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Abstract. The factorization problem (given a natural number which is
the product of two prime numbers, find its decomposition) is conjectured
to be intractable and for that it has been used as the key to have se-
cure current cryptosystems. Due to its relevance, this problem has been
studied in various computational paradigms, in particular in membrane

computing. In this framework, recognizer P systems were introduced to
deal with decision problems, that is, problems whose solution/answer is
either “yes” or “no”. The factorization problem is a search problem (also
called function problem), where the question is to identify/find one so-
lution to the set of possible solutions associated with each instance. In
this work, membrane systems computing partial functions are shown to
(e�ciently) solve the factorization problem, improving the previous so-
lutions given in the framework of membrane computing. Specifically, a
family of computing polarizationless P systems with active membranes
using minimal cooperation and minimal production in object evolution
rules, is provided to give a polynomial-time solution to the factorization
problem.

1 Introduction

Membrane computing is a computing paradigm inspired by the structure and
functioning of living cells. It was introduced in [10] by Gheorghe Păun, describing
the basic behavior of these kinds of systems, called membrane systems or P

systems. As a fields within Natural Computing, we take inspiration from nature in
order to define the semantics of the computational model. Membrane computing
takes the minimal functions required to have a living being, that is, replication
of DNA, synthesis of proteins, the use of energy to perform metabolic processes
and methods to regulate itself (e.g., apoptosis). In this way, we can abstract
these chemical reactions by means of mathematical tools, for instance, rewriting
rules, in order to perform computations. There are basically three approaches to
consider computational devices: cell–like membrane systems [10, 11], using the
biological membranes arranged hierarchically, inspired by the structure of the
cell; tissue–like membrane systems [7], using the biological membranes placed in
the nodes of a graph, inspired by the cell inter-communication in tissues; and
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neuron-like P systems [5], inspired by the neurophysiological behavior of neurons
sending electrical impulses (spikes) along axons from presynaptic neurons to
post–synaptic neurons in a distributed and parallel manner. In these variants,
polynomial-time solutions of some computationally hard decision problems has
been provided: SAT [13], HAM-CYCLE [12], 3-COL [2], KNAPSACK, SUBSET-SUM and
PARTITION [15], among others.

Cryptography is a discipline concerning the security of the information in
the presence of possible intruders. For this purpose, several cryptosystems have
been developed, that is, several protocols of security that make harder to a third
party to discover the information that two di↵erent parts want to interchange.
It is important to take into account that the protocol itself does not have to be
secret (for instance, for public-key cryptosystems). In fact, the keys of the most
important cryptosystems are well-known. The di�culty that resides in them is
intrinsic to the problem behind the systems themselves. That is because there is
not known any e�cient classical algorithm to solve them. For instance, the key to
have secure cryptosystems such as RSA, introduced by R. Rivest, A. Shamir and
L. Adleman in [16], is the following version of the factorization problem: given a

natural number n which is the product of two large primes, find its decomposi-

tion. Such a number n is used as the modulus for both public and private keys.
In order to attack it, we need to factorize n into its prime factors. Many systems,
such as banks, medical databases and critical systems with confidential informa-
tion keep their data secure thanks to this method. The factorization problem
is conjectured to be computationally intractable, as some of the problems used
in cryptography, such as KNAPSACK 1 in Merkle-Hellman cryptosystem [8] and
DISCRETE LOGARITHM used in Di�e-Hellman key exchange [3], among others.

In the framework of membrane computing, there were attempts to give a
solution to the factorization problem in [6, 9, 22] with membrane systems. In [6],
a solution is given by using a family of P system with active membranes and
electrical charges, using 4-division rules, that is, by applying this kind of rules a
membrane produces four new membranes, and object evolution rules whose left-
hand side and right-hand sides can have three objects. In [9], a solution is given
by means of a family of asynchronous P systems with active membranes and
electrical charges which use cooperation in object evolution rules and division
rules for non-elementary membranes. In [22], a solution is given by using a family
of tissue P systems with cell division which use symport/antiport rules of length
at most 4.

In this work, a solution of the factorization problem is given by means of
a version of polarizationless P system with active membranes using 2-division
rules only for elementary membranes (that is, by applying this kind of rule an
elementary membrane produces only two new membranes) without dissolution
rules. Specifically, these systems use minimal cooperation (the left-hand sides
have at most two objects) and minimal production (the right-hand sides have
only one object) in objects evolution rules. In order to develop simulators running
on real computers, this kind of membrane system is interesting, for instance, from

1 That is, in fact, an NP-complete problem.



The Factorization Problem: A New Approach Through Membrane Systems 41

the GPU computing point of view, just because the algorithm proposed seems
easily translatable to this parallel computing paradigm.

The solution provided in this paper improves the previous ones given in [6, 9,
22]. In this regard, it should be recalled that families of polarizationless P system
with active membranes using division rules and without dissolution rules only
can (e�ciently) solve problems in class P [4].

The paper is organized as follows. The next section briefly describes some
basic aspects in order to make the work self-contained. In Section 3 we define
the syntax and semantics of polarizationless P systems with active membranes
by using membrane division rules and minimal cooperation in evolution rules.
Next, computing membrane systems are introduced in Section 4. Section 5 is
devoted to define the family of P systems that return the factorization of a given
number, followed by an overview of the computation to know what is happening
in each step. The paper ends with some open problems and concluding remarks.

2 Preliminaries

In order to have a precise definition of all the terms that are going to be used
later, we are going to introduce them here.

