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a b s t r a c t

A facility is to be located in the Euclidean plane to serve certain sites by covering them
closely. Simultaneously, a set of polygonal areas must be protected from the negative ef-
fects from that facility. The problem is formulated as amarginmaximizationmodel. Neces-
sary optimality conditions are studied and a finite dominating set of solutions is obtained,
leading to a polynomial algorithm. The method is illustrated on some examples.
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1. Introduction

A facility is called semi-obnoxious, semi-desirable or push–pull (to use the expressive terminology introduced in [15])
when it gives a service to demand in its neighborhood but is also felt as obnoxious, potentially or outrightly noxious to the
environment, or needs to be protected frompotential threats. For instance hospitals, airports, train stations, radio orwireless
stations and alarm sirens are examples of semi-obnoxious facilities, since they are useful and necessary for the community,
but are also a source of negative effects, such as noise or electromagnetic energy, and therefore considered as NIMBY (not
in my backyard) facilities.

Since the early work on modeling the optimal location in such situations as surveyed in general in [7] and in a discrete
setting in [20], the last decade has knownmanymore publications around this difficult topic. The research presented in this
paper falls within this general framework but presents several distinctive features, as shortly described next, and more in
detail in the next section.

In our problem, a semi-obnoxious facilitymust be located in the planewith regards to two different sets. On the one hand,
we have the demand points served by the proximity of the facility that is therefore pulled towards them, so should be as
close as possible to all of them. On the other hand, a repelling region should be protected from the (ob)noxious effects coming
from the facility, or it is the facility that should be protected from possible threats out of this region. Therefore the facility
should be as far as possible from all points of the region. As usual the region is described as in a Geographical Information
System (GIS) as a union of polygons. So the demand points must lie well covered within a circle centered at the facility,
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Fig. 1. Two possible separating balls.

while the region should remain well outside this same circle. Both the push and pull objectives are thus considered to be
of Rawlsian nature [15] using Euclidean distances, yielding a new continuous covering location model of the kind reviewed
in [29].

The three last examples cited higher typically present such features. The quality of connection with a wireless station
sharply depends on the Euclidean distance to it, but is also considered as harmful when living too close by, so highly popu-
lated areas should be touched only at low level. Also if some countries neighboring a region form a possible threat of attack
to the facility ormay be a source of spying by listening in to the emissions of the station, the facility should lie at some largest
possible Euclidean distance from it. Similarly an alarm siren should be well heard by the whole community, but should not
trouble too much the wildlife in the nature reserves around, while noise decays uniformly in all directions.

As far as we are aware no earlier work seems to have been published with all the same characteristics. The major differ-
ences with mainstream work in semi-obnoxious models are as follows.

• Our model is about location in a continuous space, contrary to many studies in a discrete or a network environment
[6,16,2,3].

• We use Euclidean distance, instead of other (less realistic) distance measures [23,18].
• At least the pull part of the objective is often considered of minsum type (Weber-like) see [14,9,31,34,19], whereas we

use minmax.
• The problem is usually seen as biobjective and the efficient set or a finite approximation of it [24,4,26,25] is sought, but

we seek one explicit solution.
• We consider repelling regions, as in [4], instead of repelling points (see [8,18,5,1,22,21]).

In the next section, we introduce a formulation of our problemusing the popular quadraticmarginmaximizationmethod
of Support Vector Machine in Machine Learning. This formulation enables the construction of an exact global optimal
solution, without resorting to the use of cumbersome global optimization methods that yield only approximations as in
[28,32,13,5]. The structural properties derived in Section 3 lead to a finite dominating set, the enumeration of which yields
a finite and polynomial method detailed in Section 4, that is tested on some artificial databases in Section 5.

2. The model

2.1. The basic aim

Consider G+ and G−, two groups of objects in the Euclidean plane, where G+ is a finite set of points G+ = {x1, . . . , xn} ⊂

R2, and G− is a set of compact convex polygonal areas G− = {S1, . . . , Sm} ⊂ R2 (with n,m ≥ 3). The points of G+

represent individual customers to be serviced by the facility, while the polygons represent areas to be protected from the
inconveniences of the semi-obnoxious facility to be located. The points ofG+ are assumed not to be contained in any element
of G−. Also the polygons in G− are assumed to have pairwise disjoint interiors. Note that this is not a restriction because any
(possibly disconnected) polygonal region can be decomposed into a finite set G− which satisfies our assumptions.

Our aim is to locate a single semi-obnoxious facility, x0 ∈ R2, which is as near as possible to the points of G+ (attracting
elements) in order to receive a high-quality service, and far from the polygons of G− (repelling elements).

As explained in the Introduction, all distances are measured in the Euclidean way. Therefore the location of the facility
will be decided through the construction of a ball B(x0, r), with x0 ∈ R2 and r ∈ R+, such that every point of G+ is deeply
contained in the ball and every polygon of G− lies far outside the ball.

In Fig. 1, an example of the problem is depicted. The black points represent the attracting points of G+, whereas the gray-
colored areas represent the repelling elements of G−. Our problem is to build a ball containing all the points well inside
while remaining well away from any polygon.
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Different solutions may exist separating the elements in G+ and G−. For instance, in Fig. 1 two possible circles separating
the two groups have been depicted. In order to single out one ball, we follow the strategy that is successfully used in Support
Vector Machines, [10,33], and maximize a quadratic margin as defined in the next section. Following this strategy, the
smallest circle in Fig. 1 will be preferred.

2.2. The optimization problem

Given the elements of the two groups, G+ and G−, the following constraints are desirable,

∥x0 − xi∥2 < r2 ∀xi ∈ G+, (1)

min
x∈Sj

∥x0 − x∥2
≥ r2 ∀Sj ∈ G−, (2)

where ∥ · ∥ is the Euclidean norm.
Constraints (1)–(2) are equivalent respectively to

r2 − ∥x0 − xi∥2 > 0 ∀xi ∈ G+ ⇔ min
xi∈G+

(r2 − ∥x0 − xi∥2) > 0, (3)

min
x∈Sj

(∥x0 − x∥2
− r2) ≥ 0 ∀Sj ∈ G− ⇔ min

Sj∈G−

min
x∈Sj

(∥x0 − x∥2
− r2) ≥ 0. (4)

We propose to maximize the (quadratic) margin ∆, which is the minimum of the two positive amounts described in
(3)–(4). The optimization problem we have to solve is then

max
x0,r

∆ (5)

where

∆ = min

min
xi∈G+

(r2 − ∥x0 − xi∥2), min
Sj∈G−

min
x∈Sj

(∥x0 − x∥2
− r2)


. (6)

This may be rewritten as

max
x0,r,∆

∆

s.t. ∆ ≤ min
xi∈G+

(r2 − ∥x0 − xi∥2)

∆ ≤ min
Sj∈G−

min
x∈Sj

(∥x0 − x∥2
− r2)

(7)

or equivalently,

max
x0,r,∆

∆

s.t. ∆ ≤ r2 − ∥x0 − xi∥2
∀xi ∈ G+

∆ ≤ ∥x0 − x∥2
− r2 ∀x ∈ Sj, ∀Sj ∈ G−.

