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Abstract. In this paper we address the problem of locating a mobile response unit when demand is distrib-
uted according to a random variable on a line. Properties are proven which reduce the problem to locating
a non-mobile facility, transforming the original optimization problem into an one-dimensional convex pro-
gram.

In the special case of a discrete demand (a simple probability measure), an algorithm which runs in
expected linear time is proposed.
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1. Introduction

The single-facility location problem consists of determining the location for one server
minimizing some performance measure which is a function of the distances from that
server to the demand points, see [19] for further details.

The most popular model is the Weber problem, see [8], in which the objective
function is the average distance between the location of the server and the demand,
assumed to be concentrated on a finite set of points. The case of continuous demand
has also been addressed, see, e.g., [4], by considering then as performance measure the
expected distance between the server and the demand, the latter assumed to be random.

When the facility is not static but a patrolling unit, the decision variable is not any
more the facility location but the patrolling area, modeled in [5,6,20] by means of a
random variable.

When no constrains are imposed over the shape of the patrolling area, the optimal
(in the sense of minimal average distance to demand) patrolling area consists of fixing
the server at the location which is optimal for the static problem, see [6] for further
details. This means that if one wished to locate a service which could be mobile, it is
preferable to fix its position to maintain it patrolling.
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If patrolling is required or the server must has a non-null area, some constrains
must be added to the model. The case in which the patrolling area is an n-dimensional
rectangle with fixed volume has been studied in [5]. The non-null measure case ap-
pears, for example, when one wants to locate an industrial park in a city or a chip in
an integrated circuit. These examples show that, as a consequence of technological or
infrastructure constrains, modeling the facility to be located as a region may be more
accurate than modeling it as a single point.

This paper supposes that there are no congestion or queue in the system. The
location problem with congestions has been addressed in [2,7,13,14].

The one-dimensional case has a richer structure than the general one, and there are
a variety of situations such as disk arm, idle elevators, smoke alarms, patrol cars, service
units along an oil pipeline, emergency vehicles in a highway, in which the demand is
spread over a line, as in [1,13,15], these papers shows some particular instances of the
above-mentioned result in [6].

Other extensions of the one-dimensional case can be found in [10,12,16,21], where
some special policies are consider in order to reduce the seek time for read/write opera-
tions on disks.

In this paper we consider the one-dimensional case of the problem in [5]: the
demand is distributed (following a random variable in the real line), and the server (e.g.,
a police patrol in a highway) has a patrolling area whose length cannot be lower than
a given threshold value. This particular case enable further results and more powerful
resolution procedures.

The remaining of the paper is organized as follows. Section 2 introduces the model,
reviews existing results from [5], and develops general properties that exploit the one-
dimensional nature of the problem. Then, section 3 addresses the particular case in
which the demand is concentrated at a finite set of points, and an algorithm which runs
in expected linear time is proposed. The last section is devoted to conclude the paper.

2. Finding optimal solutions: The general case

Let us consider the problem of locating a patrolling unit in the line, whose patrolling
area has the form I = [c−k, c+k], and minimizes its expected distance to the demand,
distributed in the line following a random variable A with distribution function F, and
finite first moment, i.e., E(A) <∞.

For k > 0, the expected distance between A and I is

d(c, k)= 1

2k

∫ c+k

c−k

∫
|u− a| dF(a) du

=
∫

1

2k

∫ c+k

c−k
|u− a| du dF(a).

Note that d(c, k) is well defined, since A has, by assumption, finite first moment,
see [18].
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For the degenerate case in which the patrolling area reduces to the point c (i.e.,
when k = 0), then the average distance is given by

d(c, 0) =
∫
|c − a| dF(a). (1)

The problem addressed consists of determining the patrolling area (interval) of
length at least 2l (l > 0), minimizing its average distance to the demand. This yields the
optimization problem

min
(c,k)∈R×R+

d(c, k)

s.t. k � l.
(P�)

The results in [5] reduce the resolution of (P�) to a univariate convex differentiable
unconstrained problem, thus solvable by a large variety of algorithms available in the
literature, see [11,17]. To do such reduction, define first (P=) as the problem of locating
a patrolling unit, whose patrolling area has length equal to 2l,

min
c∈R

d(c, l). (P=)

It turns out that problem (P�) can be reduced to (P=):

Theorem 1 (Cf. theorem 5 of [5]). For each c ∈ R, the function d(c, ·) is non-
decreasing. In particular, if c∗ solves (P=), then (c∗, l) solves (P�).

Moreover, as a direct rephrasing of theorem 8 of [5], we obtain that (partial) deriv-
atives of d can be written as expected distances.

Theorem 2. For each k > 0, the function d(·, k) is convex, differentiable and its deriv-
ative being is given by

∂

∂c
d(c, k) = d(c + k, 0)− d(c − k, 0)

2k

where d(c, 0) was introduced in (1).

The next step will be the derivation of optimality conditions for problem (P=). To
do this, we first observe that the random variable which represents the patrolling area is
c + U , where U is uniformly distributed in the segment [−l, l]. Hence, denoting A′ as
A − U, and then |c + U − A| = |c − A′|, the problem of determining the patrolling
area [c− l, c+ l] minimizing the expected distance to A is equivalent to the problem of
locating a point minimizing the expected distance to a transformed demand A′. In other
words, (P=) – thus also (P�) – is reduced to a one-dimensional Weber problem with
demand A′.
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Lemma 1. The distribution function of A− U is given by

Gl(c) = 1

2l

∫ c+l

c−l
F (u) du.