2.1 Partial Functions

A function f is a set whose elements are ordered pairs verifying the following:
8x 8y 8z [(x, y) 2 f ^(x, z) 2 f ! y = z]. The set {x | 9y (x, y) 2 f} is called the
domain of f and it is denoted by dom(f). The set {x | 9y (y, x) 2 f} is called
the range of f and it is denoted by rang(f).

Given two sets A,B, a partial function f from A onto B is a set verifying
that f ✓ A ⇥ B, dom(f) ✓ A and rang(f) ✓ B. In the case dom(f) = A the
function is called a total function from A onto B.

2.2 Alphabets and Multisets

An alphabet � is a non-empty set. A multiset over an alphabet � is an ordered
pair (�, f) where f is a total function from � onto the set of natural numbers
N. The support of a multiset M = (�, f) is defined as supp(M) = {x 2 � |
f(x) > 0}. A multiset is finite (respectively, empty) if its support is a finite
(resp., empty) set. If � is a finite set then each multiset M = (�, f) is finite and
it will be represented by {af(a) | a 2 supp(M)}.

2.3 Graphs and Trees

A free tree (tree, for short) is a connected, acyclic, undirected graph. A rooted tree

is a tree in which one of the vertices (called the root of the tree) is distinguished
from the others. In a rooted tree the concepts of ascendants and descendants are
defined in a usual way. Given a node x (di↵erent from the root), if the last edge
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on the (unique) path from the root of the tree to the node x is {x, y} (in this
case, x 6= y), then y is the parent of node x and x is a child of node y. The root
is the only node in the tree with no parent. A node with no children is called a
leaf (see [1] for details).

2.4 Binary Representation of Natural Numbers

For each natural number n 2 N we denote [0, 2n+1) = {x 2 N | 0  x < 2n+1}.
Next, we define the binary representation of natural numbers. For each natural
number x 2 N, x � 1, there exist a unique tuple (x0, . . . , xn

) 2 {0, 1}n+1, with
n 2 N and x

n

= 1, such that x = x0 ·20+x1 ·21+. . .+x
n

·2n, that is, x 2 [0, 2n+1).
We say that the finite sequence x

n

· · ·x1x0 or the tuple (x0, . . . , xn

), is the binary
representation of natural number x. We denote k

x

= n, that is, 1 + k
x

is the
number of digits of natural number x � 1 in its binary representation.

Binary representation and, in general, representation of numbers di↵erent
to unary one, is useful because the size of a natural number x (the number of
bits used) in unary representation is x but in binary representation its size is
1+blog2(x)c. Consequently, the size of a natural number expressed in unary form
is exponential in the size of that number expressed in binary form. It is worth
pointing out that within the framework of Membrane Computing work is being
carried out on multisets, and it is usual represents instances of abstract problems
in unary representation (natural numbers are encoded by the multiplicities of
some objects in a multiset).

Given a partial function f from Nq into Nr, with q � 1, r � 1, for each
x = (x1, . . . , xq

) 2 Nq and y = (y1, . . . , yr) 2 Nr such that f(x) = y there exists
a unique natural number k(x,y) defined as follows:

k(x,y) = min{k 2 N | [k � 1] ^ [x1, . . . , xq

, y1, . . . , yr 2 [0, 2k)]}

That is, k(x,y) is the smallest natural number where natural numbers x1, . . . , xq

,
y1, . . . , yr can be represented in binary form with, at most, k(x,y) digits.

3 Polarizationless P Systems with Active Membranes

In [11], P systems with active membranes are introduced as a universal comput-
ing model, that is, it has the same computational power than a Turing machine.
There, a linear time solution to SAT is given, using P systems with active mem-
branes with polarizations and membrane division. As polarizations seem to be
a very powerful tool from the computational complexity point of view, a new
framework not using them is created, the so-called polarizationless P systems
with active membranes. In [4], a frontier of e�ciency is given by means of dis-
solution rules. Passing from forbidding them to allowing them is the same as
passing from non-e�ciency to (strong) e�ciency. In fact, not only NP-complete
problems can be solved in an e�cient way, but a solution to the problem QSAT, a
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well-known PSPACE-complete problem [14], by means of recognizer polariza-
tionless P systems with membrane division for elementary and non-elementary
membranes and dissolution rules in linear time is given.

In P systems with active membranes, the rules are non-cooperative, that is,
the left-hand side of the rules have only one object. In [18] and [19], a cooperative
version of object evolution rules was introduced. In following investigations, more
restrictions were added to these rules, by considering minimal cooperation (the
left-hand side of the rules have exactly two objects) and minimal production

(the right-hand side of the rules have only one object) in objects evolution rules.
Even restricting these rules to this, a linear-time solution to SAT was provided
in [20] when division rules only for elementary membranes are considered and
dissolution rules are forbidden.

3.1 Syntax

Definition 1. A polarizationless P system with active membranes of degree

p � 1 that makes use of minimal cooperation and minimal production in ob-

ject evolution rules is a tuple ⇧ = (�, H, µ,M1, . . . ,Mp

,R, i
out

), where:

– � is a finite alphabet;

– H is a finite alphabet such that H \ � = ;;
– µ is a labelled rooted tree with p nodes;

– M1, . . . ,Mp

are multisets over � ;

– R is a finite set of rules, of the following forms:

(a) [ a ! c ]
h

or [ a b ! c ]
h

, for h 2 H, a, b, c 2 � (object evolution rules).
(b) a [ ]

h

! [ b ]
h

, for h 2 H, a, b 2 � (send-in communication rules).
(c) [ a ]

h

! b [ ]
h

, for h 2 H, a, b 2 � (send-out communication rules).
(d) [ a ]

h

! b, for h 2 H, a, b 2 � (dissolution rules).
(e) [ a ]

h

! [ b ]
h

[ c ]
h

, for h 2 H, a, b, c 2 � (division rules for elementary

membranes).
(f) [ [ ]

h0 [ ]
h1 ]h ! [ [ ]

h0 ]h [ [ ]
h1 ]h, for h, h0, h1 2 H (division rules

for non-elementary membranes).

