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LOCATING AN UNDESIRABLE FACILITY
BY GENERALIZED CUTTING PLANES

EMILIO CARRIZOSA AND FRANK PLASTRIA

We address the problem of locating an undesirable facility within a compact set by mini-
mizing a strictly decreasing boundedly lower subdifferentiable function of the squared Euclidean
distances to a set of fixed points.

Using (generalized) cutting planes, the resolution of this problem is reduced to solving a se-
quence of maxmin problems. These maxmin problems have a clear geometrical interpretation,
which enables to solve them sequentially by means of an on-line enumeration of the vertices of
polyhedra in higher dimensions.

1. The model and motivations. Let A be a finite nonempty subset of R d and let \·\
be the Euclidean norm, \u \ Å where »·, ·… stands for the usual scalar product.

______√
»u , u … ,

Define the function

d ÉAÉD : R r R/

2x ° D(x) Å (\x 0 a\ ) .a√A

Given a nonempty compact subset S of R d and a decreasing function w: r R, considerÉAÉR/
the problem (P) ,

min w(D(x)) .(P)
x√S

This problem has a clear interpretation in Planar Location Theory (see, e.g., Love,
Morris, and Wesolowsky (1988) for an introduction and Plastria (1995a) for a compre-
hensive presentation of the field) . Suppose that an undesirable facility (e.g., a nuclear
plant) is to be located at some point x within a region S , R 2 ; the facility will affect
existing population, which is assumed to be concentrated at the points of A . The (risk of)
damage caused to population is modeled as a decreasing function w of the vector D(x)
of (squared) Euclidean distances separating x from the population. We stress that, since
distances are used here to measure effects such as pollution, heat, noise, magnetic waves,
etc., which propagate homogeneously in space, the use of the Euclidean norm seems to
be judicious, whilst other distance measures such as polyhedral norms, e.g., Love, Morris,
and Wesolowsky (1988) or Plastria (1995a), so popular for locating desirable facilities,
are of little interest in our context.

Moreover, the noxious character of the facility to be located makes transportation costs
negligible. In other words, the facility should be located at the optimal solution to some
problem of type (P ) .

In order to make (P) tractable we need to impose some assumptions on the feasible
region S and the function w, as discussed below.
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1.1. The feasible region. Concerning the shape of S , in practice one does not lose
much generality by imposing further assumptions on S apart from compactness. Indeed,
one may assume that S is given as a union of polygonal regions (which is the typical
representation in Geographical Information Systems) with extra constraints reflecting le-
gal or environmental considerations on the facility location; for instance, due to the un-
desirable character of the facility, there may exist protection areas around population
centers, leading to reverse-convex constraints of the form

\x 0 a\ ¢ r ,(1.1) a

Plastria (1995b). For simplicity we make the following assumption on S :
A1. S is a nonempty compact subset of R d , given as

dS Å {x √ R : h ( x) ¢ 0, for all j Å 1, 2, . . . , p},(1.2) j

where each hj is either of the form

h ( x) Å »£ , x… / d ,(1.3) j j j

( thus the corresponding constraint defines a closed halfspace in R d) , or

2h ( x) Å \x 0 £ \ 0 r ,(1.4) j j j

defining the closed complement of a ball in R d .
Observe that more complicated regions S—in fact, most of those provided by Geo-

graphical Information Systems—can be constructed as finite unions of sets Si in the form
of (1.2) , thus the resolution of the corresponding problem may be reduced to solving (a
finite number of) problems with feasible region Si verifying Assumption A1.

1.2. The objective function. We make the following assumption on w.
A2. w is strictly decreasing and boundedly lower subdifferentiable with BLSD bound

M on the compact set D(S) .
By strictly decreasing we mean that

w(u) ú w(£) whenever u ° £ for all i Å 1, 2, . . . , d , and u x £.i i

We also recall that a function f is said to be lower subdifferentiable on the set K iff for
every u √ K there exists some nonempty set Ì0 f (u) ( the lower subdifferential of f at u)
such that for all h √ Ì0 f (u) , it follows that

f (£) ¢ f (u) / »h, £ 0 u … ∀£ √ K such that f (£) õ f (u) .

Moreover, f is said to be boundedly lower subdifferentiable (BLSD) with BLSD-bound
M on K if f is lower subdifferentiable, and

0∀u √ K ∃h √ Ì f (u) such that \h \ ° M .u u

We refer the reader to Plastria (1983, 1985) and Martı́nez-Legaz (1988) for further
details on this concept.

