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Abstract One recently proposed criterion to separate two data sets in Classification is
to use a hyperplane that minimizes the sum of distances to it from all the misclassified
data points, where misclassification means lying on the wrong side of the hyperplane,
or rather in the wrong halfspace. In this paper we study an extension of this problem:
we seek the hyperplane minimizing the sum of concave nondecreasing functions of
the distances of misclassified points to it. It is shown that an optimal hyperplane exists
containing at least d affinely independent points. This extends the result known for
the minimization of the sum of distances, and enables to use combinatorial local-
search heuristics for this problem. As a corollary, the same result is obtained for
the approximation problem in which a hyperplane minimizing the sum of concave
nondecreasing functions of the distances from a set of data points is sought.
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1 Nonlinear distance functions

Two nonempty finite data sets A, B in R
d are said to be linearly separable if there

exist u ∈ R
d , u �= 0 and β ∈ R, such that the hyperplane,
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78 F. Plastria, E. Carrizosa

H(u, β)
def= {x ∈ R

d 〈u ; x〉 = β},

satisfies

〈u ; a〉 ≥ β ∀a ∈ A
〈u ; b〉 ≤ β ∀b ∈ B

(1)

In this paper we consider the case where the sets A, B are not linearly separable,
and thus a hyperplane H(u, β) satisfying some relaxation of (1) is sought.

A first strategy, proposed by Mangasarian (1994), amounts to finding a hyperplane
maximizing the number of constraints in (1) that are satisfied,

max |A∗| + |B∗|
s.t. 〈u ; a〉 ≥ β ∀a ∈ A∗

〈u ; b〉 ≤ β ∀b ∈ B∗
A∗ ⊂ A, B∗ ⊂ B
u �= 0, β ∈ R

(2)

A different strategy, proposed in Mangasarian (1999) and later analyzed in Carrizosa
and Plastria (2008), Karam et al. (2007), is based on the minimization of distances to
correct classification, as described below. See also Plastria and Carrizosa (2012) for a
minmax approach.

Given u ∈ R
d , u �= 0 and β ∈ R, let H(u, β)≥ and H(u, β)≤ denote the two

closed halfspaces with common boundary H(u, β),

H(u, β)≥ def=
{

x ∈ R
d : 〈u ; x〉 ≥ β

}

H(u, β)≤ def=
{

x ∈ R
d : 〈u ; x〉 ≤ β

}

According to (1) any point a ∈ A (resp. b ∈ B) is misclassified when a �∈ H(u, β)≥
(resp. b �∈ H(u, β)≤).

Given a norm γ in R
d, let dγ be the distance in R

d induced by γ, and consider
the problem of finding the hyperplane minimizing the sum of distances of the points
to their respective halfspace of correct classification,

min
∑
a∈A

dγ (a, H≥(u, β)) +
∑
b∈B

dγ (b, H≤(u, β))

s.t. u �= 0, β ∈ R

(3)

Observe that

dγ (a, H≥(u, β)) = (−〈u ; a〉 + β)+

γ ◦(u)
(4)

dγ (b, H≤(u, β)) = (〈u ; b〉 − β)+

γ ◦(u)
, (5)

Carrizosa and Plastria (2008), where (t)+ = max{t, 0}, and γ ◦ is the norm dual to γ.
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In this paper we address an extension of models (2) and (3). A different way of
combining (2)–(3) can be found in Chen and Mangasarian (1996).

Here, instead of summing the misclassification distances as in (3), we take the sum
of misclassification costs, where cost is a function of distance with certain properties.
More precisely, consider the set of functions F ,

F def= { f : R
+ −→ R

+ f is concave, with f (0) = 0}. (6)

Any f ∈ F satisfies f (s) ≥ 0 for all s ≥ 0, and when applied to distances yields a cost
(which is zero for zero distances). On the other hand, concavity implies a diminishing
effect of larger distances, which is a necessary condition for robustness. See Carrizosa
and Rodríguez-Chía (1997) for further motivation for this model of cost functions.

The definition implies that any f ∈ F is nondecreasing in R
+, Plastria (2009).