A polarizationless P system with active membranes of degree p can be viewed
as a set of p membranes, labelled by elements of H, arranged in a hierarchical
structure µ given by a rooted tree (called membrane structure) whose root is
called the skin membrane, such that: (a) M1, . . . ,Mp

represent the finite mul-
tisets of objects initially placed in the p membranes of the system; (b) R is a
finite set of rules over � associated with the labels; and (c) i

out

2 H [ {env}
indicates the output zone. We use the term zone i to refer to membrane i in the
case i 2 H and to refer to the “environment” of the system in the case i = env.
The leaves of µ are called elementary membranes. In these kind of P systems
where are mechanisms, implemented by division rules, able to generate an expo-
nential workspace (in terms of number of membranes and objects) in polynomial
time. This allows us to describe brute force algorithms in these systems in an
“e�cient” way.
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3.2 Semantics

A configuration C
t

at an instant t of a polarizationless P system with active
membranes is described by the following elements: (a) the membrane structure
at instant t, and (b) all multisets of objects over � associated with all the
membranes present in the system at that moment.

An object evolution rule [ a ! c ]
h

(resp., [ a b ! c ]
h

) is applicable to a
configuration C

t

at an instant t, if there exists a membrane labelled by h in C
t

which contains object a (resp., objects a and b). When applying such a rule,
object a (resp., objects a and b) is consumed and object c is produced in that
membrane.

A send-in communication rule a [ ]
h

! [ b ]
h

is applicable to a configuration
C
t

at an instant t, if there exists a membrane labelled by h in C
t

such that h is
not the label of the root of µ and its parent membrane contains object a. When
applying such a rule, object a is consumed from the parent membrane and object
b is produced in the corresponding membrane labelled by h.

A send-out communication rule [ a ]
h

! b [ ]
h

is applicable to a configuration
C
t

at an instant t, if there exists a membrane labelled by h in C
t

such that it
contains object a. When applying such a rule, object a is consumed from such
membrane h and object b is produced in the parent of such membrane (in the case
that such membrane is the skin then object b is produced in the environment).

A dissolution rule [ a ]
h

! b is applicable to a configuration C
t

at an instant t,
if there exists a membrane labelled by h in C

t

, di↵erent from the skin membrane
and the output zone, such that it contains object a. When applying such a rule,
object a is consumed, membrane h is dissolved and its objects beside an object
b are sent to the parent (or the first ancestor that has not been dissolved).

A division rule [ a ]
h

! [ b ]
h

[ c ]
h

for elementary membrane is applicable to a
configuration C

t

at an instant t, if there exists an elementary membrane labelled
by h in C

t

, di↵erent from the skin membrane and the output zone, such that
it contains object a. When applying such a rule, the membrane with label h
is divided into two membranes with the same label; in the first copy, object a
is replaced by object b, in the second one, object a is replaced by object c; all
the other objects are replicated and copies of them are placed in the two new
membranes.

A division rule [ [ ]
h0 [ ]

h1 ]h ! [ [ ]
h0 ]h [ [ ]

h1 ]h for non-elementary
membrane is applicable to a configuration C

t

at an instant t, if there exists a
membrane labelled by h in C

t

, di↵erent from the skin membrane and the output
zone, which contains a membrane labelled by h0 and another membrane labelled
by h1. When applying such a rule, the membrane with label h is divided into two
membranes with the same label; the first copy inherits membrane h0 with its
contents, and the second copy inherits membrane h1 with its contents. Besides,
if the membrane labelled by h contains more membranes other that those with
the labels h0, h1, then such membranes are duplicated so that they become part
of the contents of both new copies of the membrane h.

In polarizationless P systems with active membranes, the rules are applied
according to the following principles:
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– At one transition step, one object and one membrane can be used by only
one rule, selected in a non-deterministic way.

– At one transition step, a membrane can be the subject of only one rule of
types (b)� (f), and then it is applied at most once.

– Object evolution rules can be simultaneously applied to a membrane with
one rule of types (b)� (f). In any case, object evolution rules are applied in
a maximally parallel manner.

– If at the same time a membrane labelled with h is divided by a rule of type
(e) or (f) and there are objects in this membrane which evolve by means of
rules of type (a), then we suppose that first the evolution rules of type (a)
are used, changing the objects, and then the division is produced. Of course,
this process takes only one transition step.

– The skin membrane and the output membrane, if any, can never get divided
nor dissolved.

Let us notice that in these kind of P systems the environment plays a passive
role in the following sense: along any computation, the environment only can
receive objects from the system but it cannot send objects into the system.

