# LOCATING AN UNDESIRABLE FACILITY BY GENERALIZED CUTTING PLANES 

EMILIO CARRIZOSA and FRANK PLASTRIA


#### Abstract

We address the problem of locating an undesirable facility within a compact set by minimizing a strictly decreasing boundedly lower subdifferentiable function of the squared Euclidean distances to a set of fixed points.

Using (generalized) cutting planes, the resolution of this problem is reduced to solving a sequence of maxmin problems. These maxmin problems have a clear geometrical interpretation, which enables to solve them sequentially by means of an on-line enumeration of the vertices of polyhedra in higher dimensions.


1. The model and motivations. Let $A$ be a finite nonempty subset of $\mathbb{R}^{d}$ and let $\|\cdot\|$ be the Euclidean norm, $\|u\|=\sqrt{ }\langle u, u\rangle$, where $\langle\cdot, \cdot\rangle$ stands for the usual scalar product. Define the function

$$
\begin{aligned}
D: \mathbb{R}^{d} & \rightarrow \mathbb{R}_{+}^{|A|} \\
x & \mapsto D(x)=\left(\|x-a\|^{2}\right)_{a \in A} .
\end{aligned}
$$

Given a nonempty compact subset $S$ of $\mathbb{R}^{d}$ and a decreasing function $\varphi: \mathbb{R}_{+}^{|A|} \rightarrow \mathbb{R}$, consider the problem $(P)$,

$$
\begin{equation*}
\min _{x \in S} \varphi(D(x)) . \tag{P}
\end{equation*}
$$

This problem has a clear interpretation in Planar Location Theory (see, e.g., Love, Morris, and Wesolowsky (1988) for an introduction and Plastria (1995a) for a comprehensive presentation of the field). Suppose that an undesirable facility (e.g., a nuclear plant) is to be located at some point $x$ within a region $S \subset \mathbb{R}^{2}$; the facility will affect existing population, which is assumed to be concentrated at the points of $A$. The (risk of) damage caused to population is modeled as a decreasing function $\varphi$ of the vector $D(x)$ of (squared) Euclidean distances separating $x$ from the population. We stress that, since distances are used here to measure effects such as pollution, heat, noise, magnetic waves, etc., which propagate homogeneously in space, the use of the Euclidean norm seems to be judicious, whilst other distance measures such as polyhedral norms, e.g., Love, Morris, and Wesolowsky (1988) or Plastria (1995a), so popular for locating desirable facilities, are of little interest in our context.

Moreover, the noxious character of the facility to be located makes transportation costs negligible. In other words, the facility should be located at the optimal solution to some problem of type $(P)$.

In order to make $(P)$ tractable we need to impose some assumptions on the feasible region $S$ and the function $\varphi$, as discussed below.

Received: July 12, 1995; revised: Nov. 12, 1996; June 29, 1997.
AMS 1991 subject classification. Primary: 90B85; Secondary: 90C26; 68U05; 90A39; 51M20.
OR/MS Index 1978 subject classification. Primary: Facilities/Continuous location; Secondary: Nonlinear programming/Algorithms and applications.
Key words. Facility location, lower subdifferentiable functions, cutting planes, power diagrams.
1.1. The feasible region. Concerning the shape of $S$, in practice one does not lose much generality by imposing further assumptions on $S$ apart from compactness. Indeed, one may assume that $S$ is given as a union of polygonal regions (which is the typical representation in Geographical Information Systems) with extra constraints reflecting legal or environmental considerations on the facility location; for instance, due to the undesirable character of the facility, there may exist protection areas around population centers, leading to reverse-convex constraints of the form

$$
\begin{equation*}
\|x-a\| \geq r_{a} \tag{1.1}
\end{equation*}
$$

Plastria (1995b). For simplicity we make the following assumption on $S$ :
A1. $S$ is a nonempty compact subset of $\mathbb{R}^{d}$, given as

$$
\begin{equation*}
S=\left\{x \in \mathbb{R}^{d}: h_{j}(x) \geq 0, \text { for all } j=1,2, \ldots, p\right\} \tag{1.2}
\end{equation*}
$$

where each $h_{j}$ is either of the form

$$
\begin{equation*}
h_{j}(x)=\left\langle v_{j}, x\right\rangle+\delta_{j} \tag{1.3}
\end{equation*}
$$

(thus the corresponding constraint defines a closed halfspace in $\mathbb{R}^{d}$ ), or

$$
\begin{equation*}
h_{j}(x)=\left\|x-v_{j}\right\|^{2}-r_{j} \tag{1.4}
\end{equation*}
$$

defining the closed complement of a ball in $\mathbb{R}^{d}$.
Observe that more complicated regions $S$-in fact, most of those provided by Geographical Information Systems-can be constructed as finite unions of sets $S_{i}$ in the form of (1.2), thus the resolution of the corresponding problem may be reduced to solving (a finite number of) problems with feasible region $S_{i}$ verifying Assumption A1.
1.2. The objective function. We make the following assumption on $\varphi$.

A2. $\varphi$ is strictly decreasing and boundedly lower subdifferentiable with BLSD bound $M$ on the compact set $D(S)$.
By strictly decreasing we mean that

$$
\varphi(u)>\varphi(v) \quad \text { whenever } u_{i} \leq v_{i} \text { for all } i=1,2, \ldots, d, \text { and } u \neq v
$$

We also recall that a function $f$ is said to be lower subdifferentiable on the set $K$ iff for every $u \in K$ there exists some nonempty set $\partial^{-} f(u)$ (the lower subdifferential off at $u$ ) such that for all $\eta \in \partial^{-} f(u)$, it follows that

$$
f(v) \geq f(u)+\langle\eta, v-u\rangle \quad \forall v \in K \text { such that } f(v)<f(u)
$$

Moreover, $f$ is said to be boundedly lower subdifferentiable (BLSD) with BLSD-bound $M$ on $K$ if $f$ is lower subdifferentiable, and

$$
\forall u \in K \exists \eta_{u} \in \partial^{-} f(u) \text { such that }\left\|\eta_{u}\right\| \leq M
$$

We refer the reader to Plastria $(1983,1985)$ and Martínez-Legaz (1988) for further details on this concept.

Assuming that $\varphi$ is strictly decreasing expresses that the damage caused by the facility (or risk run by the population) is decreasing with distance; the BLSD character of $\varphi$ is more technical and necessary for algorithmic purposes, but, as the following examples
show, is general enough to enable us to cope with a wide range of minisum and minimax problems; see Hansen, Peeters, and Thisse (1981), Plastria (1995b).

Example 1. One can address under Assumption A2 problems of the form

$$
\begin{equation*}
\min _{x \in S} \sum_{a \in A} f_{a}\left(\|x-a\|^{2}\right) \tag{1.5}
\end{equation*}
$$

in which one minimizes the total damage caused by the facility to the population centers in $A$, assuming that the damage caused to each $a \in A$ is given by $f_{a}\left(\|x-a\|^{2}\right)$.