Assuming that w is strictly decreasing expresses that the damage caused by the facility
(or risk run by the population) is decreasing with distance; the BLSD character of w is
more technical and necessary for algorithmic purposes, but, as the following examples
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show, is general enough to enable us to cope with a wide range of minisum and minimax
problems; see Hansen, Peeters, and Thisse (1981), Plastria (1995b).

EXAMPLE 1. One can address under Assumption A2 problems of the form

2min f (\x 0 a\ ) ,(1.5) ∑ a
x√S a√A

in which one minimizes the total damage caused by the facility to the population centers
in A , assuming that the damage caused to each a √ A is given by fa(\x 0 a\ 2) .

Indeed, if for each a √ A the function fa : R/ r R is strictly decreasing and convex,
then the function w : (za)a√A ° (a√A fa(za) is strictly decreasing and convex, thus BLSD
on the compact set D (S) , Plastria (1985), thus w verifies A2.

On the other hand, since the facility is assumed to be dangerous for population, it seems
sensible to give a high penalty, tending to infinity in the limit, to locations close to pop-
ulation, concentrated at A . In particular, as an alternative to (1.5) , one may consider
problems of the form

inf f (\x 0 a\) ,(1.6) ∑ a
x√S"A a√A

where, for each a √ A , fa : (0, /`) r R is a strictly decreasing convex function such that
limtf0 fa( t) Å /` . For instance, taking fa( t) Å for some wa , la ú 0, similar to the0law ta

way Erkut and Neuman (1992) build data for their discrete obnoxious location model,
(1.6) becomes

0lainf w \x 0 a\∑ a
x√S"A a√A

which represents the minimization of the total damage, if each wa reflects the population
concentrated at a , and now the damage per inhabitant caused to the point a by a facility
located at a distance d is assumed to be In particular, for la Å 2 for all a √ A , onela1/d .
obtains the gravitational model previously considered in Melachrinoudis and Cullinane
(1986).

Defining ga : R/ r (R < {/`}) as

_√
f ( t) if t ú 0,a

g ( t) Åa H
/` if t Å 0,

and w as

nw : (u ) √ R ° g (u ) √ (R < {/`}),∑a a√A / a a

a√A

we see that (1.6) can be rewritten as

inf w(D(x)) .(1.7)
x√S"A

Furthermore, each ga is strictly decreasing and convex (it is the composition of the
strictly increasing concave function with the strictly decreasing convex function fa) ,

__√
·
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hence w has the same properties. On the other hand, although w is not BLSD on S"A ( the
subgradients have arbitrarily high norm near the hyperplanes ui Å 0), it is not difficult to
construct an equivalent problem of type (P) by showing, as in Hansen, Peeters, and Thisse
(1981), that points too close to A are not actual candidates to optima. Indeed, choose any
xV √ S"A (such xV exists unless S , A , which would lead to an infeasible problem), and
let z Å w(D(xV )) . In particular, z ¢ infx√S"A w(D(x)) .

For each a √ A , let ca ú 0 be such that ga(ca) ¢ z . Observe that, since limtf0 ga( t)
Å /` , such ca exists. It then follows that one can restrict the search of optimal solutions
of (1.7) to the region

{x √ S : \x 0 a\ ¢ c ∀a √ A}.(1.8) a

In particular, this implies that solving (1.7) can be reduced to solving

inf w(D(x))

s.t. \x 0 a\ ¢ c ∀a √ A(1.9) a

x √ S ,

whose constraints verify Assumption A1 and the objective function is BLSD.
Observe, however that, if S is a polyhedron, the polyhedral (and convex!) structure of

S is lost after adding the reverse-convex constraints leading to (1.9) . We now show that
it is possible to obtain an equivalent problem to (1.7) with BLSD objective function and
S as feasible region, thus avoiding the inclusion of reverse-convex constraints. Indeed,
for any a √ A , let ha be a subgradient of the convex function ga at ca , and define the
function g̃a as

g ( t) if t ¢ c ,a a

g̃ ( t) Åa H
g (c ) / ( t 0 c )h otherwise.a a a a

In particular, for fa( t) Å one obtains0law t ,a

_√
0l /2ag ( t) Å f ( t) Å w t .a a a

Hence one can take

2/lac Å (w /z)a a

h Å g *(c )a a

l wa a 010(l /2)aÅ 0 c .a2

Let r R be defined asÉAÉ
Iw : R/

Iw : (u ) ° Iw((u ) ) Å g̃ (u ) .∑a a√A a a√A a a

a√A
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It is easily seen that is BLSD with BLSD-constant M Å (a√A ÉhaÉ, and ProblemIw
(1.7) —thus also (1.6) —is equivalent to minx√S as asserted.Iw(D(x)) ,

EXAMPLE 2. For each a √ A , let fa : R/ r R be strictly decreasing and Lipschitz on
compact subsets of R/ , and consider the problem

2min max f (\x 0 a\ ) ,(1.10) a
x√S a√A

which seeks the location x for which the highest damage (assumed to be of the form
fa(d 2) if a lies at distance d from x) to any of the points a is minimized.