4 Computing Membrane Systems

Let us recall that counting membrane systems, was introduced as a framework
where counting problems (a special case of search problems) can be solved in
a natural way [21]. These systems are inspired from counting Turing machines

introduced by L. Valiant [23] and from recognizer membrane systems where the
Boolean answer of these systems is replaced by an answer encoded by a nat-
ural number expressed in a binary representation (placed in the environment
associated with the halting configuration). On the other hand, the concept of
computing P system was introduced in [17] providing devices in Membrane Com-
puting to compute partial functions from Nq to Nr, with q � 1, r � 1.

Inspired by the previous concepts, (binary) computing membrane systems

is defined in order to compute partial function from Nq to Nr (q � 1, r � 1)
when the natural numbers are considered by means of the corresponding binary
representation.

Definition 2. A (binary) computing membrane system ⇧ of degree (p, q, r),
p � 1, q � 1, r � 1, and order n � 1 is a tuple ⇧ = (⇧ 0,⌃,�, i

in

), where

– ⇧ 0 = (� 0, µ0,M0
1, . . . ,M0

p

,R0) is a membrane system with external output

of degree p.
– ⌃ = {a1,0, . . . , a1,n�1, . . . , aq,0, . . . , aq,n�1} is an ordered set (the input alphabet)

strictly contained in � 0
.

– � = {b1,0, . . . , b1,n�1, . . . , br,0, . . . , br,n�1} is an ordered set (the final alphabet)
strictly contained in � 0

and � \⌃ = ;.
– i

in

is the label of a distinguished membrane of ⇧ 0 (the input membrane).
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Given a (binary) computing membrane system ⇧ = (⇧ 0,⌃,�, i
in

) of degree
(p, q, r) and order n, for each tuple x = (x1, . . . , xq

) 2 Nq such that x
i

2 [0, 2n),
for 1  i  q, there are uniques x

i,j

2 {0, 1}, for 1  i  q, 0  j  n � 1,

verifying x
i

=
P

n�1
j=0 x

i,j

· 2j , we use the following notations:

– cod(x) is the set {ax1,0

1,0 , . . . , a
x1,n�1

1,n�1 , . . . , a
x

q,0

q,0 , . . . , a
x

q,n�1

q,n�1 }.
– ⇧ + cod(x) is the membrane system ⇧ whose the initial configuration is the

tuple (µ0,M0
1, . . . ,M0

i

in

+ cod(x), . . .M0
p

).

In a (binary) computing membrane system ⇧ of degree (p, q, r) and order n,
the following semantics conditions are required: for each natural number x =
(x1, . . . , xq

) 2 Nq such that x
i

2 [0, 2n), for 1  i  q,

– Either any computation of ⇧ + cod(x) is a non-halting computation, or all
computations of ⇧ + cod(x) halt.

– If all computations of ⇧ + cod(x) halt, then there exists a tuple

(y1,0, . . . , y1,n�1, . . . , yr,0, . . . , yr,n�1) 2 {0, 1}r·n

such that for any computation of ⇧+cod(x), the subset of the final alphabet
� contained in the environment associated with the corresponding halting
configuration is {by1,0

1,0 , . . . , b
y1,n�1

1,n�1 , . . . , b
y

r,0

r,0 , . . . , b
y

r,n�1

r,n�1 }.

According with this, the output of the membrane system ⇧+cod(x), in the case
that all their computations halt, denoted by Output(⇧ + cod(x)), is the tuple

(y1,0, . . . , y1,n�1, . . . , yr,0, . . . , yr,n�1) 2 {0, 1}r·n

That is, the output of the membrane system⇧+cod(x) encodes a tuple (y1, . . . , yr) 2
Nr such that y

l

2 [0, 2n), for 1  l  r, and (y
l,0, . . . , yl,n�1) is the binary rep-

resentation of y
l

.

Definition 3. We say that a (binary) computing membrane system ⇧ of degree

(p, q, r) and order n, computes a partial function f from [0, 2n)⇥ (q·n). . . ⇥[0, 2n)

into [0, 2n)⇥ (r·n). . . ⇥[0, 2n), if for each x = (x1, . . . xn

) 2 [0, 2n)⇥ (q·n). . . ⇥[0, 2n),
the following holds:

– f(x) is defined, that is, x 2 dom(f), if and only if all computations of system

⇧ + cod(x) halt.
– f(x) = y, with y =

P
n�1
j=0 y

i,j

· 2j, for 1  i  r, if and only if

Output(⇧ + cod(x)) = (y1,0, . . . , y1,n�1, . . . , yr,0, . . . , yr,n�1)

Definition 4. We say that a family {⇧(k) | k 2 N} of (binary) computing

membrane systems computes a partial function f from Nq

into Nr

if the following

holds:

– For each k 2 N, ⇧(k) is a (binary) computing membrane system of order

k + 1.
– For each x 2 Nq

, f(x) is defined and f(x) = y, with y =
P

k(x,y)

j=0 y
i,j

· 2j,
for 1  i  r, if and only if the output of the system ⇧(k(x,y)) + cod(x) is

the tuple (y1,0, . . . , y1,k(x,y)
, . . . , y

r,0, . . . , yr,k(x,y)
).
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5 Solving the FACTORIZATION problem by Computing
Membrane Systems

Let us recall that the FACTORIZATION problem is the following: given a natural

number which is the product of two prime numbers, find its decomposition. This
problem can be characterized by a partial function FACT from N to N2 defined
as follows: for each natural number x which is the product of two prime num-
bers y, z, with y � z, we have FACT(x) = (y, z). In other words, to solve the
FACTORIZATION problem is equivalent to compute the partial function FACT.