Indeed, if for each $a \in A$ the function $f_{a}: \mathbb{R}_{+} \rightarrow \mathbb{R}$ is strictly decreasing and convex, then the function $\varphi:\left(z_{a}\right)_{a \in A} \mapsto \sum_{a \in A} f_{a}\left(z_{a}\right)$ is strictly decreasing and convex, thus BLSD on the compact set $D(S)$, Plastria (1985), thus $\varphi$ verifies A2.

On the other hand, since the facility is assumed to be dangerous for population, it seems sensible to give a high penalty, tending to infinity in the limit, to locations close to population, concentrated at $A$. In particular, as an alternative to (1.5), one may consider problems of the form

$$
\begin{equation*}
\inf _{x \in S \backslash A} \sum_{a \in A} f_{a}(\|x-a\|) \tag{1.6}
\end{equation*}
$$

where, for each $a \in A, f_{a}:(0,+\infty) \rightarrow \mathbb{R}$ is a strictly decreasing convex function such that $\lim _{t \downarrow 0} f_{a}(t)=+\infty$. For instance, taking $f_{a}(t)=w_{a} t^{-\lambda_{a}}$ for some $w_{a}, \lambda_{a}>0$, similar to the way Erkut and Neuman (1992) build data for their discrete obnoxious location model, (1.6) becomes

$$
\inf _{x \in S \backslash A} \sum_{a \in A} w_{a}\|x-a\|^{-\lambda_{a}}
$$

which represents the minimization of the total damage, if each $w_{a}$ reflects the population concentrated at $a$, and now the damage per inhabitant caused to the point $a$ by a facility located at a distance $d$ is assumed to be $1 / d^{\lambda_{a}}$. In particular, for $\lambda_{a}=2$ for all $a \in A$, one obtains the gravitational model previously considered in Melachrinoudis and Cullinane (1986).

Defining $g_{a}: \mathbb{R}_{+} \rightarrow(\mathbb{R} \cup\{+\infty\})$ as

$$
g_{a}(t)= \begin{cases}f_{a}(\sqrt{t}) & \text { if } t>0 \\ +\infty & \text { if } t=0\end{cases}
$$

and $\varphi$ as

$$
\varphi:\left(u_{a}\right)_{a \in A} \in \mathbb{R}_{+}^{n} \mapsto \sum_{a \in A} g_{a}\left(u_{a}\right) \in(\mathbb{R} \cup\{+\infty\})
$$

we see that (1.6) can be rewritten as

$$
\begin{equation*}
\inf _{x \in S \backslash A} \varphi(D(x)) \tag{1.7}
\end{equation*}
$$

Furthermore, each $g_{a}$ is strictly decreasing and convex (it is the composition of the strictly increasing concave function $\sqrt{\cdot}$ with the strictly decreasing convex function $f_{a}$ ),
hence $\varphi$ has the same properties. On the other hand, although $\varphi$ is not BLSD on $S \backslash A$ (the subgradients have arbitrarily high norm near the hyperplanes $u_{i}=0$ ), it is not difficult to construct an equivalent problem of type $(P)$ by showing, as in Hansen, Peeters, and Thisse (1981), that points too close to $A$ are not actual candidates to optima. Indeed, choose any $\bar{x} \in S \backslash A$ (such $\bar{x}$ exists unless $S \subset A$, which would lead to an infeasible problem), and let $z=\varphi(D(\bar{x}))$. In particular, $z \geq \inf _{x \in S \backslash A} \varphi(D(x))$.

For each $a \in A$, let $c_{a}>0$ be such that $g_{a}\left(c_{a}\right) \geq z$. Observe that, since $\lim _{t \downarrow 0} g_{a}(t)$ $=+\infty$, such $c_{a}$ exists. It then follows that one can restrict the search of optimal solutions of (1.7) to the region

$$
\begin{equation*}
\left\{x \in S:\|x-a\| \geq c_{a} \forall a \in A\right\} . \tag{1.8}
\end{equation*}
$$

In particular, this implies that solving (1.7) can be reduced to solving

$$
\begin{align*}
& \inf \varphi(D(x)) \\
& \text { s.t. }\|x-a\| \geq c_{a} \forall a \in A  \tag{1.9}\\
& x \in S,
\end{align*}
$$

whose constraints verify Assumption A1 and the objective function is BLSD.
Observe, however that, if $S$ is a polyhedron, the polyhedral (and convex!) structure of $S$ is lost after adding the reverse-convex constraints leading to (1.9). We now show that it is possible to obtain an equivalent problem to (1.7) with BLSD objective function and $S$ as feasible region, thus avoiding the inclusion of reverse-convex constraints. Indeed, for any $a \in A$, let $\eta_{a}$ be a subgradient of the convex function $g_{a}$ at $c_{a}$, and define the function $\tilde{g}_{a}$ as

$$
\tilde{g}_{a}(t)= \begin{cases}g_{a}(t) & \text { if } t \geq c_{a} \\ g_{a}\left(c_{a}\right)+\left(t-c_{a}\right) \eta_{a} & \text { otherwise }\end{cases}
$$

In particular, for $f_{a}(t)=w_{a} t^{-\lambda_{a}}$, one obtains

$$
g_{a}(t)=f_{a}(\sqrt{t})=w_{a} t^{-\lambda_{a} / 2}
$$

Hence one can take

$$
\begin{aligned}
c_{a} & =\left(w_{a} / z\right)^{2 / \lambda_{a}} \\
\eta_{a} & =g^{\prime}\left(c_{a}\right) \\
& =-\frac{\lambda_{a} w_{a}}{2} c_{a}^{-1-\left(\lambda_{a} / 2\right)} .
\end{aligned}
$$

Let $\tilde{\varphi}: \mathbb{R}_{+}^{|A|} \rightarrow \mathbb{R}$ be defined as

$$
\tilde{\varphi}:\left(u_{a}\right)_{a \in A} \mapsto \tilde{\varphi}\left(\left(u_{a}\right)_{a \in A}\right)=\sum_{a \in A} \tilde{g}_{a}\left(u_{a}\right)
$$

It is easily seen that $\tilde{\varphi}$ is BLSD with BLSD-constant $M=\Sigma_{a \in A}\left|\eta_{a}\right|$, and Problem (1.7) -thus also (1.6) -is equivalent to $\min _{x \in S} \tilde{\varphi}(D(x))$, as asserted.

EXAMPLE 2. For each $a \in A$, let $f_{a}: \mathbb{R}_{+} \rightarrow \mathbb{R}$ be strictly decreasing and Lipschitz on compact subsets of $\mathbb{R}_{+}$, and consider the problem

$$
\begin{equation*}
\min _{x \in S} \max _{a \in A} f_{a}\left(\|x-a\|^{2}\right) \tag{1.10}
\end{equation*}
$$

which seeks the location $x$ for which the highest damage (assumed to be of the form $f_{a}\left(d^{2}\right)$ if $a$ lies at distance $d$ from $\left.x\right)$ to any of the points $a$ is minimized.

Let $R=\max _{x \in S, a \in A}\|x-a\|^{2}$, which, as $S$ is compact, is finite. Hence, $f_{a}$ is monotonous (thus quasiconvex) and Lipschitz-continuous on [0,R], thus (see Plastria (1985)) it is BLSD, and, consequently, the function $\varphi=\max _{a \in A} f_{a}$ (i.e. the objective function of $(1.10)$ ), is also BLSD.