Let R Å maxx√S,a√A\x 0 a\ 2 , which, as S is compact, is finite. Hence, fa is monotonous
(thus quasiconvex) and Lipschitz-continuous on [0, R] , thus (see Plastria (1985)) it is
BLSD, and, consequently, the function w Å maxa√A fa ( i.e. the objective function of
(1.10)) , is also BLSD.

The aim of the paper is to solve (P) under the following assumptions:
j The decision space is R d (although, in practice, we always have d Å 2)
j \·\ is the Euclidean norm
j S is a nonempty compact subset of R d , defined as a finite intersection of closed

halfspaces and closed complements of spheres.
j The utility function w is strictly decreasing and boundedly lower subdifferentiable.
The rest of the paper is structured as follows. In §2 we propose a cutting-plane algorithm

to solve (P) . The actual implementation of such an algorithm requires, at each step,
solving a nonlinear subproblem, the geometrical structure of which is described first in a
particular case (§3) and then in the general case (§4), including reverse-convex con-
straints of type (1.1) .

2. Solving (P) . Extending the cutting-plane method of Plastria (1983, 1985) for
BLSD optimization, Barros and Frenk (1995) have introduced in a recent paper a gen-
eralized cutting-plane method which reduces the resolution of problems of the form minx√S

C( f ( x)) for some BLSD function C to solving a sequence of nonlinear minmax problems,
see Barros and Frenk (1995) for further details. When particularized to problem (P) , one
obtains the following

ALGORITHM.
Initialization
Take x1 √ S .
Set UB1 Å w(D(x1)) and x* Å x1 .
Set r Å 1.

Iteration r Å 1, 2, . . .
Let hr √ Ì0w(D(xr)) such that \hr\ ° M .
If hr Å 0 then Stop.
Solve (Qr) ,

z Å min max (w(D(x )) / »h , D(x) 0 D(x )…) .(Qr) r k k k
x√S 1°k°r

Let xr/1 be an optimal solution to (Qr) .
If UBr ú w(D(xr/1)) then set x* Å xr/1 .
Set UBr/1 Å min{UBr , w(D(xr/1))}.
If zr Å UBr/1 then Stop. Else, go to iteration r / 1.
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If the algorithm stops after a finite number of steps, it is clear that x* is optimal to (P) .
On the other hand, one has

THEOREM 3 (Barros and Frenk 1995). If the algorithm above does not stop after a
finite number of steps , then

(1 ) the sequence {zr }r converges monotonically from below to the optimal value
of (P ) ;

(2 ) the sequence {UBr }r converges monotonically from above to the optimal value
of (P ) ;

(3) any accumulation point of the sequence {xr}r is an optimal solution to (P) .

Two critical issues in the above algorithm are how to find lower subgradients hr with
bounded norm, and how to solve the sequence of problems (Qr) .

We refer the reader to Plastria (1983, 1985) for details on the construction of lower
subgradients and lower-subdifferential calculus and focus here on solving the nonlinear
subproblems (Qr) . Such subproblems are, as a rule, multimodal, so their resolution still
involves global optimization; however, their structure is rich enough to enable the opti-
mization in finite time; in fact, solving the sequence of problems {(Qr)}r can be reduced
to inspecting the vertices of a sequence {Gr}r of nested polyhedra in higher dimensions
as soon as S is polyhedral, as will be shown in §§3 and 4. (Reduction to enumeration
schemes is also possible for the subproblem (Qr) if in Problem (P) we replace D (x) by
the vector (g(x 0 a))a√A , g being a polyhedral gauge. However, as described in the
Introduction, the motivation for the problem forces us to use the Euclidean norm.)

Now we give an equivalent expression for (Qr) which will enable us later to rewrite
the problem in geometrical terms. First we need the following

LEMMA 4. Let u √ and let h Å (ha)a√A √ Ì0w(u) . Then , ha õ 0 for each aAR ,/
√ A .