In this paper, a solution to the FACTORIZATION problem is presented by
providing a family {⇧(n) | n 2 N} of (binary) computing polarizationless P
systems with active membranes which make use of minimal cooperation and
minimal production (without dissolution rules and without division rules for
non-elementary membranes), that computes the partial function FACT from N to
N2, previously defined. Specifically, an instance x of the FACTORIZATION problem
will be processed by the membrane system ⇧(k

x

) with input multiset cod(x),
where cod(x) encodes the binary representation of instance x through the input
alphabet of ⇧(k

x

). Bearing in mind that 2  y, z < x we have k
x

= k(x,y,z), and
so x, y, z 2 [0, 2)1+k

x . Besides, 1+k
x

is the maximum number of digits of natural
numbers x, y, z � 1 in its binary representation and the system ⇧(k

x

) has order
k
x

+1. For each natural number n 2 N, we consider the computing polarization-
less P system with active membranes which makes use of minimal cooperation
and minimal production but without dissolution rules and without division for
non-elementary membranes, ⇧(n) = (�,⌃,�, H, µ,M1,M2,R, i

in

, i
out

) of de-
gree (2, 1, 2) and order n+ 1, defined as follows:

(1) Working alphabet:

� = ⌃ [ � [ {#} [ {!
j,k

| 0  j  n, 0  k  17n+ 26} [
{↵1,j,s | 0  j  n, 0  s < j} [
{↵2,j,s | 0  j  n, 0  s < n+ 1 + j} [
{T

h,j

, T
h,j

| 1  h  2, 0  j  n} [
{p

j,k

| 0  j  n, 0  k  5n+ 10} [
{�

h,j,s

| 1  h  2, 0  j  n, 0  s  3n+ 6} [
{P

j,k

| 0  j  n, 0  k  5n+ 8} [ {X
j

, X
j

| 0  j  n} [
{t1,j,s, t1,j,s | 0  j  n, j  s  3n+ 5} [
{t2,j,s, t2,j,s | 0  j  n, n+ 1 + j  s  3n+ 5} [
{T ⇤

h,j

, T
⇤
h,j

| 1  h  2, 0  j  n} [
{P

j

, P
j

, P ⇤
j

, P
⇤
j

| 0  j  n} [ {e
j

, e⇤
j

| 1  j  n} [
{d

j

| 1  j  4n+ 3} [ {d⇤
j

| 2n+ 2  j  4n+ 2} [
{G

k

| 1  k  8n+ 6} [ {T 0
1,j , T

0
1,j | 0  j  n} [

{C
h,j,i

| 0  h  2, 0  j  n, 0  i  n� j} [
{C

h,j

| 0  h  2, 0  j  n} [
{T1,j,k, T 1,j,k | 0  j  n, 0  k  j} [
{T2,j,k, T 2,j,k | 0  j  n, 0  k  n+ 1 + j} [
{y

j

, y
j

, z
j

, z
j

, y⇤
j

, z⇤
j

| 0  j  n}
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where the input alphabet is ⌃ = {a
i

| 0  i  n} and the final alphabet is
� = {b1,j , b2,j | 0  j  n};

(2) H = {1, 2}
(3) Membrane structure: µ = [ [ ]2 ]1, that is, µ = (V,E) where V = {1, 2} and

E = {(1, 2)}
(4) Initial multisets: M1 = {!2

j,0 | 0  j  n}, M2 = {X
j

,↵1,j,0,↵2,j,0,

Tn+4
1,j , T

n+4
1,j , Tn+4

2,j , T
n+4
2,j , p

j,0,!2
j,0, ⌧j,0, zj ,�

n+1
1,j,0,�

n+1
2,j,0 | 0  j  n} [ {P

j,0 |
0  i  2n+ 1}

(5) The set of rules R consists of the following rules:

5.1 Counters
[ a

j

X
j

! X
j

] , for 0  j  n

[↵1,j,s ! ↵1,j,s+1 ]2 , for 0  j  n and 0  s < j
[↵2,j,s ! ↵2,j,s+1 ]2 , for 0  j  n and 0  s < n+ 1 + j