For each a ∈ A, (resp. b ∈ B,) let fa (resp. fb) be a function in F , and consider
the problem

min
∑
a∈A

fa(d(a, H≥(u, β))) +
∑
b∈B

fb(d(b, H≤(u, β)))

s.t. u �= 0, β ∈ R,

which, by (4)–(5), can be written as

min F(u, β)
def=

∑
a∈A

fa

(
(−〈u ; a〉 + β)+

γ ◦(u)

)
+

∑
b∈B

fb

(
(〈u ; b〉 − β)+

γ ◦(u)

)

s.t. u �= 0, β ∈ R.

(7)

A possible choice for functions f in (7) is f (t) = t p (0 < p ≤ 1). In particular,
for p = 1, one obtains (3), whereas values of p, 0 < p < 1 have been advocated, in
a related context, by Stam (1997); the step function

f (t) =
{

1, if t > 0
0, if t = 0

(8)

which counts the number of misclassified points, yields (2); other functions of possible
interest such as f (t) = min{t/C, 1} or f (t) = 1 − e−tC (C > 0) remain, as far as we
know, unexplored.

The purpose of this note is to show that, under these concavity conditions, there
always exists an optimal solution (u, β) to (7) such that H(u, β) contains sufficiently
many data points. It follows that complete enumeration can be used as a polynomial
resolution technique.

2 The localization property

Before we show the localization property, the following technical lemmas are needed.

123



80 F. Plastria, E. Carrizosa

Lemma 1 Let K be a convex set in R
d+1. Then, the set R++ · K defined as

R++ · K
def= {z ∈ R

d+1 : z = t y f or some t > 0, y ∈ K }

is convex.

This is in fact simply the (pointed) conical hull of K (i.e. without the origin in case
0 /∈ K )

Lemma 2 Let ν be a norm in R
d+1. Let S be a pointed cone in R

d+1 such that
ν(x) > 0 ∀x ∈ S. Let v1, . . . , vk ∈ R

d+1 be such that 〈vi ; x〉 ≥ 0 for all x ∈ S, and
let f1, . . . , fr be concave nondecreasing functions in R+. Then, the function ϕ,

ϕ(x) =
r∑

i=1

fi

( 〈vi ; x〉
ν(x)

)

is quasiconcave on S.

Proof First observe that ϕ is well defined in S since ν(x) > 0 ∀x ∈ S.

Define, for α ≥ 0, the set Lα as the upper level set of ϕ, namely:

Lα = {x ∈ S : ϕ(x) ≥ α}

It suffices to show that, for any α, the set Lα is convex.
Convexity of Lα will be shown by showing that

Lα = R++ ·
({

y ∈ S :
r∑

i=1

fi (〈vi ; y〉) ≥ α

}
∩ {y : ν(y) ≤ 1}

)
. (9)

By the concavity of the functions fi , the functions fi (〈vi ; y〉) are concave, so their
sum is also concave and its upper level sets are convex. Hence, by Lemma 1 the
righthandside set is convex, and then the result follows.

Let us show (9). We have by definition of Lα that

Lα =
⋃
ε>0

{
x ∈ S :

r∑
i=1

fi

( 〈vi ; x〉
ν(x)

)
≥ α, ν(x) = ε

}
(10)

=
⋃
ε>0

{
x ∈ S :

r∑
i=1

fi

( 〈vi ; x〉
ε

)
≥ α, ν(x) = ε

}
(11)

=
⋃
ε>0

{
x ∈ S :

r∑
i=1

fi

( 〈vi ; x〉
ε

)
≥ α, ν(x) ≤ ε

}
, (12)

where the last equality follows from the following: it is evident that the set in (11) is
included in the one in (12); any x in this latter set satisfies x ∈ S, and there exists
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some ε > 0 such that ν(x) ≤ ε, and

r∑
i=1

fi

( 〈vi ; x〉
ε

)
≥ α

By assumption all 〈vi ; x〉 ≥ 0, so 〈vi ; x〉
ν(x)

≥ 〈vi ; x〉
ε

and, since all fi are nondecreasing,

r∑
i=1

fi

( 〈vi ; x〉
ν(x)

)
≥ α.