PROOF. For each a √ A , let ea be the unit vector of RA with 1 at its ath component
and 0 everywhere else. As w is strictly decreasing, w(u) ú w(u / tea) for all t ú 0 and
we have

a at»h, e … ° w(u / te ) 0 w(u) õ 0.

Hence ha Å »h, ea … õ 0 for all a √ A , as asserted. h

Defining, ak , ck and bk for each k as

a Å 0 (h ) ,∑k k a

a√A

1
c Å 0 (h ) a ,∑k k a

ak a√A

2b Å 0 (h ) \a\ 0 w(D(x )) / »h , D(x )… 0 a c ,∑k k a k k k k kS D
a√A

it follows after a few calculations that (Qr) can also be written as

2max min (a \x 0 c \ / b ) .(2.11) k k k
x√S 1°k°r

Since, by Lemma 4, each ak is positive, each function fk :Å ak\·0 ck\
2 / bk is convex,
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thus the objective function in (2.11) is d.c., Horst and Tuy (1990), making it solvable
by general-purpose d.c. techniques. However, as we show in the rest of this section, the
structure of the problem can be used to reduce the resolution of (2.11) to evaluating a
finite number of points, and discuss in the two remaining sections how to design such
more direct procedures.

Now we show that, for a point x* to be optimal for (Qr) , a sufficiently high number
of functions fk and constraints defining S must be active at x*.

By Assumption A1, S is a nonempty compact set of the form

dS Å {x √ R : h ( x) ¢ 0, j Å 1, 2, . . . , p},j

each hj being either hj( x) Å »£j , x … / dj or hj( x) Å \x 0 £j\
2 0 rj . For each x* √ S define

AC(x*) (the set of active or binding constraints) , AF(x*) (the set of active functions)
and T(x*) as

AC(x*)Å { j√ {1, 2, . . . , p} : h ( x*)Å 0},j

AF(x*)Å k√ {1, 2, . . . , r} : f (x*)Å min f ( x*) ,k jH J
1° j°r

dT(x*)Å {x√R : h ( x)¢ 0 ∀ j /√ AC(x*)»Çh ( x*), x0 x* …¢ 0 ∀ j√ AC(x*)},j j

and define f Å min1°k°r fk .
The set T(x*) enjoys the following properties.

LEMMA 5. For each x* √ S one has
(1) T(x*) , S;
(2) x* √ T(x*);
(3) the set of feasible directions of T(x*) at x* is the polyhedral cone

d{h √ R : »Çh ( x*), h… ¢ 0 ∀ j √ AC(x*)};j

(4) The nonzero vector h √ R d is a feasible direction of T(x*) at x* of strict ascent
for f iff

»Çh ( x*), h… ¢ 0 ∀ j √ AC(x*)(2.12) j

»Ç f (x*), h… ¢ 0 ∀k √ AF(x*).(2.13) k

PROOF. To show 1, let x √ T(x*). We have, by construction of T(x*), that hj( x)
¢ 0 ∀ j AC(x*). Moreover, the convexity of each hj implies for any j √ AC(x*) that/√

h ( x) Å h ( x) 0 h ( x*)j j j

¢ »Çh ( x*), x 0 x*… ¢ 0,j

thus x √ S , showing 1. Parts 2 and 3 then immediately follow from the definition of
T(x*).

For Part 4, observe that Part 3 of the lemma states the equivalence between (2.12) and
T(x*)-feasibility of h. Moreover, the strict convexity of each function fk implies the
equivalence between (2.13) with the strict ascent of each fk in the direction h, from which
the result follows. h
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From Lemma 5, one immediately has

LEMMA 6. If x*√ S is an optimal solution to (Qr) , then x* is also optimal for problem

max f ( x) .
x√T(x*)

We are now in position to present the result which states that, at any optimal solution
of (Qr) , a sufficiently high number of functions or constraints must be active:

THEOREM 7. If x* is an optimal solution for (Qr) , then

d õ ÉAC(x*)É / ÉAF(x*)É.(2.14)

PROOF. Assume by contradiction that ÉAC(x*)É / ÉAF (x*)É ° d and let us prove
that x* is not an optimal solution to (Qr) . Defining