[�1,j,k ! �1,j,k+1 ]2
[�2,j,k ! �2,j,k+1 ]2

�
for 0  j  n, 0  k  3n+ 5

[P
j,k

! P
j,k+1 ]2 , for 0  j  2n+ 1, 0  k  5n+ 7

[ p
i,j

! p
i,j+1 ]2 , for 0  i  n, 0  j  5n+ 9

[ ⌧
j,k

! ⌧
j,k+1 ]2 , for 0  j  n, 0  k  14n+ 11

[!
j,k

! !
j,k+1 ]2 , for 0  j  n, 0  k  15n+ 21

[!
i,j

! !
i,j+1 ]1 , for 0  i  n, 0  j  17n+ 25

5.2 Generation Stage

[↵1,j,j ]2 ! [ t1,j,j ]2 [ t1,j,j ]2
[↵2,j,n+1+j

]2 ! [ t2,j,n+1+j

]2 [ t2,j,n+1+j

]2

�
for 0  j  n

[ t1,j,v ! t1,j,v+1 ]2
[ t1,j,v ! t1,j,v+1 ]2

�
for 0  j  n and j  v  2n

[ t2,j,v ! t2,j,v+1 ]2
[ t2,j,v ! t2,j,v+1 ]2

�
for 0  j  n� 1 and n+ 1 + j  v  2n

[ t
h,j,2n+s

T
h,j

! t
h,j,2n+s+1 ]2

[ t
h,j,2n+s

T
h,j

! t
h,j,2n+s+1 ]2

�
for

1  h  2
0  j  n
1  s  3n+ 4

[ t
h,j,3n+5 Th,j

! # ]2
[ t

h,j,3n+5 Th,j

! # ]2
[�1,j,3n+6 T1,j ! T ⇤

1,j ]2
[�1,j,3n+6 T 1,j ! T

⇤
1,j ]2

[�2,j,3n+6 T2,j ! T ⇤
2,j ]2

[�2,j,3n+6 T 2,j ! T
⇤
2,j ]2

9
>>=

>>;
for 0  j  n, 0  k  3n+ 5

5.3 Multiplication Stage

[T ⇤
1,j T

⇤
2,j0 ! P

j+j

0 ]2
[T ⇤

1,j T
⇤
2,j0 ! P

j

]2
[T

⇤
1,j T

⇤
2,j0 ! P

j

0 ]2
[T

⇤
1,j T

⇤
2,j0 ! # ]2

9
>>>=

>>>;
for 0  j, j0  n



The Factorization Problem: A New Approach Through Membrane Systems 49

[P
j

P
j

! P
j+1 ]2

[P
j,5n+8 ! P

j

]2
[P

j

P
j

! P
j

]2
[ p

j,5n+10 Pj

! P ⇤
j

]2
[ p

j,5n+10 P j

! P
⇤
j

]2

9
>>>>=

>>>>;

for 0  j  2n+ 1

5.4 Equality Checking Stage

[P ⇤
j

X
j

! e
j

]2
[P

⇤
j

X
j

! e
j

]2
[P

⇤
j

X
j

! e⇤
j

]2
[P ⇤

j

X
j

! e⇤
j

]2

9
>>=

>>;
for 0  j  n

[ e0 e1 ! d1]2
[ d

j

e
j+1 ! d

j+1 ]2 , for 0  j  n� 1
[ e⇤0 e1 ! G1 ]2
[ e0 e⇤1 ! G1 ]2
[ e⇤0 e

⇤
1 ! G1 ]2

[ d
j

e⇤
j+1 ! G

j+1 ]2
[G

j

e
j+1 ! G

j+1 ]2
[G

j

e⇤
j+1 ! G

j+1 ]2

9
=

; for 0  j  n

[ d
j

P
j+1 ! d

j+1]2
[ d

j

P
j+1 ! G

j+1 ]2
[G

j

P
j+1 ! G

j+1 ]2
[G

j

P
j+1 ! G

j+1 ]2

9
>>=

>>;
forn  j  2n

[G2n+1+j

T1,j ! G2n+2+j

]2
[G2n+1+j

T 1,j ! G2n+2+j

]2
[G3n+2+j

T2,j ! G3n+3+j

]2
[G3n+2+j

T 2,j ! G3n+3+j

]2

9
>>=

>>;
for 0  j  n

5.5 Trivial Solution Check Stage

[ d2n+1 T1,0 ! d2n+2 ]2
[ d2n+1 T 1,0 ! d⇤2n+2 ]2
[ d2n+2+j

T 1,j+1 ! d2n+3+j

]2
[ d2n+2+j

T1,j+1 ! d⇤2n+3+j

]2
[ d⇤2n+2+j

T1,j+1 ! d⇤2n+3+j

]2
[ d⇤2n+2+j

T 1,j+1 ! d⇤2n+3+j

]2

9
>>=

>>;
for 0  j  n� 2

[ d3n+1 T 1,n ! T3n�1 ]2
[ d3n+1 T1,n ! d3n�1 ]2
[ d⇤3n+1 T1,n ! d3n+2 ]2
[ d⇤3n+1 T 1,n ! d3n+2 ]2
[ d3n+2 T2,0 ! d3n ]2
[ d3n+2 T 2,0 ! d⇤3n ]2
[ d3n+3+j

T 2,j+1 ! d3n+4+j

]2
[ d3n+3+j

T2,j+1 ! d⇤3n+4+j

]2
[ d⇤3n+3+j

T2,j+1 ! d⇤3n+4+j

]2
[ d⇤3n+3+j

T 2,j+1 ! d⇤3n+4+j

]2

9
>>=

>>;
for 0  j  n� 2
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[ d4n+2 T 2,n ! T4n+3 ]2

[ d4n+2 T2,n ! d4n+3 ]2

[ d⇤4n+2 T2,n ! d4n+3 ]2
[ d⇤4n+2 T 2,n ! d4n+3 ]2

5.6 First Delete Stage

[G4n+3+j

T1,j ! G4n+4+j

]2
[G4n+3+j

T 1,j ! G4n+4+j

]2
[G5n+4+j

T2,j ! G5n+5+j

]2
[G5n+4+j

T 2,j ! G5n+5+j

]2
[G6n+5+j

T1,j ! G6n+6+j

]2
[G6n+5+j

T 1,j ! G6n+6+j

]2

9
>>>>>>=

>>>>>>;

for 0  j  n

[G7n+6+j

T2,j ! G7n+7+j

]2
[G7n+6+j

T 2,j ! G7n+7+j

]2

�
for 0  j  n� 1

[G8n+6 T2,n ! # ]2
[G8n+6 T 2,n ! # ]2

5.7 Second Delete Stage

[ ⌧
j,14n+12 T1,j ! T 0

1,j ]2
[ ⌧

j,14n+12 T 1,j ! T
0
1,j ]2

�
for 0  j  n

[T
0
1,j T2,j ! C2,j,n�j

]2
[T

0
1,i T 2,j ! C1,j,n�j

]2
[T 0

1,j T2,j ! C1,j,n�j

]2
[T 0

1,j T 2,j ! C0,j,n�j

]2

9
>>>=

>>>;
for 0  j  n

[C1,j,0 C2,j�1,1 ! C2,j�1,0 ]2
[C0,j,0 C2,j�1,1 ! C0,j�1,0 ]2
[C1,j,0 C1,j�1,1 ! C1,j�1,0 ]2