(8)

If we denote r2
+

= r2 − ∆ and r2
−

= r2 + ∆, the objective function of Problem (8) changes into ∆ =
r2
−

−r2
+

2 , and the
problem can be reformulated as

max
x0,r+,r−

r2
−

− r2
+

s.t. ∥x0 − xi∥ ≤ r+ ∀xi ∈ G+

∥x0 − x∥ ≥ r− ∀x ∈ Sj, ∀Sj ∈ G−

r+, r− ≥ 0.

(9)

and if needed one may recover r2 as r2
−

+r2
+

2 , if ∆ is positive.
Indeed, Problem (9) is in fact more general since it also encompasses situations with negative optimal value, that

correspond to the (frequent) situations of unfeasibility of previous constraints sets (1)–(2), (3)–(4), or those of problem (7).
This new formulation is never unfeasible, and indicates what should be considered as optimal (or rather least undesirable)
in these latter cases.

It will follow from Theorem 1 below that the optimal radii r+ and r− are easily defined as a function of the center x0, and
Problem (9) can be reformulated further with an objective depending on x0 only, as follows
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Fig. 2. The two separating concentric balls with maximummargin. (a) Feasible case, (b) unfeasible case.

max
x0∈R2

f (x0)

s.t. f (x0) = r2
−
(x0) − r2

+
(x0)

r+(x0) = max
xi∈G+

∥x0 − xi∥

r−(x0) = min
Sj∈G−

min
x∈Sj

∥x0 − x∥.

(10)

Hence we may view our problem as obtaining two concentric balls B(x0, r+) and B(x0, r−), where the ball B(x0, r−) does
not contain strictly any points of the polygons of G−, the ball B(x0, r+) contains every point xi belonging to G+, and the
difference between the squares of the first and second radius is as large as possible.

In case r− ≥ r+, i.e. when the original problem is feasible, this geometrically means that the area of the annulus between
the two circles is as large as possible (see Fig. 2(a)), showing that our problem is somewhat related to the so-called largest
empty annulus problem [12]. (In that model, however, only a set of points is given and an annulus of maximal area without
such points in its interior is sought, and no regions are considered.)

In case r− < r+, when the original problem is unfeasible, the area of the annulus should be as small as possible (see
Fig. 2(b)).

Note that the use of the squared radii in the objective seems particularly suited to the main kinds of applications
mentioned in the Introduction, since effects like noise and electro-magnetic energy decay quadratically with distance.

3. Necessary conditions for optimality

We now derive a number of necessary optimality conditions, based on the notion of active element as defined below.We
will write (x0, r+, r−) to either denote a finite feasible solution of Problem (9) or assume that r+ = r+(x0) and r− = r−(x0)
as defined in Problem (10).

A point xi from G+ is an active point for the solution (x0, r+, r−) iff the distance from xi to the center x0 is exactly r+, that
is, d(x0, xi) = ∥x0 − xi∥ = r+. Thus, the set of active points of G+, denoted by A+(x0), consists of the points lying on the
boundary of the ball B(x0, r+).

In the same way, a polygon Sj from G− is an active polygon for (x0, r+, r−) iff the distance from Sj to x0 is exactly r−, that
is, d(x0, Sj) = minx∈Sj ∥x0 − x∥ = r−. We denote by A−(x0) the set of active polygons from G−.

When x0 is clear from the context, we will simply write A+ and A−.
Showing that a feasible solution (x0, r+, r−) is not optimalmay be done in twoways: either find another feasible solution

(x′

0, r
′
+
, r ′

−
) with a better objective value or exhibit a direction of increase of f at x0.

Theorem 1. If (x0, r+, r−) is an optimal solution, there exists at least one active element in each group G+ and G−, that is, the
sets A+ and A− are non-empty.

Proof. Suppose that A+ is an empty set. Since (x0, r+, r−) is a feasible solution of Problem (9), all the points of the group
G+ must be (due to the emptiness of A+) contained strictly in the ball B(x0, r+), that is, ∥x0 − xi∥ < r+, ∀xi ∈ G+. Then, it is
sufficient to take

r ′

+
= r+(x0) = max

xi∈G+

∥x0 − xi∥,

which is strictly smaller than r+, and we obtain (x0, r ′
+
, r−), a feasible solution improving strictly the value of the objective

function.
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Fig. 3. Proof of Theorem 2, case r+ ≤ r− .

On the other hand, suppose that A− is empty. Due to the feasibility of (x0, r+, r−), the distance from x0 to every polygon
of G− is strictly greater than r−, that is, d(x0, Sj) > r−, ∀Sj ∈ G−. Thus, it is sufficient to consider

r ′

−
= r−(x0) = min

Sj∈G−

d(x0, Sj) = min
Sj∈G−

min
x∈Sj

∥x0 − x∥,

which is strictly greater than r−, and the solution (x0, r+, r ′
−
) strictly improves the objective function.

In both cases, we conclude that the initial solution (x0, r+, r−) cannot be optimal. �

Theorem 2. For any optimal solution (x0, r+, r−) one has

1. If r+ ≤ r−, then there must exist at least two active polygons in G−.
2. If r+ ≥ r−, then there must exist at least two active points in G+.

Proof. By Theorem 1 there exists at least one active point a in G+ and one active polygon S in G−.

1. In case r+ ≤ r−, suppose S is the only polygon in A−. Let y be the projection of x0 on S, i.e. the point in S such that
d(x0, S) = minx∈S d(x0, x) = d(x0, y) and consider the direction p = x0 − y. We will show that this vector p represents a
direction of improvement for the objective function.
If we move x0 an amount ϵ > 0, small enough (for not finding any new active element), in the direction u =

p
∥p∥ , we

obtain that x′

0 = x0 + ϵu and r ′
−

= r− + ϵ.
The other radius r ′

+
must be measured as the maximum distance from x′

0 to the points belonging to A+(x0).
In case r ′

+
≤ r+, because the new center is closer to all the points in A+(x0), the radii r ′

+
and r ′

−
will have decreased and

increased respectively, and consequently the objective function will also have strictly improved.
Otherwise, the radius r ′

+
will be the distance from x′

0 to the point a of A+(x0) that is now the furthest one (see Fig. 3).
Due to the triangle inequality on a, x0 and x′

0, one has that r ′
+

≤ r+ + ϵ, and the value of the objective function is strictly
improved as soon as r+ < r−, since

r ′2
−

− r ′2
+

≥ (r− + ϵ)2 − (r+ + ϵ)2

= r2
−

− r2
+

+ 2ϵ(r− − r+) > r2
−

− r2
+
.

