|%o — ao|l* — 2€(Xo — a0)'p — llao — al*.
Note that y; # z, so by Pythagoras’s Theorem we obtain
X0 — zoll* + llzo — zI1* = lIxo — zII> = X0 —y1lI* + lly1 — zII?

> [IX0 — 11> = X0 — yolI* + Ilyo — y11I*.
It then follows that the objective function improves by

2 _ 2 2 2 2
2 =1 = X0 — 20ll* + llzo — zII* = lIXo — aoll* — llao — all® + 2€ (a0 — 20)'p

> [IX0 — Yol* + o — y1l* = X0 — aoll* — llap — all* + 2€(ap — 20)'p
=12 — 1% +2e(ap — 20)' (a0 — yo) = 12 — 1%
where the last inequality holds because for € > 0 small enough the vectors (ap — yo) and (ag — zp) are parallel and in
the same sense.
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Fig. 11. Two situations whenr; > r_.

In case ag = yo, the objective function cannot be improved and we have obtained a local optimal solution. But this
corresponds to situation 2 of Theorem 7, that is, three active elements (two polygons S;, S, and one point a) with the
points yq, a and y;, being collinear.

2. When ry > r_, by Theorems 1 and 2, we know that an optimal solution of the problem must have at l