9
=

; for 2  j  n

[C2,j,0 Ci,j�1,1 ! C2,j�1,0 ]2
[C0,j,0 Ci,j�1,1 ! C0,j�1,0 ]2

�
for 0  i  2, 2  j  n

[C1,1,0 C2,0,1 ! C2,0 ]2

[C1,1,0 C0,0,1 ! C0,0 ]2

[C1,1,0 C1,0,1 ! C1,0 ]2

[C2,1,0 Cj,0,1 ! C2,0 ]2
[C0,1,0 Cj,0,1 ! C0,0 ]2

�
for 0  j  2

[C
i,j,k

! C
i,j,k�1 ]2 , for 0  i  2, 2  j  n, 0  k  n

5.8 Output 1 Phase



The Factorization Problem: A New Approach Through Membrane Systems 51

[C2,j T1,j ! C2,j+1 ]2
[C2,j T 1,j ! C2,j+1 ]2
[C2,n+1+j

T2,j ! C2,n+2+j

]2
[C2,n+1+j

T 2,j ! C2,n+2+j

]2
[!

j,15n+22 T1,j ! T1,j,j ]2
[!

j,15n+22 T 1,j ! T 1,j,j ]2
[!

j,15n+22 T2,j ! T2,j,n+1+j

]2
[!

j,15n+22 T 2,j ! T 2,j,n+1+j

]2
[T1,j,0 ]2 ! y

j

[ ]2
[T 1,j,0 ]2 ! y

j

[ ]2
[T2,j,0 ]2 ! z

j

[ ]2
[T 2,j,0 ]2 ! z

j

[ ]2

9
>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>;

for 0  j  n

[T1,j,k ! T1,j,k�1 ]2
[T 1,j,k ! T 1,j,k�1 ]2

�
for 0  j  n, 1  k  n

[T2,j,k ! T2,j,k�1 ]2
[T 2,j,k ! T 2,j,k�1 ]2

�
for 0  j  n, 1  k  2n+ 1

5.10 Output 2 Phase
[ y

j

y
j

! y
j

]1
[ y

j

y
j

! y
j

]1
[ z

j

z
j

! z
j

]1
[ z

j

z
j

! z
j

]1
[!

i,17n+26 yj ! y⇤
j

]1
[!

i,17n+26 zj ! z⇤
j

]1
[ y⇤

j

]1 ! b1,j [ ]1
[ z⇤

j

]1 ! b2,j [ ]1

9
>>>>>>>>>>=

>>>>>>>>>>;

for 0  j  n

(6) The input membrane is the membrane labelled by 1 (i
in

= 2) and the output
region is the environment (i

out

= env).

6 An Overview of the Computations

Let x 2 N an instance of the FACTORIZATION problem, that is, x is a natural
number whose binary representation is given by (x0, . . . , xn

), and such that
x = y · z being y and z prime numbers with y � z. Then, x will be processed by
the membrane system ⇧(k

x

) + cod(x), where cod(x) = {ax0
0 , . . . , axn

n

}.
The family {⇧(n) | n 2 N} designed to solve the FACTORIZATION problem

captures the behaviour of a brute force algorithm: (a) all possible pairs of natural
numbers y, z, with y, z  x are produced; (b) the product y · z is computed; and
(c) the output is the pair {y, z} if and only if x = y · z. Next, we briefly describe
the stages in which the computations of membrane system ⇧(n) are structured,
where n = k

x

, being x an instance of the FACTORIZATION problem.

6.1 Generation Stage

At this stage, 22n+2 membranes labelled by 2 are generated in such manner
that each of them contains n + 4 copies of possible candidate pairs of natural
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numbers y, z, whose binary representation have at most n+1 digits, which will
be represented by symbols T ⇤

h,j

and T
⇤
h,j

. For that, first of all, the code cod(x)
of the instance x = (x0, . . . , xn

) changes to {⇢
i

| 0  i  n}, where ⇢
j

= X
j

if
x
j

= 1, ⇢
j

= X
j

if x
j

= 0. From the beginning, division rules to objects ↵1,j,j

and ↵2,j,n+1+j

are applied. Second, objects t
h,j,v

and t
h,j,v

are used in order to
remove undesired objects T

h,j

and T
h,j

. Finally, objects �
h,j,3n+6 will produce

objects T ⇤
h,j

and T
⇤
h,j

encoding all possible di↵erent candidates y, z of natural
numbers in each membrane labelled by 2. This stage takes 3n+ 7 steps.

6.2 Multiplication Stage

At this stage, the pair of natural numbers encoded in each membrane labelled
by 2, is multiplied. For that, first all bits represented by objects T ⇤

1,j or T
⇤
1,j

are multiplied with all bits represented by objects T ⇤
2,j0 or T

⇤
2,j0 , and objects

P
j+j

0 are produced. Second, objects P
j+j

0 are handled in order to be sure that
there is, at most, one bit for each position. In order to have a complete binary
representation of these numbers, that is, the representation of each bit of the
product, we use object P

j

to represent that the bit j equals 1, and object P
j

if
bit j equals 0. This stage takes 2n+ 4 steps.