But also if r+ = r− the points x′

0, a and y cannot be collinear since this would mean that a = y, contrary to our general
assumption that no point ofG+ belongs to an element ofG−. Therefore x′

0, a and y are not collinear, so by the strict triangle
inequality we have r ′

+
< r+ + ϵ, and thus

r ′2
−

− r ′2
+

> (r− + ϵ)2 − (r+ + ϵ)2 = 0 = r2
−

− r2
+
.

2. When r+ ≥ r−, suppose there is only one active point a in A+. Then, the vector p = a − x0 will be shown to represent a
direction of improvement.
If x0 is moved an amount ϵ > 0, small enough for not having new active elements, in the direction u =

p
∥p∥ , we obtain

that r ′
+

= r+ − ϵ. The radius r ′
−

will be the minimum distance from x′

0 = x0 + ϵu to the polygons in A−(x0). If now
r ′
−

≥ r−, that is the new center is further from all the polygon candidates to become active, the two radii r ′
+
and r ′

−
have

improved and so also the objective function has. Any active polygon S for the center x0 will also be the polygon closest
to the new center x′

0, since there are no new active polygons in G−. Let y be the projection of x0 on S, i.e., the point of S
such that d(x0, S) = minx∈S d(x0, x) = d(x0, y). Now the objective function can be expressed as follows:

r2
−

− r2
+

= ∥x0 − y∥2
− ∥x0 − a∥2.

Three different situations must be considered.



F. Plastria et al. / Discrete Applied Mathematics 161 (2013) 2604–2623 2609

Fig. 4. Proof of Theorem 2, case r+ ≥ r−: the distance to the polygon is measured in the vertex.

Fig. 5. Proof of Theorem 2, case r+ ≥ r−: the distance to the polygon is measured in the edge.

• If y is a vertex of the polygon S and x0 is strictly contained in the normal cone of S in y (denoted by NS(y)), that is, x0
satisfies (x0 − y)t(y − s) > 0 ∀s ∈ S, then, for ϵ > 0 small enough, x′

0 will also be contained strictly in this normal
cone, and d(x′

0, S) = minx∈S d(x′

0, x) = d(x′

0, y) (see Fig. 4).
In that case, due to the triangle inequality, one has that r− ≤ r ′

−
+ ϵ and consequently, r ′

−
≥ r− − ϵ, and the value of

the objective function is improved in case r+ > r−, because
r ′2
−

− r ′2
+

≥ (r− − ϵ)2 − (r+ − ϵ)2

= r2
−

− r2
+

+ 2ϵ(r+ − r−) > r2
−

− r2
+
. (11)

For r+ = r−, we know that r− < r ′
−

+ ϵ, except for the case when x′

0, y and a are collinear. But this situation is not
possible for r+ = r−, because it would mean that a ∈ S, which is not allowed by assumption. Therefore,

r ′2
−

− r ′2
+

> (r− − ϵ)2 − (r+ − ϵ)2 = r2
−

− r2
+
. (12)

• If the point y is not a vertex of S it lies on (the relative interior of) an edge of S and the value ϵ > 0 may be chosen
small enough so that the point z of S closest to the new center lies on the same edge of the polygon (see Fig. 5).
Using the definition of r− and the triangle inequality on x0, z and x′

0 we obtain
r− = min

x∈S
d(x0, x) ≤ d(x0, z) ≤ r ′

−
+ ϵ.

Thus r ′
−

≥ r− − ϵ and we obtain again the same inequalities as in (11) showing that the objective function is improved
for r+ > r−.
In case r+ = r−, wemay again rule out x0, y and a collinear because it wouldmean a = y ∈ S, contrary to assumptions.
Therefore we obtain as above inequality (12), showing that the objective function is also improved.

• If y is a vertex of S and x0 is on the boundary of the normal cone of S in y, then the projection of the new center x′

0 on
S will be either the same vertex y or a point z on an adjacent edge of S, depending on the position of a. Hence, one of
the two arguments used previously applies to find a solution with a better value of the objective function. �
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Fig. 6. Proof of Theorem 4, second part.

Remark 3. It can be proved that, when points of G+ are allowed to lie in some polygon of G−, Theorem 2 still holds in case
of strict inequalities. However, when r+ = r− one may only conclude existence of an optimal solution with two active
elements in G+ and of a (possibly different) optimal solution with two active elements in G−.

Theorem 4. For any optimal solution (x0, r+, r−) the convex hulls CH(A+) and CH(A−) of the two groups of active elements
intersect.

Proof. Assume contrarily that CH(A+)∩ CH(A−) = ∅. Then a straight line h of equation ptx = c can be found which strictly
separates these two convex hulls. We may choose p as a unit vector and c ∈ R, such that the halfplane containing CH(A+)
is defined by {ptx > c}. Consider the straight line g : {x = x0 + λp, λ ∈ R}. We now show that the objective function will
be improved by moving x0 along this straight line a certain amount ϵ > 0.

Denote by S an active polygon from A−(x0) which is the closest one to the new center x′

0 = x0 + ϵp, and by a a point
from A+(x0) which maximizes the distance from x′

0 to A+(x0). Denote by a0 the orthogonal projection of a on g . Let y be the
point of S such that d(x0, S) = minx∈S d(x0, x) = d(x0, y) and y0 its orthogonal projection on the straight line g . With this
notation, the objective function can be expressed as follows:

r2
−

− r2
+

= ∥x0 − y∥2
− ∥x0 − a∥2

= ∥x0 − y0∥2
+ ∥y0 − y∥2

− ∥x0 − a0∥2
− ∥a0 − a∥2.

If we move x0 to x′

0 along the straight line g , to measure the new radius r ′
−
, three different situations must be analyzed.

• In case the point y is a vertex of the polygon and x0 is strictly contained in the normal cone of S in y, then, for an amount
ϵ > 0 small enough, the new center x′

0 will also be contained strictly in the normal cone, and the distance from x′

0 to S
will continue being the distance from x′

0 to the vertex y, that is, d(x′

0, S) = minx∈S d(x′

0, x) = d(x′

0, y).
Then, since p =

a0−y0
∥a0−y0∥

(observe that a0 ≠ y0, because g is orthogonal to the separating hyperplane and hence, a0 and
y0 are also separated by the straight line h), the following calculation shows that the objective function improves,

r ′2
−

− r ′2
+

= ∥x0 + ϵp − y0∥2
+ ∥y0 − y∥2

− ∥x0 + ϵp − a0∥2
− ∥a0 − a∥2

= ∥x0 − y0∥2
+ 2ϵ(x0 − y0)tp + ∥y0 − y∥2

− ∥x0 − a0∥2
− 2ϵ(x0 − a0)tp − ∥a0 − a∥2

= r2
−

− r2
+

+ 2ϵ(a0 − y0)t
a0 − y0

∥a0 − y0∥
= r2

−
− r2

+
+ 2ϵ∥a0 − y0∥ > r2

−
− r2

+
.