This shows that x belongs to the set in (11) for the choice ε = ν(x).
Hence,

Lα =
⋃
ε>0

{
x ∈ S : x = εy,

r∑
i=1

fi (〈vi ; y〉) ≥ α, ν(y) ≤ 1

}

=
⋃
ε>0

{
x ∈ R

d+1 : x = εy, y ∈ S,

r∑
i=1

fi (〈vi ; y〉) ≥ α, ν(y) ≤ 1

}
,

which is exactly statement (9), and thus the result follows.

Theorem 3 Problem (7) has an optimal solution (u, β) such that (u, β) contains at
least d affinely independent points of A ∪ B.

Proof The proof goes parallel to the ones given in Carrizosa and Plastria (2008),
Plastria and Carrizosa (2001) for related problems, now using Lemma 2 as supporting
result.

Take an arbitrary solution (u0, β0), u0 �= 0, and we will find a solution (u, β) with
H(u, β) containing at least d affinely independent points of A ∪ B and F(u, β) ≤
F(u0, β0).

Define the sets

A≥
(u0,β0) = {a ∈ A : 〈u0 ; a〉 − β0 ≥ 0}

A≤
(u0,β0) = {a ∈ A : 〈u0 ; a〉 − β0 ≤ 0}

B≥
(u0,β0) = {b ∈ B : 〈u0 ; b〉 − β0 ≥ 0}

B≤
(u0,β0) = {b ∈ B : 〈u0 ; b〉 − β0 ≤ 0}.

By construction, since the sets A, B are assumed not to be linearly separable, one
has that

If A≥
(u0,β0) = ∅, then B≥

(u0,β0) �= ∅
If A≤

(u0,β0) = ∅, then B≤
(u0,β0) �= ∅.

(13)
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Moreover, let C(u0, β0) be the polyhedron in R
d+1 defined by the inequalities and

equality

〈u ; a〉 − β ≥ 0 ∀a ∈ A≥
(u0,β0)

〈u ; a〉 − β ≤ 0 ∀a ∈ A≤
(u0,β0)

〈u ; b〉 − β ≥ 0 ∀b ∈ B≥
(u0,β0)

〈u ; b〉 − β ≤ 0 ∀b ∈ B≤
(u0,β0)∑

a∈A≥
(u0,β0)

(〈u ; a〉 − β) −
∑

a∈A≤
(u0,β0)

(〈u ; a〉 − β)

+
∑

b∈B≥
(u0,β0)

(〈u ; b〉 − β) −
∑

b∈B≤
(u0,β0)

(〈u ; b〉 − β) = δ0,

(14)

where δ0 is the constant

δ0
def=

∑

a∈A≥
(u0,β0)

(〈u0 ; a〉 − β0) −
∑

a∈A≤
(u0,β0)

(〈u0 ; a〉 − β0)

+
∑

b∈B≥
(u0,β0)

(〈u0 ; b〉 − β0) −
∑

b∈B≤
(u0,β0)

(〈u0 ; b〉 − β0) .

By construction, δ0 ≥ 0. Moreover, δ0 > 0, since, otherwise, H(u0, β0) would
contain A ∪ B, contradicting the assumption that A, B are not linearly separable.

On the other hand, C(u0, β0) �= ∅, since (u0, β0) ∈ C(u0, β0).

Moreover, the polyhedron C(u0, β0) is bounded. Indeed, otherwise, it would con-
tain a direction (u, β) �= (0, 0), which should satisfy

〈u ; a〉 − β ≥ 0 ∀a ∈ A≥
(u0,β0)

〈u ; a〉 − β ≤ 0 ∀a ∈ A≤
(u0,β0)

〈u ; b〉 − β ≥ 0 ∀b ∈ B≥
(u0,β0)

〈u ; b〉 − β ≤ 0 ∀b ∈ B≤
(u0,β0)∑

a∈A≥
(u0,β0)

(〈u ; a〉 − β) −
∑

a∈A≤
(u0,β0)

(〈u ; a〉 − β)

+
∑

b∈B≥
(u0,β0)

(〈u ; b〉 − β) −
∑

b∈B≤
(u0,β0)

(〈u ; b〉 − β) = 0,

(15)

implying all inequalities above are equalities, and then A ∪ B would be contained in
a hyperplane, which contradicts our non separability hypothesis.