The aim of the paper is to solve $(P)$ under the following assumptions:

- The decision space is $\mathbb{R}^{d}$ (although, in practice, we always have $d=2$ )
- $\|\cdot\|$ is the Euclidean norm
- $S$ is a nonempty compact subset of $\mathbb{R}^{d}$, defined as a finite intersection of closed halfspaces and closed complements of spheres.
- The utility function $\varphi$ is strictly decreasing and boundedly lower subdifferentiable.

The rest of the paper is structured as follows. In $\S 2$ we propose a cutting-plane algorithm to solve $(P)$. The actual implementation of such an algorithm requires, at each step, solving a nonlinear subproblem, the geometrical structure of which is described first in a particular case (§3) and then in the general case (§4), including reverse-convex constraints of type (1.1).
2. Solving $(P)$. Extending the cutting-plane method of Plastria $(1983,1985)$ for BLSD optimization, Barros and Frenk (1995) have introduced in a recent paper a generalized cutting-plane method which reduces the resolution of problems of the form $\min _{x \in S}$ $\Psi(f(x))$ for some BLSD function $\Psi$ to solving a sequence of nonlinear minmax problems, see Barros and Frenk (1995) for further details. When particularized to problem ( $P$ ), one obtains the following

```
Algorithm.
Initialization
Take }\mp@subsup{x}{1}{}\inS\mathrm{ .
Set UB1}=\varphi(D(\mp@subsup{x}{1}{}))\mathrm{ and }\mp@subsup{x}{}{*}=\mp@subsup{x}{1}{}\mathrm{ .
Set r=1.
```

Iteration $r=1,2, \ldots$
Let $\eta_{r} \in \partial^{-} \varphi\left(D\left(x_{r}\right)\right)$ such that $\left\|\eta_{r}\right\| \leq M$.
If $\eta_{r}=0$ then Stop.
Solve $\left(Q_{r}\right)$,
$\left(Q_{r}\right)$
$z_{r}=\min _{x \in S} \max _{1 \leq k \leq r}\left(\varphi\left(D\left(x_{k}\right)\right)+\left\langle\eta_{k}, D(x)-D\left(x_{k}\right)\right\rangle\right)$.
Let $x_{r+1}$ be an optimal solution to $\left(Q_{r}\right)$.
If $U B_{r}>\varphi\left(D\left(x_{r+1}\right)\right)$ then set $x^{*}=x_{r+1}$.
Set $U B_{r+1}=\min \left\{U B_{r}, \varphi\left(D\left(x_{r+1}\right)\right)\right\}$.
If $z_{r}=U B_{r+1}$ then Stop. Else, go to iteration $r+1$.

If the algorithm stops after a finite number of steps, it is clear that $x *$ is optimal to $(P)$. On the other hand, one has

Theorem 3 (Barros and Frenk 1995). If the algorithm above does not stop after a finite number of steps, then
(1) the sequence $\left\{z_{r}\right\}_{r}$ converges monotonically from below to the optimal value of $(P)$;
(2) the sequence $\left\{U B_{r}\right\}_{r}$ converges monotonically from above to the optimal value of $(P)$;
(3) any accumulation point of the sequence $\left\{x_{r}\right\}_{r}$ is an optimal solution to $(P)$.

Two critical issues in the above algorithm are how to find lower subgradients $\eta_{r}$ with bounded norm, and how to solve the sequence of problems $\left(Q_{r}\right)$.

We refer the reader to Plastria $(1983,1985)$ for details on the construction of lower subgradients and lower-subdifferential calculus and focus here on solving the nonlinear subproblems $\left(Q_{r}\right)$. Such subproblems are, as a rule, multimodal, so their resolution still involves global optimization; however, their structure is rich enough to enable the optimization in finite time; in fact, solving the sequence of problems $\left\{\left(Q_{r}\right)\right\}_{r}$ can be reduced to inspecting the vertices of a sequence $\left\{\Gamma_{r}\right\}_{r}$ of nested polyhedra in higher dimensions as soon as $S$ is polyhedral, as will be shown in $\S \S 3$ and 4. (Reduction to enumeration schemes is also possible for the subproblem $\left(Q_{r}\right)$ if in Problem $(P)$ we replace $D(x)$ by the vector $(\gamma(x-a))_{a \in A}, \gamma$ being a polyhedral gauge. However, as described in the Introduction, the motivation for the problem forces us to use the Euclidean norm.)

Now we give an equivalent expression for $\left(Q_{r}\right)$ which will enable us later to rewrite the problem in geometrical terms. First we need the following

Lemma 4. Let $u \in \mathbb{R}_{+}^{A}$, and let $\eta=\left(\eta_{a}\right)_{a \in A} \in \partial^{-} \varphi(u)$. Then, $\eta_{a}<0$ for each $a$ $\in A$.

Proof. For each $a \in A$, let $e^{a}$ be the unit vector of $\mathbb{R}^{A}$ with 1 at its $a$ th component and 0 everywhere else. As $\varphi$ is strictly decreasing, $\varphi(u)>\varphi\left(u+t e^{a}\right)$ for all $t>0$ and we have

$$
t\left\langle\eta, e^{a}\right\rangle \leq \varphi\left(u+t e^{a}\right)-\varphi(u)<0
$$

Hence $\eta_{a}=\left\langle\eta, e^{a}\right\rangle<0$ for all $a \in A$, as asserted.
Defining, $\alpha_{k}, c_{k}$ and $\beta_{k}$ for each $k$ as

$$
\begin{aligned}
& \alpha_{k}=\sum_{a \in A}-\left(\eta_{k}\right)_{a}, \\
& c_{k}=\frac{1}{\alpha_{k}} \sum_{a \in A}-\left(\eta_{k}\right)_{a} a, \\
& \beta_{k}=\left(-\sum_{a \in A}\left(\eta_{k}\right)_{a}\|a\|^{2}\right)-\varphi\left(D\left(x_{k}\right)\right)+\left\langle\eta_{k}, D\left(x_{k}\right)\right\rangle-\alpha_{k} c_{k}
\end{aligned}
$$

it follows after a few calculations that $\left(Q_{r}\right)$ can also be written as

$$
\begin{equation*}
\max _{x \in S} \min _{1 \leq k \leq r}\left(\alpha_{k}\left\|x-c_{k}\right\|^{2}+\beta_{k}\right) \tag{2.11}
\end{equation*}
$$

Since, by Lemma 4, each $\alpha_{k}$ is positive, each function $f_{k}:=\alpha_{k}\left\|^{\prime}-c_{k}\right\|^{2}+\beta_{k}$ is convex,
thus the objective function in (2.11) is d.c., Horst and Tuy (1990), making it solvable by general-purpose d.c. techniques. However, as we show in the rest of this section, the structure of the problem can be used to reduce the resolution of (2.11) to evaluating a finite number of points, and discuss in the two remaining sections how to design such more direct procedures.

Now we show that, for a point $x^{*}$ to be optimal for $\left(Q_{r}\right)$, a sufficiently high number of functions $f_{k}$ and constraints defining $S$ must be active at $x^{*}$.