• If the point y is not a vertex of S it lies on (the relative interior of) an edge of S and the value ϵ > 0 may be chosen small
enough so that the point z of S closest to the new center x′

0 lies on the same edge of this polygon. (See Fig. 6.)
Consider the orthogonal projection z0 of z on the straight line g . Observe that p =

a0−z0
∥a0−z0∥

(a0 ≠ z0, because g is orthogonal
to h and h separates a and z) and observe also that x0 − y and z − y are orthogonal, because y is the projection of x0 on
the edge containing z. Therefore, by Pythagoras’s Theorem, one has that

∥x0 − z0∥2
+ ∥z0 − z∥2

= ∥x0 − z∥2
= ∥x0 − y∥2

+ ∥y − z∥2

≥ ∥x0 − y∥2
= ∥x0 − y0∥2

+ ∥y0 − y∥2. (13)

The objective function at x′

0 is then

r ′2
−

− r ′2
+

= ∥x0 + ϵp − z0∥2
+ ∥z0 − z∥2

− ∥x0 + ϵp − a0∥2
− ∥a0 − a∥2

= ∥x0 − z0∥2
+ 2ϵ(x0 − z0)tp + ∥z0 − z∥2

− ∥x0 − a0∥2
− 2ϵ(x0 − a0)tp − ∥a0 − a∥2
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Fig. 7. Bisector of two polygons S1 and S2 . Breakpoints •.

and using inequality (13) we obtain

r ′2
−

− r ′2
+

≥ ∥x0 − y0∥2
+ ∥y0 − y∥2

− ∥x0 − a0∥2
− ∥a0 − a∥2

+ 2ϵ(a0 − z0)tp

= r2
−

− r2
+

+ 2ϵ∥a0 − z0∥ > r2
−

− r2
+
.

• In case y is a vertex of S and x0 is on the boundary of the normal cone of S in y, then the projection of x′

0 on S will be either
the vertex y or a point z on an edge of S, and, depending on the position of a, one of the two previous arguments applies
to find a solution which improves the objective function. �

Remark 5. For the following theorem, we consider the data to be in general position. This means that the following excep-
tional situations do NOT appear.

1. One point of G+ and two vertices of two polygons of G− are collinear.
2. One point of G+ and one vertex of a polygon of G− define an orthogonal direction to an edge of a polygon of G−.
3. Two points of G+ and one vertex of a polygon of G− are collinear.
4. Two points of G+ define an orthogonal direction to an edge of a polygon of G−.

Clearly these exceptional situations are non-generic in the sense of occurring with zero probability. Would they occur, any
small random perturbation of the data would destroy their presence. Therefore general position may be quite safely as-
sumed. In several cases, though, the effect of their occurrence will be discussed anyway.

Likewise, the concept of bisector for two convex polygons and breakpoints will be necessary for the proof of Theorem 7
(see [11,27] for a detailed description).

Definition 6. The bisector of two convex polygons S1 and S2 is the locus of points x ∈ R2 satisfying d(x, S1) = d(x, S2).
This bisector is a continuous unbounded curve consisting of linear and parabolic segments. The points at which two such
segments meet will be called breakpoints (see Fig. 7).

Theorem 7. When the data are in a general position one of the following situations arises for any optimal solution (x0, r+, r−):

1. there exist at least four associated active elements;
2. there exist at least three active elements, two polygons S1, S2 ∈ A− and one point a ∈ A+, satisfying that y1, y2 and a are

collinear, with yi such that d(x0, Si) = minx∈Si d(x0, x) = d(x0, yi), i = 1, 2;
3. there exist at least three active elements, two polygons S1, S2 ∈ A− and one point a ∈ A+, and x0 is a breakpoint.

Proof. In case the two radii are equal Theorem 2 immediately yields four active elements. Therefore the following two cases
remain.

1. When r+ < r−, by Theorems 1 and 2, we know that an optimal solution must have at least two distinct active polygons
S1, S2 ∈ A−, and one active point, a ∈ A+. Suppose an optimal solution (x0, r+, r−) has been obtained with only these
three active elements.
Since x0 must be at the same distance from the two active polygons of A−, it must be along their bisector which is
composed of line segments and pieces of parabola. So x0 is either a breakpoint or an ‘inner point’ of such a segment
or piece.
It will suffice to show that the latter case cannot happen because a new better solution could then be found. To this end
the following different cases must be considered.
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Fig. 8. Distances from x0 to the polygons are the distances to two vertices.

• If the points of S1 and S2 closest to x0 are vertices y1 ∈ S1 and y2 ∈ S2x0 lies on the mediatrix r of y1 and y2 (see Fig. 8).
Suppose that the active point a ∈ A+ is nearer to S1 than to S2 (the other case is analogous by symmetry).
Define R as the convex region determined by those points nearer to S1 than to S2 which are in the normal cone of S1 at
y1, that is, R = {x : d(x, y1) ≤ d(x, y2)} ∩ NS1(y1). In this region define the function

g(x) = ∥x − y1∥2
− ∥x − a∥2

= 2xt(a − y1) + ∥y1∥2
− ∥a∥2. (14)

One has that f (x) = g(x), ∀x ∈ R, with f the objective function of Problem (10), in particular, f (x0) = g(x0).
In order to find a direction of improvement for the objective function in the neighborhoodof x0, we study the directional
derivatives of the objective function f at this point. The function g is differentiable in the region R with gradient
∇g(x0) = 2(a − y1) at x0. Since f ≡ g in the convex region R the directional derivative along any vector v = y − x0
with y ∈ R equals

∇v f (x0) = ∇vg(x0) = ∇g(x0)t · v = 2(a − y1)tv (15)
and to obtain a direction of improvement of f , it is sufficient to choose such a vector v for which the scalar product
(a − y1)tv is strictly positive.
Consider the straight line r : (a − y1)t(x − x0) = 0 through x0 and orthogonal to the vector (a − y1) and construct
the region Z determined by those points in R that are also in the positive halfplane defined by the straight line r:
Z = R ∩ {x : (a − y1)t(x − x0) > 0}. Except in case the straight line coincides with the mediatrix, for some small
enough ϵ > 0 the intersection Z ∩ B(x0, ϵ) is not empty, and moving x0 in direction of any point in this intersection
will improve the objective.
The exceptional case where r coincides with the mediatrix is only possible if y1, y2, and a are collinear, hence cor-
responding to the non-generic situation number 1 in Remark 5 that was ruled out. One may note, however, that in
this exceptional case, if we move x0 along the mediatrix, the value of the objective function remains constant and the
optimal solution is not unique.