6.3 Equality Checking Stage

Here, in each membrane labelled by 2, the instance x encoded by objects X
j

and
X

j

is compared to the product y · z, represented by objects P
j

and P
j

. If they
are equal, that is, y ·z = x, then objects encoding y, z remain in that membrane,
and they are removed otherwise. First, objects X

j

and X
j

are compared with
objects P

j

and P
j

. Next, these partial comparisons represented by objects e
j

and
e⇤
j

are used to compare the entire number. If some object T
h,j

, with j � n + 1,
appears, that is, the binary representation of the product has more “useful” bits
than the original number, then all the objects are erased. This stage takes 4n+4
steps.

6.4 Trivial Solution Check Stage

Next, solutions y, z with either y = 1 or z = 1 (trivial solutions) are removed.
For that, bits are checked to be sure that the two numbers are di↵erent from 1,
and remove them otherwise. This stage takes 2n+ 2 steps.

6.5 First Delete Stage

In order to remove remaining objects from a membrane, a garbage recollection
strategy is used, so if an object G4n+3 appears in a membrane, then all objects
in such a membrane are removed. This stage takes 4n+ 4 steps.
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6.6 Second Delete Stage

If y ·z = x and y 6= z then we have two membranes labelled by 2 such that objects
T1,j T 1,j encode y and objects T2,j T 2,j encode z, but one of them represents
that y > z and the other one represents that y < z. In this situation, membrane
containing objects encoding y > z is distinguished and the corresponding objects
of the other membrane are removed. In the case y = z, objects encoding these
natural numbers will be kept in both membranes. For that, objects C

r,j,k

will
be produced. If the j-th bit of number y will be smaller than the j-th bit of z,
then r = 2, on the contrary r = 0. If j-th bit of both y and z are the same one
then r = 1. Later, these objects are used to compare the entire numbers. This
stage takes n+ 2 steps.

6.7 Output 1 Stage

In this stage, objects representing numbers y and z are going to be sent out to
membrane 1. To make this stage deterministic, first objects T1,j and T 1,j and
second objects T2,j and T 2,j are released to membrane labelled by 1. At the end
of the stage, objects y

j

and y
j

represent T1,j and T 1,j in membrane 1. Similarly,

objects z
j

and z
j

represent T2,j and T 2,j in membrane 1. This stage takes 4n+5
steps.

6.8 Output 2 Stage

Finally, binary representations of the numbers y and z are going to be sent out to
the environment by using objects of the final alphabet. First, the perfect square
case (two copies of objects y

j

or y
j

and two copies of objects z
j

or z
j

appear)
has to be taken into account. For that, two objects y

j

(or y
j

) will produce only
one object y

j

(or y
j

), and similarly for objects z
j

and z
j

. Next, each object y
j

(resp., z
j

) will produce an object y⇤
j

(resp., z⇤
j

) cooperating with object !17n+26.
Finally, each object y⇤

j

produce an object b1,j at the environment, and each
object z⇤

j

produce an object b2,j at the environment. This stages takes at most
2n+ 3 steps.

At Table 1, the steps used by each stage, besides the initial and final config-
uration of each one are indicated.

7 Conclusions and Future Work

The FACTORIZATION problem (given a natural number n which is product of two

large primes, find its decomposition) can be characterized by a partial function

FACT from N to N2 defined as follows: for each natural number x which is the
product of two prime numbers y, z, with y � z, we have FACT(x) = (y, z). This
problem belongs to the class FNP and it is conjectured that it is an intractable
problem, assuming that P 6= NP. Besides, it is the basis for some cryptographic
systems as important as RSA, a de facto standard for digital signatures. In order
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Stage Steps Initial configuration Final configuration
Generation 3n+ 7 0 3n+ 7
Multiplication 2n+ 4 3n+ 7 5n+ 11
Equality checking stage 4n+ 4 5n+ 11 9n+ 15
Trivial solution check 2n+ 2 7n+ 13 9n+ 15
First delete 4n+ 4 9n+ 15 13n+ 19
Second delete n+ 2 12n+ 18 13n+ 20
Output 1 4n+ 5 13n+ 20 17n+ 25
Output 2  2n+ 3 17n+ 25  19n+ 28

Table 1. Number of steps by each stage

to provide solutions in the framework of Membrane Computing, new membrane
systems computing partial functions between natural numbers are introduced.

In this work, a linear time solution to the FACTORIZATION problem is pre-
sented by means of a family of polarizationless P system with active membranes
without dissolution rules which use minimal cooperation and minimal produc-
tion in object evolution rules. This solution improves the previous ones given
in the membrane computing framework, in the sense that the use of syntactical
ingredients is significantly lower.

P-Lingua [25] and MeCoSim [24] have been very useful as assistant tools for
the process of verifying this design. An interesting future work is to use this
model in a GPU-based simulator, since it can accelerate the processing of the
computation. Several simulators of P systems have been implemented using the
NVIDIA CUDA framework. In fact, in the PMCGPU project [26] we can see
some simulators for di↵erent types of P systems. Some stages could be optimized
in order to have faster communications between the multiple cores of the graphic
card, like the encoding of objects into integers or the omission of some objects
that only act to synchronize the system. Another way to speed up the algorithm
would be to omit all the membranes containing an element c1,i, because we know
that these bits equal zero in our initial number x.
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