One also has that no (0, β) ∈ C(u0, β0). Indeed, (0, 0) �∈ C(u0, β0) because
δ0 > 0, and thus (0, 0) does not satisfy the last condition defining C(u0, β0). Suppose
further that, on the contrary, some β �= 0 exists such that (0, β) ∈ C(u0, β0). If it were
β > 0, (0, β) could not satisfy the first and third block of constraints in (14), implying
A≥(u0, β0) = B≥(u0, β0) = ∅, whereas for β < 0, the second and fourth block of
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inequalities should be void, yielding A≤(u0, β0) = B≤(u0, β0) = ∅. Both cases are
in contradiction with (13), thus we conclude that no β exists with (0, β) ∈ C(u0, β0).

Let ν be the convex positively homogeneous function in R
d+1 defined as

ν(u, β) = γ ◦(u).

We just showed in other words that ν(u, β) > 0 for all (u, β) ∈ C(u0, β0).

Now, consider Problem (7) restricted to the nonempty bounded polyhedron
C(u0, β0).

One has that for all (u, β) ∈ C(u0, β0)

F(u, β) =
∑

a∈A≤
(u0,β0)

fa

(
β − 〈a ; u〉

γ ◦(u)

)
+

∑

b∈B≥
(u0,β0)

fb

( 〈b ; u〉 − β

γ ◦(u)

)

=
∑

a∈A≤
(u0,β0)

fa

(
β − 〈a ; u〉

ν(u, β)

)
+

∑

b∈B≥
(u0,β0)

fb

( 〈b ; u〉 − β

ν(u, β)

)
(16)

By Lemma 2, F is quasiconcave on the bounded polyhedron C(u0, β0), thus there
exists some extreme point (u∗, β∗) of C(u0, β0) such that

F(u∗, β∗) ≤ F(u, β) ∀(u, β) ∈ C(u0, β0),

and, in particular, F(u∗, β∗) ≤ F(u0, β0).

Since (u∗, β∗) is a vertex of C(u0, β0), there must exist a subset of d + 1 linearly
independent constraints from (14) satisfied with equality at (u∗, β∗). In other words
H(u∗, β∗) must contain a subset of affinely independent points from A ∪ B with
cardinality at least d. ��

As a consequence of Theorem 3, finding an optimal solution to Problem (7) can
be reduced to inspecting a finite set of candidate solutions, since any d affinely inde-
pendent points univoquely define a hyperplane. This is illustrated in Fig. 1. Setting
in (7) f as f (t) = t p for p = 0.1, 0.2, . . . , 1, we obtain, by complete enumeration
of candidate lines, the depicted optimal separating lines. Each line is optimal for the
respective p-values 0.1–0.2, 0.3, 0.4–0.7 and 0.8–1. It may be observed in the exam-
ple that, the lower the value of p, the lower the number of missclassified points, viz.,
respectively 10, 10, 11 and 12, as was to be expected since f converges to the step
function (8) for p ↓ 0.

Such a complete enumeration strategy is only feasible for low-dimensional prob-
lems. For more general settings, the localization property may be advantageously used
in local-search heuristic approaches, as was already done in Plastria and De Bruyne
(2010) for the case of linear distance functions.

123



84 F. Plastria, E. Carrizosa

Fig. 1 Optimal separating lines for different values of p

3 Application to approximation

Theorem 3 can also be applied to an approximation problem, in which a set X is given,
and a hyperplane H(u, β) is sought minimizing the sum of concave functions fx of
the distances from the data points x to H(u, β),

min
∑
x∈X

fx (d(x, H(u, β)))

s.t. u �= 0, β ∈ R,

(17)

which can also be written as

min
∑
x∈X

fx

(
(−〈u ; x〉 + β)+

γ ◦(u)

)
+

∑
x∈X

fx

(
(〈u ; x〉 − β)+

γ ◦(u)

)

s.t. u �= 0, β ∈ R.

(18)

Indeed, taking A = B = X in Theorem 3 one immediately obtains

Corollary 4 Problem (17) has an optimal solution (u, β) such that (u, β) contains at
least d affinely independent points of X.
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