• If the points of S1 and S2 closest to x0 are a vertex y1 ∈ S1 and a point y2 lying on the relative interior of an edge of S2
then x0 is not a breakpoint of the bisector of S1 and S2 and lies on a parabolic piece of it, the parabola being the bisector
between the vertex y1 and the edge of S2 (see Fig. 9).
Suppose that the active point a ∈ A+ is nearer to S1 than to S2 (for the other situation, see the reasoning described for
the next case, with y1 and y2 lying on the edges of the polygons). Then a, y1 and the parabola lie on the same side of
the mediatrix of y1 and y2, and this mediatrix is tangent to the parabola at x0.
Define the convex set R = NS1(y1) ∩ {x : d(x, y1) ≤ d(x, S2)} and the function g as above in (14). One has that
f (x) = g(x), ∀x ∈ R sufficiently close enough to x0 not to introduce new active elements, and hence, the expression
(15) for the directional derivative of f at x0 along any vector v = y − x0 with y ∈ R remains valid and the objective
improves along any such direction v for which (a − y1)tv is strictly positive
Consider then the straight line r containing x0 and orthogonal to (a − y1), so of equation (a − y1)t(x − x0) = 0. It
cannot be tangent to the parabola since this would mean it coincides with the mediatrix of y1 and y2, so that y1, a, x0
and y2 are collinear, and hence that a − y1 would be orthogonal to the edge containing y2, a situation we ruled out as
non-generic case number 2 of Remark 5 (however, in that case a local optimum has been found).
Therefore the mediatrix of y1 and y2 and the line r cross at x0, implying we may find some z different from (but
close to) x0 such that (a − y1)t(z − x0) > 0 and lying on the same side of the parabola as a, so for which we have
d(x, y1) < d(x, S2), thus lying in the interior of R (the set of points satisfying these two constraints is shown as Z in
Fig. 9). Hence the direction v = z − x0 improves the objective strictly.

• If the points y1 of S1 and y2 of S2 closest to x0 are both on the relative interior of respective edges of S1 and S2, x0
lies on the bisectrix of the angle formed by these two edges, and this latter is the bisector of S1 and S2 within some
neighborhood of x0 (see Fig. 10).
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Fig. 9. Distances from x0 to the polygons are the distances to a vertex and to an edge.

Fig. 10. Distances from x0 to the polygons are the distances to two edges.

Suppose that the active point a ∈ A+ is nearer to S1 than to S2 (by symmetry, the other case is analogous).
Denote by a0 and y0 the orthogonal projections of a and y1 on the bisectrix. Then, the objective function in x0 can be
written as

r2
−

− r2
+

= ∥x0 − y1∥2
− ∥x0 − a∥2

= ∥x0 − y0∥2
+ ∥y0 − y1∥2

− ∥x0 − a0∥2
− ∥a0 − a∥2.

We proceed to show that the vector p = a0 − y0, if non-zero (the opposite case is handled separately afterwards), is a
direction of improvement of the objective function.
Let us move x0 along the direction p by an amount ϵ > 0. Denote by z be the orthogonal projection of the new center
x′

0 = x0 + ϵp on the edge of S1 and by z0 its orthogonal projection on the bisectrix. The new value of the objective
function in x′

0 is
r ′2
−

− r ′2
+

= ∥x0 + ϵp − z0∥2
+ ∥z0 − z∥2

− ∥x0 + ϵp − a0∥2
− ∥a0 − a∥2

= ∥x0 − z0∥2
+ 2ϵ(x0 − z0)tp + ∥z0 − z∥2

− ∥x0 − a0∥2
− 2ϵ(x0 − a0)tp − ∥a0 − a∥2.

Note that y1 ≠ z, so by Pythagoras’s Theorem we obtain
∥x0 − z0∥2

+ ∥z0 − z∥2
= ∥x0 − z∥2

= ∥x0 − y1∥2
+ ∥y1 − z∥2

> ∥x0 − y1∥2
= ∥x0 − y0∥2

+ ∥y0 − y1∥2.

It then follows that the objective function improves by
r ′2
−

− r ′2
+

= ∥x0 − z0∥2
+ ∥z0 − z∥2

− ∥x0 − a0∥2
− ∥a0 − a∥2

+ 2ϵ(a0 − z0)tp

> ∥x0 − y0∥2
+ ∥y0 − y1∥2

− ∥x0 − a0∥2
− ∥a0 − a∥2

+ 2ϵ(a0 − z0)tp
= r2

−
− r2

+
+ 2ϵ(a0 − z0)t(a0 − y0) ≥ r2

−
− r2

+

where the last inequality holds because for ϵ > 0 small enough the vectors (a0 − y0) and (a0 − z0) are parallel and in
the same sense.
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Fig. 11. Two situations when r+ > r− .

In case a0 = y0, the objective function cannot be improved and we have obtained a local optimal solution. But this
corresponds to situation 2 of Theorem 7, that is, three active elements (two polygons S1, S2 and one point a) with the
points y1, a and y2 being collinear.

2. When r+ > r−, by Theorems 1 and 2, we know that an optimal solution of the problem must have at least two active
points a1, a2 ∈ A+, and one active polygon, S ∈ A−. Suppose an optimal solution (x0, r+, r−) with only these three active
elements has been obtained. A new solution will be found with a better value of the objective function.
Denote by r the mediatrix between the two active points of A+, by y the point belonging to S such that d(x0, S) =

minx∈S d(x0, x) = d(x0, y), and by a0 and y0 the orthogonal projections of the points a1 (or equivalently a2) and y on the
straight line r . We have to consider two situations (y is a vertex of the polygon or y lies on an edge of the polygon, see
Fig. 11), which are exactly the same as those described in the proof of Theorem 4.
With a similar reasoning, we derive that a new feasible solution can be obtained which improves the objective function,
except when a1, y, x0 and a2 are collinear. But this can only happen in the following two non-generic cases that were
ruled out: either when a1, a2 and the vertex y of a polygon S are collinear (exception 3 in Remark 5) or when the two
points a1, a2 define an orthogonal direction to an edge of a polygon S (exception 4 in Remark 5). �

The concepts of nearest and farthest-point Voronoi diagrams (see [27,30]) for a set of points or polygonswill be necessary
for the proof of Theorem 9.

Definition 8. Given the set of points {x1, . . . , xn} and the set of polygons {S1, . . . , Sm}, the farthest-point (resp. nearest-
polygon) Voronoi cell associated to xk (resp. Sl) denoted by Vk (resp.Wl) is defined as follows:

Vk =


i∈{1,...,n}\{k}

{x : d(x, xk) ≥ d(x, xi)}, (16)

Wl =


j∈{1,...,m}\{j}

{x : d(x, Sl) ≤ d(x, Sj)}. (17)

The sets V =


k=1,...,n Vk and W =


l=1,...,m Wl are called the farthest-point and the nearest-polygon Voronoi diagrams.

Theorem 9. If the convex hulls of the two groups G+ and G− are disjoint, that is, CH(G+) ∩ CH(G−) = ∅, then the solution is
unbounded and the separating balls are transformed into straight lines.