By Assumption A1, $S$ is a nonempty compact set of the form

$$
S=\left\{x \in \mathbb{R}^{d}: h_{j}(x) \geq 0, j=1,2, \ldots, p\right\}
$$

each $h_{j}$ being either $h_{j}(x)=\left\langle v_{j}, x\right\rangle+\delta_{j}$ or $h_{j}(x)=\left\|x-v_{j}\right\|^{2}-r_{j}$. For each $x * \in S$ define $A C\left(x^{*}\right)$ (the set of active or binding constraints) , $A F\left(x^{*}\right)$ (the set of active functions) and $T\left(x^{*}\right)$ as

$$
\begin{aligned}
A C\left(x^{*}\right) & =\left\{j \in\{1,2, \ldots, p\}: h_{j}\left(x^{*}\right)=0\right\} \\
A F\left(x^{*}\right) & =\left\{k \in\{1,2, \ldots, r\}: f_{k}\left(x^{*}\right)=\min _{1 \leq j \leq r} f_{j}\left(x^{*}\right)\right\} \\
T\left(x^{*}\right) & =\left\{x \in \mathbb{R}^{d}: h_{j}(x) \geq 0 \forall j \notin A C\left(x^{*}\right)\left\langle\nabla h_{j}\left(x^{*}\right), x-x^{*}\right\rangle \geq 0 \forall j \in A C\left(x^{*}\right)\right\},
\end{aligned}
$$

and define $f=\min _{1 \leq k \leq r} f_{k}$.
The set $T\left(x^{*}\right)$ enjoys the following properties.
Lemma 5. For each $x^{*} \in S$ one has
(1) $T\left(x^{*}\right) \subset S$;
(2) $x^{*} \in T\left(x^{*}\right)$;
(3) the set of feasible directions of $T\left(x^{*}\right)$ at $x^{*}$ is the polyhedral cone

$$
\left\{\eta \in \mathbb{R}^{d}:\left\langle\nabla h_{j}\left(x^{*}\right), \eta\right\rangle \geq 0 \forall j \in A C\left(x^{*}\right)\right\}
$$

(4) The nonzero vector $\eta \in \mathbb{R}^{d}$ is a feasible direction of $T\left(x^{*}\right)$ at $x^{*}$ of strict ascent for fiff

$$
\begin{align*}
& \left\langle\nabla h_{j}\left(x^{*}\right), \eta\right\rangle \geq 0 \quad \forall j \in A C\left(x^{*}\right)  \tag{2.12}\\
& \left\langle\nabla f_{k}\left(x^{*}\right), \eta\right\rangle \geq 0 \quad \forall k \in A F\left(x^{*}\right) \tag{2.13}
\end{align*}
$$

Proof. To show 1, let $x \in T\left(x^{*}\right)$. We have, by construction of $T\left(x^{*}\right)$, that $h_{j}(x)$ $\geq 0 \forall j \notin A C\left(x^{*}\right)$. Moreover, the convexity of each $h_{j}$ implies for any $j \in A C\left(x^{*}\right)$ that

$$
\begin{aligned}
h_{j}(x) & =h_{j}(x)-h_{j}\left(x^{*}\right) \\
& \geq\left\langle\nabla h_{j}\left(x^{*}\right), x-x^{*}\right\rangle \geq 0
\end{aligned}
$$

thus $x \in S$, showing 1. Parts 2 and 3 then immediately follow from the definition of $T\left(x^{*}\right)$.

For Part 4, observe that Part 3 of the lemma states the equivalence between (2.12) and $T\left(x^{*}\right)$-feasibility of $\eta$. Moreover, the strict convexity of each function $f_{k}$ implies the equivalence between (2.13) with the strict ascent of each $f_{k}$ in the direction $\eta$, from which the result follows.

From Lemma 5, one immediately has
Lemma 6. If $x^{*} \in S$ is an optimal solution to $\left(Q_{r}\right)$, then $x *$ is also optimal for problem

$$
\max _{x \in T\left(x^{*}\right)} f(x)
$$

We are now in position to present the result which states that, at any optimal solution of ( $Q_{r}$ ), a sufficiently high number of functions or constraints must be active:

THEOREM 7. If $x *$ is an optimal solution for $\left(Q_{r}\right)$, then

$$
\begin{equation*}
d<\left|A C\left(x^{*}\right)\right|+\left|A F\left(x^{*}\right)\right| \tag{2.14}
\end{equation*}
$$

Proof. Assume by contradiction that $\left|A C\left(x^{*}\right)\right|+\left|A F\left(x^{*}\right)\right| \leq d$ and let us prove that $x^{*}$ is not an optimal solution to $\left(Q_{r}\right)$. Defining

$$
C=\left\{\nabla h_{j}\left(x^{*}\right): j \in A C\left(x^{*}\right)\right\} \cup\left\{\nabla f_{k}\left(x^{*}\right): k \in A F\left(x^{*}\right)\right\}
$$

two cases may arise:
Case 1. $C$ does not span $\mathbb{R}^{d}$, choose then any $c \neq 0$ orthogonal to $C$.
Case 2. $C$ spans $\mathbb{R}^{d}$, then it is a basis of $\mathbb{R}^{d}$ because, by assumption it has at most $d$ elements. In this case we choose $c=\sum_{j \in A C\left(x^{*}\right)} \nabla h_{j}\left(x^{*}\right)+\sum_{k \in A F\left(x^{*}\right)} \nabla f_{k}\left(x^{*}\right)$.

Consider now the system of linear inequalities and equalities

$$
\begin{gather*}
\sum_{j \in A C\left(x^{*}\right)} u_{j}\left(-\nabla h_{j}\left(x^{*}\right)\right)+\sum_{k \in A F\left(x^{*}\right)} v_{k}\left(-\nabla f_{k}\left(x^{*}\right)\right)=c  \tag{2.15}\\
u_{j} \geq 0 \quad \forall j \in A C\left(x^{*}\right)  \tag{2.16}\\
v_{k} \geq 0 \quad \forall k \in A F\left(x^{*}\right) \tag{2.17}
\end{gather*}
$$

and observe that it has no solution. Indeed, in the first case (2.15) cannot be satisfied, while in the second case the unique solution to (2.15) is given by $u_{j}=-1 \forall j, v_{k}=-1$ $\forall k$ which contradicts both (2.16) and (2.17).

By Farkas' lemma, there exists $\eta^{*}$ satisfying

$$
\begin{aligned}
\left\langle\nabla h_{j}\left(x^{*}\right), \eta^{*}\right\rangle & \geq 0 \forall j \in A C\left(x^{*}\right) \\
\left\langle\nabla f_{k}\left(x^{*}\right), \eta^{*}\right\rangle & \geq 0 \forall k \in A F\left(x^{*}\right) \\
\left\langle c, \eta^{*}\right\rangle & >0
\end{aligned}
$$

Hence by Lemma 5, $\eta^{*}$ is a feasible direction of $T\left(x^{*}\right)$ and is of strict ascent for $f$ at $x^{*}$, showing that $x^{*}$ cannot be an optimal solution to $\max _{x \in T\left(x^{*}\right)} f(x)$, and, by Lemma 6, also not for $\left(Q_{r}\right)$.