C Å {Çh ( x*) : j √ AC(x*)} < {Ç f (x*) : k √ AF(x*)}j k

two cases may arise:
Case 1. C does not span R d , choose then any c x 0 orthogonal to C .
Case 2. C spans R d , then it is a basis of R d because, by assumption it has at most d

elements. In this case we choose c Å (j√AC(x *) Çhj( x*) / (k√AF (x *) Çfk(x*).
Consider now the system of linear inequalities and equalities

u (0Çh ( x*)) / £ (0Ç f (x*)) Å c ,(2.15) ∑ ∑j j k k

j√AC(x*) k√AF(x*)

u ¢ 0 ∀ j √ AC(x*),(2.16) j

£ ¢ 0 ∀k √ AF(x*),(2.17) k

and observe that it has no solution. Indeed, in the first case (2.15) cannot be satisfied,
while in the second case the unique solution to (2.15) is given by uj Å 01 ∀ j , £k Å 01
∀k which contradicts both (2.16) and (2.17).

By Farkas’ lemma, there exists h* satisfying

»Çh ( x*), h* … ¢ 0 ∀ j √ AC(x*),j

»Ç f (x*), h* … ¢ 0 ∀k √ AF(x*),k

»c , h* … ú 0.

Hence by Lemma 5, h* is a feasible direction of T(x*) and is of strict ascent for f at
x*, showing that x* cannot be an optimal solution to maxx√T (x *) f ( x) , and, by Lemma 6,
also not for (Qr) . h

The search of an optimal solution of (Qr) can be further reduced, since, as shown in
Theorem 8 below, not only sufficiently many functions must be active or constraints
binding, but also the level sets of the functions fk must have a particular shape at the true
candidates to optimality. We first introduce some notation: for each k , j , let Vk j be the set
of points x at which fk(x) ° fj( x) ,
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d 2 2V Å {x √ R : a \x 0 c \ / b ° a \x 0 c \ / b },(2.18) k j k k k j j j

and for any r ¢ k , let Ck :r be the set of points at which fk is active for (Qr) , i.e.,

C Å > Vk :r k j
1° j°r

(2.19)

d 2 2Å x √ R : a \x 0 c \ / b Å min a \x 0 c \ / bk k k j j jH J
1° j°r

Given a set X , let conv(X ) denote the convex hull of X and define ext(X ) as

ext(X ) Å {x √ X : x /√ conv(X " {x})},

which coincides with the set of extreme points of X when X is convex.

THEOREM 8. Let x* be an optimal solution to (Qr) . Then , if x* √ conv(Cj:r > S) it
will follow that x* √ ext(Cj:r > S) .

PROOF. Consider for some j ° r any point

x* √ conv(C > S)"ext(C > S) .j:r j:r

Then, by definition of ext(Cj:r > S) and Caratheodory’s theorem, there would exist y1 ,
y2 , . . . , yd/1 √ Cj:r > S and l1 , l2 , . . . , ld/1 ¢ 0, li Å 1 such that x* Å li yi ,d/1 d/1( (iÅ1 iÅ1

but x* x yi for all i . Hence, by the strict convexity of each fj , one would have

min f (x*) ° f ( x*)k j
1°k°r

d/1

Å f l y∑j i iS D
iÅ1

õ max f ( y )j i
1°i°d/1

Å f ( y*) for some y* √ C > S .j j:r

But then

min f (x*) õ min f (y*),k k
1°k°r 1°k°r

showing that x* is not optimal for (Qr) . h

The search of an optimal solution for (Qr) has now been reduced to the identification
of those points verifying the conditions in Theorems 7 and 8. A naive procedure to do
this might be to solve, for each i Å 0, 1, . . . , d / 1, each subset JC , AC of i constraints
hj and each subset JF , AF of d / 1 0 i functions fk , the nonlinear system of equations

f (x) 0 f (x) Å 0 ∀k , l √ J ,k l F

h ( x) Å 0 ∀ j √ J ,(2.20) j C5
x √ S .
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However, most choices of (JC , JF) in system (2.20) lead to infeasible problems, while
the feasible ones might (at first glance) lead to nonfinite solution sets, making this enu-
merative procedure rather inefficient.

We devote the rest of the paper to exploring the geometry of the subproblems (Qr) ,
which will enable us to identify exactly which choices of (JC , JF) make (2.20) feasible.
It turns out that only a polynomial number of choices—the dimension d considered to be
fixed—need to be considered.

We first address the (easiest) particular case in which all the constraints defining S are
linear and all the lower subgradients used in the algorithm have equal norm, and postpone
to §4 the discussion of the general case with nonconvex constraints of the form (1.1) and
general lower subgradients.