Proof. Since CH(G+) ∩ CH(G−) = ∅, a straight line h : {ptx = c}, with p ∈ R2 and c ∈ R, strictly separating the two convex
hulls can be found, in the same way as done in the proof of Theorem 4. Let l : {ptx = c ′

} be another straight line, parallel to
h, such that every point xk ∈ G+ satisfies that ptxk > c and ptxk < c ′.

Construct the farthest-point and nearest-polygon Voronoi diagrams in the plane for G+ and G−, respectively, and the
intersection of the two diagrams. Note that these diagrams and thus their intersection contain unbounded cells in every
direction. Let V be such a cell that is unbounded in direction p. Then it contains a point x0 with {ptx0 > c ′

} for which the
half-line r : {x = x0 + λp, λ ≥ 0} is completely included in the cell V .

Once x0 is chosen, since it is inside a cell of the intersection of the two diagrams, the farthest point in G+, say a, and
the nearest polygon in G−, say S, are known, that is, a ∈ A+ and S ∈ A−, and these two elements remain active for all the
possible solutions in the cell V , in particular for all the possible solutions in r . Then, with a similar reasoning as in the proof
of Theorem 4 (either when the point of S closest to x0 is a vertex of S or on an edge of S), one always has that f (x0 + λp) is
linearly increasing in λ > 0.
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Fig. 12. Left: computing the intersection of a bisectrix and a parabola. Right: checking the feasibility of the two points.

It follows that the optimal solution is unbounded, or more precisely does not exist. In fact this rather means that the
balls are transformed into two straight lines {ptx = b} and {ptx = d}, with b > d, such that the closed halfplane {ptx ≥ b}
contains CH(G+) whereas {ptx ≤ d} contains CH(G−). �

4. An algorithm to build the set of optimal solutions

With the necessary optimality conditions studied in the previous section a finite dominating set of solutions has been
obtained. Once it has been checked that the data are in general position, a method to find an optimal solution is to perform
a complete enumeration of all the candidate solutions, as will be described below.

We are going to study all the local optimal solutions, and we will compute the objective value for those points. The one
with the highest value will be the global optimal solution. According to Theorems 1, 2 and 7, there must exist at least one
active element in each set (A+ and A−), there must exist at least two active elements in the set associated to the biggest ball
(that is, if r+ > r−, there will exist at least two active points in A+, and if r− > r+, there will be at least two active polygons),
and one of the situations described in Theorem 7 must be reached. The finite dominating set of solutions will therefore be
formed by points x0 whose configuration of associated active elements belongs to one of the following options:

1. three active polygons S1, S2, S3 and one active point a (in this case, r− > r+);
2. two active polygons S1, S2 and two active points a1, a2 (no condition on the radii);
3. two active polygons S1, S2, one active point a and x0 is a breakpoint of the bisector defined by S1 and S2 (in this case,

r− > r+);
4. two active polygons S1, S2, one active point a and x0 satisfies that y1, y2 and a are collinear, with yi such that d(x0, Si) =

minx∈Si d(x0, x) = d(x0, yi), i = 1, 2 (in this case, r− > r+);
5. three active points a1, a2, a3, and one active polygon S (in this case, r− < r+).

In the algorithm to construct all the candidates we will consider all the possible configurations. The solution x0 is each
time computed as the intersection of the corresponding bisectors of the sets A+ and A−. Since the bisector of two polygons
consists of segments (for two vertices, the bisector is their mediatrix, and for two edges, the bisector is the bisectrix) and
pieces of parabola (for one vertex and one edge), wewill study each vertex and edge of a polygon as different active elements
in the algorithm.

4.1. Case 1: card(A+) = 1 and card(A−) = 3

Let S1, S2 and S3 be the three active polygons. As mentioned before every vertex and every edge of a polygon is studied
as a possible active element. For a polygon S, considering a vertex v as the active element will mean that the closest point
of S to the solution x0 is v. Analogously, considering an edge e as the active element will mean that the point of S closest to
x0 lies on this edge e and is not one of the two vertices of e.

Thus x0 is computed by the following strategies depending on the number of active vertices and edges:

• Three vertices: x0 is the circumcenter of these three points (equivalently, x0 is the intersection of the mediatrices for any
pair of points).

• Two vertices and one edge: x0 is the intersection of the mediatrix of the vertices and the parabola of any vertex and the
edge.

• One vertex and two edges: x0 is the intersection of the bisectrix of the two edges and the parabola of the vertex and any
edge.

• Three edges: x0 is the intersection of any two bisectrices.



2616 F. Plastria et al. / Discrete Applied Mathematics 161 (2013) 2604–2623

Once x0 is computed (in some cases, more than one solution can be obtained), the next step is to check if this solution
is feasible, that is, given the three active elements, we must find out if x0 belongs to the intersection of the normal cones of
the polygon Si at the vertex vi or the edge ei respectively, for i = 1, 2, 3, otherwise it must be rejected.

An example of this situation can be seen in Fig. 12. On the left there are two active edges e1 and e2, and one active vertex
v (belonging, respectively, to the active polygons S1, S2 and S3). The bisectrix for the two edges is computed, and as well the
parabola which represents the bisector of the edge e2 and the vertex v. There exist two points (P1 and P2) as the result of
intersecting the bisectrix and the parabola. On the right we check the feasibility of these two possible solutions, and P1 is
accepted as a solution, because it belongs to the intersection of the normal cones of the three active elements (the shadowed
rectangle in the picture) whereas P2 is rejected because it is outside that rectangle.

If we obtain a solution x0 with this combination of active elements, we define r− as the distance from x0 to any of
these active elements. Observe that we must also check that the distance from x0 to these active polygons Si, i = 1, 2, 3,
coincides with the distance to the active vertices or edges which have been considered, that is, the closest points from the
polygons to x0 must be the selected active vertices or must lie on the selected active edges (otherwise, the solution is not
feasible).

Afterwards, we compute the distance from x0 to the rest of polygons of G−. If the minimum of these distances is larger
than or equal to r− (if this minimum was smaller, the polygons S1, S2 and S3 could not belong to A−), we compute r+ as the
maximum distance from x0 to the points of G+, and the point awhose distance to x0 is r+ will be the fourth active element.

In this case, r+ must be smaller than r− to have the guarantee of having obtained a local optimal solution (otherwise,
according to Theorem 2 a better solution can be found in a neighborhood of x0).

4.2. Case 2: card(A+) = 2 and card(A−) = 2

Let a1 and a2 be the active points. Let S1 and S2 be the active polygons (in this case, we choose immediately all four active
elements). We compute the mediatrix of the two active points, and we compute the bisector of the two active elements in
the polygons (it will be a mediatrix if we have two active vertices, a bisectrix if there are two active edges, or a parabola in
case of a vertex and an edge). The intersection of the mediatrix and the bisector is computed and we check the feasibility of
this solution as done in the previous case (that is, we check if the solution x0 belongs to the intersection of the normal cones
of the polygons at the corresponding vertex or edge, and we also check that each selected vertex or edge is really active, in
the sense that it is or it contains the closest point from the corresponding polygon to x0).