The search of an optimal solution of $\left(Q_{r}\right)$ can be further reduced, since, as shown in Theorem 8 below, not only sufficiently many functions must be active or constraints binding, but also the level sets of the functions $f_{k}$ must have a particular shape at the true candidates to optimality. We first introduce some notation: for each $k$, $j$, let $V_{k j}$ be the set of points $x$ at which $f_{k}(x) \leq f_{j}(x)$,

$$
\begin{equation*}
V_{k j}=\left\{x \in \mathbb{R}^{d}: \alpha_{k}\left\|x-c_{k}\right\|^{2}+\beta_{k} \leq \alpha_{j}\left\|x-c_{j}\right\|^{2}+\beta_{j}\right\} \tag{2.18}
\end{equation*}
$$

and for any $r \geq k$, let $C_{k: r}$ be the set of points at which $f_{k}$ is active for $\left(Q_{r}\right)$, i.e.,

$$
\begin{align*}
C_{k: r} & =\bigcap_{1 \leq j \leq r} V_{k j}  \tag{2.19}\\
& =\left\{x \in \mathbb{R}^{d}: \alpha_{k}\left\|x-c_{k}\right\|^{2}+\beta_{k}=\min _{1 \leq j \leq r} \alpha_{j}\left\|x-c_{j}\right\|^{2}+\beta_{j}\right\}
\end{align*}
$$

Given a set $X$, let $\operatorname{conv}(X)$ denote the convex hull of $X$ and define $\operatorname{ext}(X)$ as

$$
\operatorname{ext}(X)=\{x \in X: x \notin \operatorname{conv}(X \backslash\{x\})\}
$$

which coincides with the set of extreme points of $X$ when $X$ is convex.
Theorem 8. Let $x^{*}$ be an optimal solution to $\left(Q_{r}\right)$. Then, if $x^{*} \in \operatorname{conv}\left(C_{j: r} \cap S\right)$ it will follow that $x^{*} \in \operatorname{ext}\left(C_{j: r} \cap S\right)$.

Proof. Consider for some $j \leq r$ any point

$$
x^{*} \in \operatorname{conv}\left(C_{j: r} \cap S\right) \backslash \operatorname{ext}\left(C_{j: r} \cap S\right)
$$

Then, by definition of $\operatorname{ext}\left(C_{j: r} \cap S\right)$ and Caratheodory's theorem, there would exist $y_{1}$, $y_{2}, \ldots, y_{d+1} \in C_{j: r} \cap S$ and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{d+1} \geq 0, \sum_{i=1}^{d+1} \lambda_{i}=1$ such that $x^{*}=\sum_{i=1}^{d+1} \lambda_{i} y_{i}$, but $x^{*} \neq y_{i}$ for all $i$. Hence, by the strict convexity of each $f_{j}$, one would have

$$
\begin{aligned}
\min _{1 \leq k \leq r} f_{k}\left(x^{*}\right) & \leq f_{j}\left(x^{*}\right) \\
& =f_{j}\left(\sum_{i=1}^{d+1} \lambda_{i} y_{i}\right) \\
& <\max _{1 \leq i \leq d+1} f_{j}\left(y_{i}\right) \\
& =f_{j}\left(y^{*}\right) \quad \text { for some } y^{*} \in C_{j: r} \cap S
\end{aligned}
$$

But then

$$
\min _{1 \leq k \leq r} f_{k}\left(x^{*}\right)<\min _{1 \leq k \leq r} f_{k}\left(y^{*}\right)
$$

showing that $x^{*}$ is not optimal for $\left(Q_{r}\right)$.
The search of an optimal solution for $\left(Q_{r}\right)$ has now been reduced to the identification of those points verifying the conditions in Theorems 7 and 8 . A naive procedure to do this might be to solve, for each $i=0,1, \ldots, d+1$, each subset $J_{C} \subset A C$ of $i$ constraints $h_{j}$ and each subset $J_{F} \subset A F$ of $d+1-i$ functions $f_{k}$, the nonlinear system of equations

$$
\left\{\begin{array}{l}
f_{k}(x)-f_{l}(x)=0 \quad \forall k, l \in J_{F}  \tag{2.20}\\
h_{j}(x)=0 \quad \forall j \in J_{C} \\
x \in S
\end{array}\right.
$$

However, most choices of ( $J_{C}, J_{F}$ ) in system (2.20) lead to infeasible problems, while the feasible ones might (at first glance) lead to nonfinite solution sets, making this enumerative procedure rather inefficient.
We devote the rest of the paper to exploring the geometry of the subproblems $\left(Q_{r}\right)$, which will enable us to identify exactly which choices of ( $J_{C}, J_{F}$ ) make (2.20) feasible. It turns out that only a polynomial number of choices - the dimension $d$ considered to be fixed-need to be considered.

We first address the (easiest) particular case in which all the constraints defining $S$ are linear and all the lower subgradients used in the algorithm have equal norm, and postpone to $\S 4$ the discussion of the general case with nonconvex constraints of the form (1.1) and general lower subgradients.
3. Linear constraints and lower subgradients of equal norm. Further simplifications can be made in case all the lower subgradients of $\varphi$ used in the Algorithm have equal $L_{1}$-norm. We first show that this can always be obtained thanks to the use of lower subgradients. More precisely, from any $x \in \mathbb{R}^{n}$ and $u \in \partial^{-} \varphi(D(x))$, with $\|u\| \leq M$, let $\eta(u)$ be given by

$$
\begin{equation*}
\eta(u)=\frac{|A| M}{\Sigma_{a \in A}\left(-u_{a}\right)} u . \tag{3.21}
\end{equation*}
$$

By Lemma $4, u_{a}<0$ for all $a$, thus

$$
\begin{aligned}
0<\sum_{a \in A}-u_{a} & =\sum_{a \in A}\left|u_{a}\right| \\
& \leq|A| \max _{a \in A}\left|u_{a}\right| \\
& \leq|A|\|u\| \\
& \leq|A| M,
\end{aligned}
$$

thus

$$
\frac{|A| M}{\Sigma_{a \in A}-u_{a}} \geq 1,
$$

which implies that $\eta(u) \in \partial^{-} \varphi(D(x))$, Plastria (1985), and its $L_{1}$ norm equals $|A| M$, which is independent of $x$ and the choice of the lower subgradient $u$.