3. Linear constraints and lower subgradients of equal norm. Further simplifica-
tions can be made in case all the lower subgradients of w used in the Algorithm have
equal L1-norm. We first show that this can always be obtained thanks to the use of lower
subgradients. More precisely, from any x √ R n and u √ Ì0w(D(x)) , with \u \ ° M , let
h(u) be given by

ÉAÉM
h(u) Å u .(3.21)

( (0u )a√A a

By Lemma 4, ua õ 0 for all a , thus

0 õ 0 u Å Éu É∑ ∑a a

a√A a√A

° ÉAÉ maxÉu Éa
a√A

° ÉAÉ\u \

° ÉAÉM ,

thus

ÉAÉM ¢ 1,
( 0 ua√A a

which implies that h(u) √ Ì0w(D(x)) , Plastria (1985), and its L1 norm equals ÉAÉM ,
which is independent of x and the choice of the lower subgradient u .

If a denotes this common L1 norm, it will follow that (2.11) (thus also (Qr)) is equiv-
alent to

bk2max min \x 0 c \ / ,kH Jax√S 1°k°r

and also to

bk2 2max \x\ / min 02 »x , c … / \c \ / .k kF S DGax√S 1°k°r

Hence, denoting by D̃r the set
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bk2D̃ Å (x , z) : x √ S , z ° \c \ / 0 2 »x , c … for all k , 1 ° k ° r ,(3.22) r k kH Ja

(Qr) is equivalent to

2max \x\ / z .(3.23)
˜(x,z)√Dr

When S is a polytope in R d , D̃r is a polyhedron in R d 1 R, and (3.23) is a convex
quadratic maximization problem with linear constraints; hence, solving (Qr) reduces to
evaluating the vertices of D̃r , R d 1 R. This task is rather difficult in general; in fact,
problem (Qr) contains as particular instances maxmin problems, which, for variable d ,
are known to be NP-complete, see Crama and Ibaraki (1995). Observe, however, that the
most important case in practice is dÅ 2, which leads to vertex enumeration in R 3 . Observe
also that each D̃r/1 is obtained from D̃r by adding one linear constraint. Hence, on-line
vertex enumeration procedures, like that suggested in Chen, Hansen and Jaumard (1991),
seem to be most appropriate for the resolution of the sequence of problems {(Qr)}r .

Geometrically the family {Ck :r}1°k°r constitutes the power diagram associated with the
sites c1 , c2 , . . . , cr , with additive weights b1 /a, b2 /a, . . . , br /a. Power diagrams are
well studied concepts of Computational Geometry (see, e.g., Aurenhammer (1991) and
Edelsbrunner (1987)) , and can be constructed in polynomial time—the dimension d
considered to be fixed, e.g., by incremental insertion. In particular, it is known that the
family {Ck :r}1°k°r constitutes a polyhedral subdivision in R d , which can be seen as the
projection of the faces of a certain lifted polyhedron in R d/1 . See Aurenhammer (1991)
for further details. When S is a polytope it is precisely this lifting construction which
transforms the constrained power diagram {Ck :r > S}1°k°r into the polyhedron D̃r given
in (3.22).

4. Nonconvex constraints and general lower subgradients. Including in the model
protection areas around population centers, i.e., including in the definition of S reverse-
convex constraints of the form (1.1) , the polyhedral structure of the problem (3.23) in
§3 is destroyed, making it harder to solve.

We will show in this section that such more realistic situation can also be handled by
a more complex geometric approach which also allows for the use of lower subgradients
of unequal norm.

With this we gain not only in realism of the model, but also in convergence speed of
the procedure. Indeed, taking as lower subgradient always one with norm ÉAÉM (or any
other fixed one) does not do much more than indicating a halfspace containing all decrease
directions. As shown in Barros and Frenk (1995), this information is sufficient to ensure
convergence of the cutting plane algorithm. It does not, however, give any real clue to
the actual rates of decrease in these directions, except for the constant Lipschitz constant-
bound. This means that on the level set at the current xr the minmax subproblems (Qr)
approximate problem (P) from below but not really in shape and scale.

Intuitively it is clear that better convergence should be obtained when more information
is exploited, i.e., by choosing lower subgradients which better reflect the behavior of w
at xr , by having smallest possible norm. What may easily be shown is that using lower
subgradients of smaller norm, the lower bounds zr generated by the algorithm are in-
creased. The effect in practice will then be that a same guaranteed precision will be reached
with fewer iterations, a valuable property indeed when each iteration is quite costly, as
happens here.