Once a solution x0 is obtained, we compute r+ as the distance from x0 to one of the active points and r− as the distance to
one of the active polygons. Then, we compute themaximumdistance from x0 to the rest of the points of G+ (x0 is a candidate
only if this maximum distance is smaller than or equal to r+) and the minimum distance from x0 to the rest of the polygons
of G− (x0 is the only candidate to be optimal if this minimum distance is at least r−).

4.3. Case 3: card(A+) = 1, card(A−) = 2 and x0 is a breakpoint

Let S1 and S2 be the two active polygons. We will inspect all breakpoints along their bisector. This latter consists of
alternating linear pieces and parabolic pieces, some of which may (accidentally) be reduced to a single point (see Fig. 7).
So each breakpoint always has two active vertices, one of each polygon, and for these active vertices there are at most
two corresponding breakpoints that form the endpoint(s) of the line-segment of the mediatrix of the vertices within the
intersection of both normal cones of the respective polygons at these same vertices.

So for both polygonswe have to consider only the vertices as active elements in the enumeration, and each pair will yield
at most two breakpoints. For each such breakpoint x0 we compute r− as the distance from x0 to their active vertices. Then,
we compute the distances from x0 to the remaining polygons, rejecting x0 if some of these distances are less than r−. We
finally compute r+ as the maximum distance from x0 to the points in G+, possibly rejecting this solution as soon as we find
some distance (and thus r+) to be at least r−.

4.4. Case 4: card(A+) = 1, card(A−) = 2 and y1, y2 and a are collinear

Let a be the active point and S1, S2 be the two active polygons. Three cases are possible for y1 and y2: two vertices, one
vertex and one on an edge, or both on an edge. The first case is ruled out for data in the general position (case 1 of Remark 5).

In order to construct possible instances of the second case we consider each point a ∈ A+ in turn as active, and study if
the line connecting awith some vertex y1 of an S1 ∈ A− cuts an edge e2 of some S2 ∈ A−. In this case we call the cutpoint y2.
On the line through y2 orthogonal to e2 we construct the point x0 at equal distance from y2 and y1. Such a case is illustrated
in Fig. 13 on the left.

The instances of the third case are found as follows. Given a′ and the edges e1 and e2, we study if there can exist two
points y′

1 and y′

2 lying on the edges, such that the condition of collinearity is satisfied. If this is possible, we compute the
bisectrix r of the two edges and the orthogonal straight line r ′ to the bisectrix containing the point a′ (see Fig. 13). Let y′

1
and y′

2 be the intersection of r ′ with e1 and e2, respectively. Then, x′

0 will be built as the intersection of the bisectrix with the
orthogonal straight line to e1 containing y′

1 (see Fig. 13, right). Symmetrically, we can also do the same using e2 and y′

2.
Once x0 is built, we follow the same procedure to build the radii and to check feasibility as in case 2.
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Fig. 13. Case 4. Constructing x0 .

4.5. Case 5: card(A+) = 3 and card(A−) = 1

Note first that this case can only arise for instances of the problem with negative optimal value. Hence, if we previously
found a candidate solution with positive value, we do not need to consider this case at all. For this reason this case should
better be kept till the end.

Let a1, a2, a3 be the three active points, we compute x0 as their circumcenter (equivalently, x0 is the intersection of the
mediatrices between these points), and r+ = d(x0, ai), for any i = 1, 2, 3.

Now, we compute the distance from x0 to the remaining points of G+. Only in case the maximum of these distances is
smaller than or equal to r+ (if it is bigger than r+, the points ai, i = 1, 2, 3, cannot be active), we compute r− as theminimum
distance from x0 to the polygons of G−. The polygon S whose distance to x0 is equal to r− will be the fourth active element.

Finally, r+ must be bigger than r− to ensure that we have a local optimal solution (otherwise, a better solution can be
found in a neighborhood of x0, according to Theorem 2).

4.6. Computational considerations

4.6.1. Complexity
Let us now study the total number of candidate points that are inspected during the algorithm. Denote by n the number

of points in G+, by m the number of polygons in G− and by k the maximum number of vertices of these polygons.
For the candidate solutions of type 1,weneed to study all the possible combinations of three polygons, and all the possible

combinations of vertices and edges that define different active elements. This yields a set of O(k3m3) points.
For the candidates of type 2, we need to select two polygons and every possible combination of active elements (vertices

and edges of these two polygons) and two vertices. We have then O(n2k2m2) points.
Two polygons are needed to build each candidate of type 3. We have O(k2m2) such points. For the candidates of type

4, we need to consider all possible combinations of edges of two polygons and one point, yielding O(nk2m2). Finally, if we
need to compute the candidates of type 5, we need to study all the combinations of three active points, and we have O(n3)
points.

The overall number of candidate points is therefore O((n + km)3 + n2k2m2).
Since in each case constructing and evaluating the candidate point is clearly polynomial (naively at most O(n+ km)), we

obtain a polynomial algorithm at most of O((n + km)4 + n3(km)2 + n2(km)3).
Note that if one knows in advance that the optimal value will be positive, i.e. that the original constraint set (1)–(2) is

feasible, or if one is only interested in such cases and accepts a simple ‘no’ answer in case of non-feasibility, the number of
cases to consider is reduced to O((km)3 + (nkm)2) and the overall complexity to O((n2

+ km)(n + km)(km)2). We will call
this ‘the original problem’.

4.6.2. Preprocessing
The effort needed for the enumeration algorithm may often considerably be reduced in practice by some preprocessing

that eliminates points, edges and/or vertices that can certainly not yield candidate optimal solutions. The following
geometrical conditions are of this kind. The first is always applicable, the last two only for the original problem.
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Fig. 14. Left: initial scenario. Right: set of candidate optimal solutions.

Points For any solution x0 any active point in A+ maximizes the distance d(x, a) over a ∈ G+, so by convexity maximizes
also the distance d(x, c) over all c ∈ CH(G+), the convex hull of G+. Since this maximum will always be reached
in some extreme point of CH(G+) it follows that the set G+ may be reduced to the usually much smaller set EG+

of such extreme points, without modifying the optimal solutions. This may be achieved easily as a preprocessing
through some convex hull algorithm, see e.g. [11].

Vertices Let v be an active vertex of some polygon. This means that the circle B(x0, r−) contains v on its boundary, but no
other points of any polygon of G− in its interior. If r+ ≤ r− all points of G+ lie within this circle and therefore,
by convexity, the circle contains CH(G+ ∪ {v}). It follows that no point of the polygons of G− lies on a half-open
segment ]v, c] for any c ∈ CH(G+). We will say in this case that v ‘sees’ G+.
Therefore when r+ ≤ r− no vertex of a polygon that does not see G+ can be active.
Such vertices can be identified a priori using visibility techniques from computational geometry, see e.g. [11], and
then further ignored in the enumeration algorithm.