If $\alpha$ denotes this common $L_{1}$ norm, it will follow that (2.11) (thus also $\left(Q_{r}\right)$ ) is equivalent to

$$
\max _{x \in S} \min _{1 \leq k \leq r}\left\{\left\|x-c_{k}\right\|^{2}+\frac{\beta_{k}}{\alpha}\right\},
$$

and also to

$$
\max _{x \in S}\left[\|x\|^{2}+\min _{1 \leq k \leq r}\left(-2\left\langle x, c_{k}\right\rangle+\left\|c_{k}\right\|^{2}+\frac{\beta_{k}}{\alpha}\right)\right] .
$$

Hence, denoting by $\tilde{D}_{r}$ the set

$$
\begin{equation*}
\tilde{D}_{r}=\left\{(x, z): x \in S, z \leq\left\|c_{k}\right\|^{2}+\frac{\beta_{k}}{\alpha}-2\left\langle x, c_{k}\right\rangle \quad \text { for all } k, 1 \leq k \leq r\right\} \tag{3.22}
\end{equation*}
$$

( $Q_{r}$ ) is equivalent to

$$
\begin{equation*}
\max _{(x, z) \in \tilde{D_{r}}}\|x\|^{2}+z \tag{3.23}
\end{equation*}
$$

When $S$ is a polytope in $\mathbb{R}^{d}, \tilde{D}_{r}$ is a polyhedron in $\mathbb{R}^{d} \times \mathbb{R}$, and (3.23) is a convex quadratic maximization problem with linear constraints; hence, solving ( $Q_{r}$ ) reduces to evaluating the vertices of $\tilde{D}_{r} \subset \mathbb{R}^{d} \times \mathbb{R}$. This task is rather difficult in general; in fact, problem $\left(Q_{r}\right)$ contains as particular instances maxmin problems, which, for variable $d$, are known to be NP-complete, see Crama and Ibaraki (1995). Observe, however, that the most important case in practice is $d=2$, which leads to vertex enumeration in $\mathbb{R}^{3}$. Observe also that each $\tilde{D}_{r+1}$ is obtained from $\tilde{D}_{r}$ by adding one linear constraint. Hence, on-line vertex enumeration procedures, like that suggested in Chen, Hansen and Jaumard (1991), seem to be most appropriate for the resolution of the sequence of problems $\left\{\left(Q_{r}\right)\right\}_{r}$.

Geometrically the family $\left\{C_{k: r}\right\}_{1 \leq k \leq r}$ constitutes the power diagram associated with the sites $c_{1}, c_{2}, \ldots, c_{r}$, with additive weights $\beta_{1} / \alpha, \beta_{2} / \alpha, \ldots, \beta_{r} / \alpha$. Power diagrams are well studied concepts of Computational Geometry (see, e.g., Aurenhammer (1991) and Edelsbrunner (1987)), and can be constructed in polynomial time-the dimension $d$ considered to be fixed, e.g., by incremental insertion. In particular, it is known that the family $\left\{C_{k: r}\right\}_{1 \leq k \leq r}$ constitutes a polyhedral subdivision in $\mathbb{R}^{d}$, which can be seen as the projection of the faces of a certain lifted polyhedron in $\mathbb{R}^{d+1}$. See Aurenhammer (1991) for further details. When $S$ is a polytope it is precisely this lifting construction which transforms the constrained power diagram $\left\{C_{k: r} \cap S\right\}_{1 \leq k \leq r}$ into the polyhedron $\tilde{D}_{r}$ given in (3.22).
4. Nonconvex constraints and general lower subgradients. Including in the model protection areas around population centers, i.e., including in the definition of $S$ reverseconvex constraints of the form (1.1), the polyhedral structure of the problem (3.23) in $\S 3$ is destroyed, making it harder to solve.

We will show in this section that such more realistic situation can also be handled by a more complex geometric approach which also allows for the use of lower subgradients of unequal norm.

With this we gain not only in realism of the model, but also in convergence speed of the procedure. Indeed, taking as lower subgradient always one with norm $|A| M$ (or any other fixed one) does not do much more than indicating a halfspace containing all decrease directions. As shown in Barros and Frenk (1995), this information is sufficient to ensure convergence of the cutting plane algorithm. It does not, however, give any real clue to the actual rates of decrease in these directions, except for the constant Lipschitz constantbound. This means that on the level set at the current $x_{r}$ the minmax subproblems $\left(Q_{r}\right)$ approximate problem $(P)$ from below but not really in shape and scale.

Intuitively it is clear that better convergence should be obtained when more information is exploited, i.e., by choosing lower subgradients which better reflect the behavior of $\varphi$ at $x_{r}$, by having smallest possible norm. What may easily be shown is that using lower subgradients of smaller norm, the lower bounds $z_{r}$ generated by the algorithm are increased. The effect in practice will then be that a same guaranteed precision will be reached with fewer iterations, a valuable property indeed when each iteration is quite costly, as happens here.

Doing so means, however, that the lower subgradients may not be assumed to have a fixed norm. This is what would happen anyway when in case of convex $\varphi$ the standard subgradients would be used.

For these reasons, we address in this section the general case in which the lower subgradients $\eta_{k}$ used in the algorithm are not constrained to have equal $L_{1}$ norm and at the same time we allow reverse-convex constraints of the form (1.1) in the definition of $S$.

In this case, the family $\left\{C_{k: r}\right\}_{1 \leq k \leq r}$ constitutes the weighted power diagram associated with the sites $c_{1}, c_{2}, \ldots, c_{r}$, with multiplicative weights $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}$ and additive weights $\beta_{1}, \beta_{2}, \ldots, \beta_{r}$. Although not necessarily polyhedral, the sets $C_{k: r}$ have rather manageable shapes. Indeed, one obtains after some algebra that, given $j, k$,

- if $\alpha_{j}=\alpha_{k}>0$, then

$$
\begin{equation*}
V_{k j}=\left\{x \in \mathbb{R}^{d}:\left\langle x, c_{k}-c_{j}\right\rangle \geq \frac{1}{2 \alpha_{k}}\left(-\beta_{j}+\beta_{k}-\alpha_{j}\left\|c_{j}\right\|^{2}+\alpha_{k}\left\|c_{k}\right\|^{2}\right)\right\}, \tag{4.24}
\end{equation*}
$$

which is a closed halfspace in $\mathbb{R}^{d}$ unless $c_{k}=c_{j}$, which leads to the degenerate cases $V_{k j}$ $=\mathbb{R}^{d}$ or $V_{k j}=\varnothing$;

- if $\alpha_{k}>\alpha_{j}>0$, then

$$
\begin{align*}
V_{k j}=\left\{x \in \mathbb{R}^{d}:\left\|x-\frac{\alpha_{k} c_{k}-\alpha_{j} c_{j}}{\alpha_{k}-\alpha_{j}}\right\|^{2}\right. &  \tag{4.25}\\
& \left.\leq \frac{\alpha_{k} \alpha_{j}\left\|c_{k}-c_{j}\right\|^{2}-\left(\alpha_{k}-\alpha_{j}\right)\left(\beta_{k}-\beta_{j}\right)}{\left(\alpha_{k}-\alpha_{j}\right)^{2}}\right\},
\end{align*}
$$

which is a ball unless the righthand side above is negative, (leading to $V_{k j}=\varnothing$ );

- if $\alpha_{j}>\alpha_{k}>0$, then $V_{k j}=\mathbb{R}^{d} \backslash \operatorname{int}\left(V_{j k}\right)$ as defined above.