Doing so means, however, that the lower subgradients may not be assumed to have a
fixed norm. This is what would happen anyway when in case of convex w the standard
subgradients would be used.
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For these reasons, we address in this section the general case in which the lower sub-
gradients hk used in the algorithm are not constrained to have equal L1 norm and at the
same time we allow reverse-convex constraints of the form (1.1) in the definition of S .

In this case, the family {Ck :r}1°k°r constitutes the weighted power diagram associated
with the sites c1 , c2 , . . . , cr , with multiplicative weights a1 , a2 , . . . , ar and additive
weights b1 , b2 , . . . , br . Although not necessarily polyhedral, the sets Ck :r have rather
manageable shapes. Indeed, one obtains after some algebra that, given j , k ,

• if aj Å ak ú 0, then

1d 2 2V Å x √ R : »x , c 0 c … ¢ (0b / b 0 a \c \ / a \c \ ) ,(4.24) k j k j j k j j k kH J2ak

which is a closed halfspace in R d unless ck Å cj , which leads to the degenerate cases Vk j

Å R d or Vk j Å M;
• if ak ú aj ú 0, then

2a c 0 a ck k j jdV Å x √ R : x 0

(4.25)

k j H i ia 0 ak j

2a a \c 0 c \ 0 (a 0 a )(b 0 b )k j k j k j k j° ,J2(a 0 a )k j

which is a ball unless the righthand side above is negative, ( leading to Vk j Å M) ;
• if aj ú ak ú 0, then Vk j Å R d" int(Vjk) as defined above.
Denote by D1 the set of closed balls in R d , by D2 the family of closed complements

of nondegenerate balls in R d , and denote by D3 the set of closed halfspaces in R d .
Joining (4.24) and (4.25), one obtains the following

PROPERTY 9. For any j , k , j ° k the set Vkj is either empty , the whole space R d , a
ball , the closed complement of a ball , or a halfspace :

dV √ {R , M} < (D < D < D ) .(4.26) k j 1 2 3

We will say that a nonempty set in R d is a linear-spherical boundary-set ( lsb-set , for
short) , if it can be expressed as a finite intersection of sets in D1 < D2 < D3 . Observe
that, by Assumption A1, S is an lsb-set.

Property 9 and the definition (2.19) of the sets Ck :r thus show the following

PROPOSITION 10. Each set Ck :r > S is either empty , R d , a point , or an lsb-set .
The results of §2 would be useful as soon as one could describe the sets Cj:r > Ck :r

> S (cf. Theorem 7) or ext(Ck :r > S) (cf. Theorem 8). This goal can be attained using
standard tools of Computational Geometry. Indeed, as shown, e.g., in Aurenhammer
(1987), sets of these shapes can be transformed via inversion into polyhedra in one
dimension higher. Below we sketch such construction, and refer the reader to Aurenham-
mer (1987) for further details.

We denote by the set (R d/1 < {`}), and equip it with the topology which hasd/1
PR

as closed sets either compact subsets of R d/1 (with the Euclidean topology) or comple-
ments of such (including `) . Note that this is the classical ( in general topology) con-
struction called the one point compactification which for R d/1 yields a topological space
homeomorphic with Sd/1 , the unit sphere in R d/2 . Balls, halfspaces and hyperplanes in

are, respectively, sets of the formd/1
PR
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d/1{x √ R : \x 0 a\ ° r} (r ¢ 0),

d/1{x √ R : »a , x… ° r} < {`} (a x 0),

d/1{x √ R : »a , x… Å r} < {`} (a x 0).

Moreover, we will say that a set is a polyhedron in if it can be expressed as a finited/1
PR

intersection of halfspaces in d/1
PR .

Finally, R d is embedded into by identifying R d with the set h0 : xd/1 Å 0.d/1
PR

Take now an arbitrary point c0 √ R d/1"h0 , (c0 is to play the role of the center of
inversion) and consider the involutive inversion map T : r defined asd/1 d/1

P PR R

1 d/1c / (x 0 c ) , if x √ R " {c },0 0 02\x 0 c \0

T(x) Å ` , if x Å c ,05
c , if x Å ` .0

In other words, T(x) is the point on the ray of with origin at c0 and containing xd/1
PR

such that

1
\T(x) 0 c \ Å .0

\x 0 c \0

It is well known and easy to check that T defines an involutive one-one correspondence
between the following pairs of sets of objects in d/1