Edges Let now e be an active edge of some polygon of G−, and let p be the touching point of ewith the circle B(x0, r−). The
same reasoning as above shows that the point p must see G+.
Therefore when r+ ≤ r− and none of the points of an edge e of a polygon sees G+ it follows that e cannot be active.
Such fully ‘blind’ edges can be similarly identified a priori using visibility techniques from computational geometry,
see e.g. [11], and then further ignored in the enumeration algorithm.

5. Illustrative examples

The algorithmdescribed in the previous section to compute an optimal solution of our problemby complete enumeration
of all the possible candidates (without preprocessing) has been implemented inMatlab 6.5. Some numerical tests have been
performed with artificial databases, built at random, but always such that the original problem was feasible.

5.1. Small dataset: comparing areas for all the candidates

The first example is a small dataset (4 points and 4 squares) to illustrate the types of candidate solutions that can arise.
We generated 4 points for the group G+ (uniformly distributed U(−5, 5)2). The polygons for the group G− were chosen to
be 4 squares of equal size 2 × 2, and random center points (also uniformly distributed U(−20, 20)2, but outside the box
enclosing the 4 first points). Our aim is to locate a single semi-obnoxious facility in a point x0 ∈ R2, or equivalently, to
compute two concentric balls such that B(x0, r+) contains all the points and B(x0, r−) does not intersect any squares. Fig. 14
(left) shows a picture of the artificial database.

All the candidate optimal solutions have been computed via the method described in Section 4, by taking into account
all the possible combinations of active elements. Fig. 14 (right) shows this set of candidate locations, represented by stars.

In Fig. 15, we show the two candidates with a configuration of type 1 (according to the previous section), that is, there
are three active polygons (squares) and one active point. In the picture, the active squares are the black ones, while the
active point is encircled. These active elements (points and squares) lie on the boundary of the balls B(x0, r+) and B(x0, r−),
respectively, where x0 is represented by a star. Maximizing the objective function is equivalent to maximizing the area of
the annulus defined by the boundaries of the two balls.

In Fig. 16, the three candidate solutions have two active points and two squares. In Fig. 17, we show five candidates with
two active squares and one active point, and x0, the location of the facility, is a breakpoint of the bisector defined by the two
active squares. Observe that, although the active elements are the same for the three first pictures in this configuration, the
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Fig. 15. Candidates type 1. Area of the annulus: 183.27 and 132.32, respectively.

Fig. 16. Candidates type 2. Area of the annulus: 182.32, 171.45 and 160.97, respectively.

solutions are different because the centers of the balls are different breakpoints of the same bisector. Due to the definition
of breakpoint, one of the active squares in this kind of solutions has a vertex as the active element, but the adjacent edge
touches tangentially the ball B(x0, r−). Hence, one can say that the two elements (the vertex and the edge) can be considered
as active.

In this example, there are no candidate solutions with a configuration of type 4. Type 5 is excluded because we found
feasible solutions with positive value.

If we compare the ten areas (that is, the values of the objective function), we find that the point x0 illustrated in the first
picture in Fig. 15 is optimal for our problem.

5.2. Medium dataset

Other larger databases have been similarly generated to test the algorithm. In the next example we generated at random
50 points for the group G+ and 20 points as the centers of the squares of G−. Fig. 18 illustrates the dataset.

By means of the method described in Section 4, all the candidate optimal solutions have been studied. The two pictures
in Fig. 19 show (at different zoom levels) all 37 obtained candidate locations represented by stars. All the stars far from the
set of squares and points represent local optimawith a negative value of the objective function. These solutions have at least
two active points associated (configurations of type 2 and 5), and represent local optima of formulation (10) with negative
objective value. Since our dataset is spherically separable these cannot be global optima.

Fig. 20 shows the optimal solution for this dataset. The solution x0, represented by a star, has two active points associated
(encircled) and two active squares (in both of them, the point lying on the boundary of the ball is a vertex).

5.3. Large dataset

Finally, we show in Fig. 21 a larger random database with 100 points and 50 squares (smaller than above). In Fig. 22 we
can see the finite dominating set on two different zoom levels. In total there are 42 candidate points, but most have negative
objective value.
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Fig. 17. Candidates type 3. Area of the annulus: 35.648, 101.54, 138.16, 21.53 and 33.932, respectively.

Fig. 18. Initial scenario (50 points and 20 squares).

However as the database is spherically separable we have some solutions with a positive value. All 7 candidates with
positive value are depicted in Fig. 23. The optimal location of the facility and the separating balls are shown in Fig. 24.
Again, the solution has four active elements associated with it, two active points and two active polygons. The ball of radius
r− touches these two squares at one vertex of each square.

Observe the quite small number of candidates in the finite dominating set, as compared to the cardinality of the number
of cases considered as calculated in the complexity study in Section 4.6.1. This is due to the fact that most cases considered
during its construction are found to be unsuitable and are therefore discarded. Some of this work will be avoided by the
preprocessing.
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Fig. 19. Candidates to optimal solution.

Fig. 20. Optimal solution.

Fig. 21. Initial scenario (100 points and 40 squares).

6. Conclusion and extensions

In this work, the problem of locating a single semi-obnoxious facility in the Euclidean planewith repelling areas has been
solved. The idea of maximizing a margin, as done in the field of Support Vector Machines, has been introduced to define the
concept of solution.
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Fig. 22. Finite dominating set.

Fig. 23. Candidates with positive value of the objective function.

Fig. 24. Optimal solution.

The problem has been formulated as a nonlinear continuous optimization problem and necessary conditions for
optimality have been deduced. These conditions state that every candidate solution must have at least four active elements
(except for some special cases), two of thembelonging to the groupwhose associated ball is larger and one of thembelonging
to the other group. Likewise, other conditions have been obtained by studying the intersection of the convex hulls of the
sets of active elements and the sets of groups, respectively.
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With these necessary conditions, it has been proved that a finite dominating set of solutions can be built in order to
obtain an optimal solution. This dominating set of solutions has been constructed algorithmically and been implemented.
Furthermore, some numerical results have been given.

More research, e.g. using more advanced algorithmic techniques of computational geometry, should allow to develop
better preprocessing rules to avoid a lot of unnecessary work or even to reduce the size of the finite dominating set, and
possibly fathoming rules may be developed that would avoid its full enumeration. However, it seems doubtful that its
complexity could be reduced without a fundamentally different approach.

The concept of a solution for this problem can be extended by considering other types of balls such as ellipsoids. The
problem may also be extended to higher dimensions, and/or to the location of several facilities, for which several of the
necessary conditions developed here should still hold. For such extensions, as well as for large databases, the number of
candidate solutions will become prohibitive and heuristic techniques will have to be used to obtain a solution within an
acceptable amount of time. The use of metaheuristics such as Variable Neighborhood Search, see e.g. [17], would be a good
candidate.
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