Denote by $\Delta_{1}$ the set of closed balls in $\mathbb{R}^{d}$, by $\Delta_{2}$ the family of closed complements of nondegenerate balls in $\mathbb{R}^{d}$, and denote by $\Delta_{3}$ the set of closed halfspaces in $\mathbb{R}^{d}$.
Joining (4.24) and (4.25), one obtains the following
Property 9. For any $j, k, j \leq k$ the set $V_{k j}$ is either empty, the whole space $\mathbb{R}^{d}, a$ ball, the closed complement of a ball, or a halfspace:

$$
\begin{equation*}
V_{k j} \in\left\{\mathbb{R}^{d}, \varnothing\right\} \cup\left(\Delta_{1} \cup \Delta_{2} \cup \Delta_{3}\right) . \tag{4.26}
\end{equation*}
$$

We will say that a nonempty set in $\mathbb{R}^{d}$ is a linear-spherical boundary-set (lsb-set, for short), if it can be expressed as a finite intersection of sets in $\Delta_{1} \cup \Delta_{2} \cup \Delta_{3}$. Observe that, by Assumption A1, $S$ is an 1sb-set.
Property 9 and the definition (2.19) of the sets $C_{k: r}$ thus show the following
Proposition 10. Each set $C_{k: r} \cap S$ is either empty, $\mathbb{R}^{d}$, a point, or an lsb-set.
The results of $\S 2$ would be useful as soon as one could describe the sets $C_{j ; r} \cap C_{k: r}$ $\cap S$ (cf. Theorem 7) or $\operatorname{ext}\left(C_{k: r} \cap S\right.$ ) (cf. Theorem 8). This goal can be attained using standard tools of Computational Geometry. Indeed, as shown, e.g., in Aurenhammer (1987), sets of these shapes can be transformed via inversion into polyhedra in one dimension higher. Below we sketch such construction, and refer the reader to Aurenhammer (1987) for further details.
We denote by $\hat{\mathbb{R}}^{d+1}$ the set $\left(\mathbb{R}^{d+1} \cup\{\infty\}\right)$, and equip it with the topology which has as closed sets either compact subsets of $\mathbb{R}^{d+1}$ (with the Euclidean topology) or complements of such (including $\infty$ ). Note that this is the classical (in general topology) construction called the one point compactification which for $\mathbb{R}^{d+1}$ yields a topological space homeomorphic with $S^{d+1}$, the unit sphere in $\mathbb{R}^{d+2}$. Balls, halfspaces and hyperplanes in $\mathbb{R}^{d+1}$ are, respectively, sets of the form

$$
\begin{array}{cr}
\left\{x \in \mathbb{R}^{d+1}:\|x-a\| \leq r\right\} & (r \geq 0), \\
\left\{x \in \mathbb{R}^{d+1}:\langle a, x\rangle \leq r\right\} \cup\{\infty\} & (a \neq 0), \\
\left\{x \in \mathbb{R}^{d+1}:\langle a, x\rangle=r\right\} \cup\{\infty\} & (a \neq 0)
\end{array}
$$

Moreover, we will say that a set is a polyhedron in $\hat{\mathbb{R}}^{d+1}$ if it can be expressed as a finite intersection of halfspaces in $\hat{\mathbb{R}}^{d+1}$.

Finally, $\mathbb{R}^{d}$ is embedded into $\hat{\mathbb{R}}^{d+1}$ by identifying $\mathbb{R}^{d}$ with the set $h_{0}: x_{d+1}=0$.
Take now an arbitrary point $c_{0} \in \mathbb{R}^{d+1} \backslash h_{0}$, ( $c_{0}$ is to play the role of the center of inversion) and consider the involutive inversion map $T: \mathbb{R}^{d+1} \rightarrow \mathbb{R}^{d+1}$ defined as

$$
T(x)= \begin{cases}c_{0}+\frac{1}{\left\|x-c_{0}\right\|^{2}}\left(x-c_{0}\right), & \text { if } x \in \mathbb{R}^{d+1} \backslash\left\{c_{0}\right\} \\ \infty, & \text { if } x=c_{0} \\ c_{0}, & \text { if } x=\infty\end{cases}
$$

In other words, $T(x)$ is the point on the ray of $\hat{\mathbb{R}}^{d+1}$ with origin at $c_{0}$ and containing $x$ such that

$$
\left\|T(x)-c_{0}\right\|=\frac{1}{\left\|x-c_{0}\right\|}
$$

It is well known and easy to check that $T$ defines an involutive one-one correspondence between the following pairs of sets of objects in $\hat{\mathbb{R}}^{d+1}$ :

- balls with $c_{0}$ on their boundary and closed halfspaces containing $c_{0}$ in their interior
- closed complements of balls with $c_{0}$ on their boundary and closed half-spaces not containing $c_{0}$
- spheres through $c_{0}$ and hyperplanes not passing through $c_{0}$

Hyperplanes in $\hat{\mathbb{R}}^{d+1}$ through $c_{0}$ are invariant under $T$. Finally, $T\left(h_{0} \cup\{\infty\}\right)$ is a sphere through $c_{0}$ which we will denote by $B_{0}$.

These properties enable us to embed lsb-sets (in particular $S$ and each $C_{k: r}$ ) into objects in $\hat{\mathbb{R}}^{d+1}$ of similar shapes as follows.

- For any $s^{1} \in \Delta_{1}$, let $E\left(s^{1}\right)$ be the ball in $\mathbb{R}^{d+1}$ whose boundary contains $c_{0}$ and such that $E\left(s^{1}\right) \cap h_{0}=s^{1}$.
- For any $s^{2} \in \Delta_{2}$ which is the closed complement of a nondegenerate ball $s^{1} \in \Delta_{1}$, $s^{2}=\mathbb{R}^{d} \backslash \operatorname{int}\left(s^{1}\right)$, let $E\left(s^{2}\right)=\left(\mathbb{R}^{d+1} \backslash \operatorname{int}\left(E\left(s^{1}\right)\right)\right) \cup\{\infty\}$.
- For any $s^{3} \in \Delta_{3}$, let $E\left(s^{3}\right)$ be the halfspace in $\hat{\mathbb{R}}^{d+1}$ whose boundary contains $c_{0}$ such that $E\left(s^{3}\right) \cap h_{0}=s^{3}$.

We then evidently have
Property 11. Let $s \in\left(\Delta_{1} \cup \Delta_{2} \cup \Delta_{3}\right)$. Then
(1) $s$ can be recovered from $E(s)$ as its intersection with $h_{0}$ :

$$
\begin{equation*}
s=E(s) \cap h_{0} \tag{4.27}
\end{equation*}
$$

(2) $T(E(s))$ is a closed halfspace in $\hat{\mathbb{R}}^{d+1}$.
(3) $s=T\left(T(E(s)) \cap B_{0}\right)$.