PR :
j balls with c0 on their boundary and closed halfspaces containing c0 in their interior
j closed complements of balls with c0 on their boundary and closed half-spaces not

containing c0

j spheres through c0 and hyperplanes not passing through c0

Hyperplanes in through c0 are invariant under T . Finally, T(h0 < {`}) is a sphered/1
PR

through c0 which we will denote by B0 .
These properties enable us to embed lsb-sets ( in particular S and each Ck :r) into objects

in of similar shapes as follows.d/1
PR

j For any s 1 √ D1 , let E(s 1) be the ball in R d/1 whose boundary contains c0 and such
that E(s 1) > h0 Å s 1 .

j For any s 2 √ D2 which is the closed complement of a nondegenerate ball s 1 √ D1 ,
s2 Å R d" int(s 1) , let E(s 2) Å (R d/1" int(E(s 1))) < {`}.

j For any s 3 √D3 , let E(s 3) be the halfspace in whose boundary contains c0 suchd/1
PR

that E(s 3) > h0 Å s 3 .
We then evidently have

PROPERTY 11. Let s √ (D1 < D2 < D3) . Then
(1) s can be recovered from E(s) as its intersection with h0 :

s Å E(s) > h .(4.27) 0

(2) T(E(s)) is a closed halfspace in d/1
PR .

(3) s Å T(T(E(s)) > B0) .

Since any lsb-set is the intersection of a finite number of elements of D1 < D2 < D3

and T , being involutive, is bijective, we easily obtain the following
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PROPERTY 12. Let X be an lsb-set in R d . Then , there exists a polyhedron X̃ in R d/1

such that

˜ ˜X Å T(X ) > h Å T(X > B ) .0 0

PROOF. Since X Å >s√Ds for some D , D1 < D2 < D3 , it follows from Property
11 that X̃ :Å >s√D T(E (s)) is a polyhedron in R d/1 and

˜T(X ) > h Å > T(T(E(s))) > h0 0
s√D

Å > (E(s) > h )0
s√D

Å > s
s√D

Å X . h

By Property 9 each nondegenerate Vk j is an lsb-set, and S is such by assumption.
Therefore each set Ck :r(S) is an lsb-set as intersection of a finite number of lsb-sets, and,
when nondegenerate, corresponds by Property 12 with a polyhedron C̃k :r( S̃) in Ind/1

PR .
addition we have

˜ ˜C > S Å T(C > S > B ) .k :r k :r 0

For fixed r the family Gr Å {C̃k :r}1°k°r (excluding the degenerate cells) constitutes a
polyhedral subdivision or cell-complex of and the family Gr > S̃ Å {C̃k :r > S̃}1°k°r

d/1
PR

is a cell-complex with union S̃ . The (generalized) extreme points of the sets Ck :r > S to
be checked for optimality at iteration r (see Theorem 8) may thus be obtained by inter-
secting the edges (1-dimensional faces) of the cell-complex Gr > S̃ with the sphere B0

and inversion by T . To this end it is not necessary to have access to a full description of
the facial structure of this cell-complex but only to its 1-skeleton (i.e., vertices and edges) .
One may note that each edge yields at most two intersection points with B0 .

At the next iteration a new cell-complex Gr/1 Å {C̃k :r/1}1°k°r/1 arises, and the same
construction should be repeated. However, this Gr/1 is the result of adding just one new
cell to the cell-complex Gr , modifying some of its cells to make room for it.

In fact, using the results in Aurenhammer (1987) —Lemma 5—and evident properties
of the weighted power diagram, each cell-complex Gr may be interpreted as a power
diagram in R d/1 , Gr/1 arising from Gr by addition of a new sphere to the set of spheres
defining Gr .

According to Aurenhammer (1991, p. 381) this may be viewed after the lifting process
hinted at before, as adding a cutting hyperplane to a polyhedron in R d/2 , which clearly
shows the cutting ‘‘plane’’ nature of our method. At the same time, this also shows that
the whole procedure may be implemented as an on line vertex enumeration scheme such
as proposed in Chen, Hansen and Jaumard (1991), but in R d/2 .

To sum up, in the general each (Qr) can be solved by inspecting the finite set of points
obtained as the images by T of the intersection points of the ball T(h0 < {`}) with the
1-skeleton of a certain polyhedral subdivision; moreover, by means of standard techniques
of Computational Geometry, this subdivision can be built by updating the one used in the
previous step of the algorithm.

Acknowledgments . Part of this research was done while the second author visited the
University of Seville.



694 CARRIZOSA AND PLASTRIA

/ 3906 au12 Mp 694 Friday Oct 02 02:09 PM INF–MOR au12

The research of the first author has been partially financed by the Dirección General
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