Since any lsb-set is the intersection of a finite number of elements of $\Delta_{1} \cup \Delta_{2} \cup \Delta_{3}$ and $T$, being involutive, is bijective, we easily obtain the following

Property 12. Let $X$ be an lsb-set in $\mathbb{R}^{d}$. Then, there exists a polyhedron $\tilde{X}$ in $\mathbb{R}^{d+1}$ such that

$$
X=T(\tilde{X}) \cap h_{0}=T\left(\tilde{X} \cap B_{0}\right) .
$$

Proof. Since $X=\bigcap_{s \in \Delta} s$ for some $\Delta \subset \Delta_{1} \cup \Delta_{2} \cup \Delta_{3}$, it follows from Property 11 that $\tilde{X}:=\bigcap_{s \in \Delta} T(E(s))$ is a polyhedron in $\mathbb{R}^{d+1}$ and

$$
\begin{aligned}
T(\tilde{X}) \cap h_{0} & =\bigcap_{s \in \Delta} T(T(E(s))) \cap h_{0} \\
& =\bigcap_{s \in \Delta}\left(E(s) \cap h_{0}\right) \\
& =\bigcap_{s \in \Delta} s \\
& =X
\end{aligned}
$$

By Property 9 each nondegenerate $V_{k j}$ is an lsb-set, and $S$ is such by assumption. Therefore each set $C_{k: r}(S)$ is an lsb-set as intersection of a finite number of lsb-sets, and, when nondegenerate, corresponds by Property 12 with a polyhedron $\tilde{C}_{k ; r}(\tilde{S})$ in $\mathbb{R}^{d+1}$. In addition we have

$$
C_{k: r} \cap S=T\left(\tilde{C}_{k: r} \cap \tilde{S} \cap B_{0}\right) .
$$

For fixed $r$ the family $\Gamma_{r}=\left\{\tilde{C}_{k: r}\right\}_{1 \leq k \leq r}$ (excluding the degenerate cells) constitutes a polyhedral subdivision or cell-complex of $\mathfrak{R}^{d+1}$ and the family $\Gamma_{r} \cap \tilde{S}=\left\{\tilde{C}_{k: r} \cap \tilde{S}\right\}_{1 \leq k \leq r}$ is a cell-complex with union $\tilde{S}$. The (generalized) extreme points of the sets $C_{k: r} \cap S$ to be checked for optimality at iteration $r$ (see Theorem 8) may thus be obtained by intersecting the edges (1-dimensional faces) of the cell-complex $\Gamma_{r} \cap \tilde{S}$ with the sphere $B_{0}$ and inversion by $T$. To this end it is not necessary to have access to a full description of the facial structure of this cell-complex but only to its 1 -skeleton (i.e., vertices and edges). One may note that each edge yields at most two intersection points with $B_{0}$.

At the next iteration a new cell-complex $\Gamma_{r+1}=\left\{\tilde{C}_{k: r+1}\right\}_{1 \leq k \leq r+1}$ arises, and the same construction should be repeated. However, this $\Gamma_{r+1}$ is the result of adding just one new cell to the cell-complex $\Gamma_{r}$, modifying some of its cells to make room for it.

In fact, using the results in Aurenhammer (1987) - Lemma 5-and evident properties of the weighted power diagram, each cell-complex $\Gamma_{r}$ may be interpreted as a power diagram in $\mathbb{R}^{d+1}, \Gamma_{r+1}$ arising from $\Gamma_{r}$ by addition of a new sphere to the set of spheres defining $\Gamma_{r}$.
According to Aurenhammer (1991, p. 381) this may be viewed after the lifting process hinted at before, as adding a cutting hyperplane to a polyhedron in $\mathbb{R}^{d+2}$, which clearly shows the cutting "plane" nature of our method. At the same time, this also shows that the whole procedure may be implemented as an on line vertex enumeration scheme such as proposed in Chen, Hansen and Jaumard (1991), but in $\mathbb{R}^{d+2}$.

To sum up, in the general each ( $Q_{r}$ ) can be solved by inspecting the finite set of points obtained as the images by $T$ of the intersection points of the ball $T\left(h_{0} \cup\{\infty\}\right)$ with the 1-skeleton of a certain polyhedral subdivision; moreover, by means of standard techniques of Computational Geometry, this subdivision can be built by updating the one used in the previous step of the algorithm.

Acknowledgments. Part of this research was done while the second author visited the University of Seville.

The research of the first author has been partially financed by the Dirección General de Investigación Científica y Técnica, Spain, under grant PB93-0927. This support is gratefully acknowledged.

## References

Aurenhammer, F. 1987. Power diagrams: Properties, algorithms and applications. SIAM J. Computing 1678 96.
——. 1991. Voronoi diagrams-A survey of a fundamental geometric data structure. ACM Computing Surveys 23 345-405.
Avriel, M., W. E. Diewert, S. Schaible, I. Zang. 1988. Generalized Concavity. Plenum Press, New York/London. Barros, A. I., J. B. G. Frenk. 1995. Generalized fractional programming and cutting plane algorithms. J. Optim. Theory Appl. 87 103-120.
Chen, P., P. Hansen, B. Jaumard. 1991. On-line and off-line vertex enumeration by adjacency lists. Oper. Res. Letters 10 403-409.
Crama, Y., T. Ibaraki. 1995. Hitting or Avoiding Balls in Euclidean Space. Working Paper, Ecole d'Administration des Affaires, Université de Liege, Belgium.
Edelsbrunner, H. 1987. Algorithms in Combinatorial Geometry. Springer-Verlag, Berlin Heidelberg.
Erkut, E., S. Neuman. 1992. A multiobjective model for locating undesirable facilities. Annals Oper. Res. 40 209-227.
Hansen, P., D. Peeters, J. F. Thisse. 1981. On the location of an obnoxious facility. Sistemi Urbani 399-317. Horst, R., H. Tuy. 1990. Global Optimization, Deterministic Approaches. Springer-Verlag, Berlin.
Love, R. F., J. G. Morris, G. O. Wesolowsky. 1988. Facilities Location: Models and Methods. North-Holland, New York.
Martínez-Legaz, J. E. 1988. On lower subdifferentiable functions. K. H. Hoffman, J. B. Hiriart-Urruty, C. Lemarechal, and J. Zowe, eds. Trends in Mathematical Optimization. Birkhauser-Verlag Basel, 197232.

Melachrinoudis, E., T. P. Cullinane. 1986. Locating an undesirable facility with a minimax criterion. European J. Oper. Res. 24 239-246.

Plastria, F. 1983. Continuous Location Problems and Cutting Plane Algorithms. Ph.D. Thesis, Vrije Universiteit Brussel, Brussels, Belgium.
-. 1985. Lower subdifferentiable functions and their minimization by cutting planes. J. Optim. Theory Appl. 46 37-53.
——. 1995a. Continuous location problems. Z. Drezner, ed. Facility Location: A Survey of Applications and Methods. Springer-Verlag, 225-262.
-_. 1995b. Continuous location of attracting and undesirable facilities. Semi-plenary Papers Book, EURO XIV Conference, Jerusalem, 131-148.
Preparata, F. P., M. I. Shamos. 1985. Computational Geometry-An Introduction. Springer Verlag. Berlin-New York

[^0]
[^0]:    Emilio Carrizosa: Facultad de Matemáticas. Universidad de Sevilla. Tarfia s/n, 41012 Sevilla, Spain; e-mail: ecarriz@cica.es
    Frank Plastria: Center for Industrial Location. Vrije Universiteit Brussel. Pleinlaan 2, B-1050, Brussels, Belgium; e-mail: Frank.Plastria@vub.ac.be