Proof. Let D = A − U and p̄ its probability measure. By elementary probability
calculus we have

Gl(c)= p̄(A− U � c)

= 1

2l

∫ l

−l
p(A− u � c) du = 1

2l

∫ l

−l
p(A � c + u) du

= 1

2l

∫ l

−l
F (c + u) du = 1

2l

∫ c+l

c−l
F (u) du. �

Since a point is optimal for the one-dimensional Weber problem if and only if it is a
median of the distribution of the demand, see [3, p. 54], we have the following optimality
condition.

Theorem 3. The function Gl is continuous. Thus c∗ is an optimal solution if and only
if it verifies

Gl(c
∗) = 1

2l

∫ c∗+l

c∗−l
F (u) du = 1

2
.

Proof. Since F is integrable (is bounded), its integral with upper and lower limit func-
tions of k is continuous. Thus Gl is continuous, and a point c∗ is a median if and only if
Gl(c

∗) = 1/2, which is the assertion. �

Remark 1. The distribution function Gl is a continuous function, so the equation
Gl(c

∗) = 1/2 always has at least one solution.

Remark 2. Since d(·, ) is a convex function, a point c is an optimal solution to (P=) if
and only if its partial derivative with respect to c, given in theorem 2, is 0.

This condition is

∂

∂c
d(c, l) = d(c + l, 0)− d(c − l, 0)

2l
= 0,

and it can be reduced to the one given in theorem 3.

In the following for each l consider c(l) the optimal location center of the server,
when the patrolling area has a length of 2l. The next example shows how this equation
can sometimes be solved.
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Example 1. Let A be an exponential random vector and

F(x) =
{

0 if x < 0,
1− e−λx if x � 0,

the distribution functions of the demand.
The optimality condition is Gl(c) = 1/2, where

Gl(c)= 1

2l

∫ c+l

c−l
F (u) du

=




0 if c < −l,
1

2l

(
l + c + e−λ(l+c) − 1

λ

)
if− l � c < l,

1

2l

(
2l + e−λ(l+c) − e−λ(l−c)

λ

)
if c � l.

Thus the function that gives the optimal location of the center as function of l is

c(l) =
{
c1(l) if c1(l) � l,

c2(l) if c1(l) � l,

where

c1(l)= W(−e−λl−1)+ 1

λ
,

c2(l)= 1

λ
log

e2λl − 1

λl
− l,

W is the Lambert’s W , and W(a) is the solution to wew = a, see [9].
Figure 1 depicts the function c, for an exponential distribution with mean value

of 1. Note that when l goes to infinity the optimal location of the service center ap-
proaches to 1 the mean value of A.

Figure 1. Function c(l) for Exp(1).
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The behavior of function c when l goes to infinity is a general property as shows
the next theorem. Let E(A) be the mean value of A. One then has

Theorem 4.

lim
l→+∞

c(l) = E(A).

Proof. The optimality condition given in remark 2 is ∂
∂c
d(c, l) = 0, that is,

∂

∂c
d(c, l)= 1

2l

∫ (|c + l − a| − |c − l − a|) dF(a)

= 1

2l

(∫ c−l

−∞

(|c + l − a| − |c − l − a|) dF(a)

+
∫ c+l

c−l

(|c + l − a| − |c − l − a|) dF(a)

+
∫ +∞
c+l

(|c + l − a| − |c − l − a|) dF(a)

)

= 1

2l

(∫ c−l

−∞
2l dF(a)+

∫ c+l

c−l
2(c − a) dF(a) +

∫ +∞
c+l
−2l dF(a)

)
= 0.

Since we are considering the case l > 0, this condition reduces to∫ c−l

−∞
2l dF(a)+

∫ c+l

c−l
2(c − a) dF(a) +

∫ +∞
c+l
−2l dF(a) = 0. (2)

By assumption, E(A) exists (and is finite), thus

lim
u→+∞

∫ +∞
u

a dF(a) = 0.

Hence,

lim
l→+∞

∫ c−l

−∞
2l dF(a)� lim

l→+∞

∫ c−l

−∞
(c − a) dF(a)

= lim
l→+∞

∫ +∞
l

a dF(a) = 0,

and

lim
l→+∞

∫ +∞
c+l

l dF(a) � lim
l→+∞

∫ +∞
c+l

a dF(a) = 0.

On the other hand,

lim
l→+∞

∫ c+l

c−l
(c − a) dF(a)= lim

l→+∞

∫ c+l

c−l
c dF(a) − lim

l→+∞

∫ c+l

c−l
a dF(a)

= c − E(A).
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Hence, it follows that the limit of (2) is c − E(A) = 0, thus

liml→+∞ c(l) = Ā. �

When the patrolling area has length l = 0, the optimal solution is the median of A,
whereas for length l tending to infinity, the optimal interval has its center c(l) at E(A),
the mean of A. This fact is due that, when l → +∞, the optimality condition (2)
converges to ∫ +∞

−∞
2(c − a) dF(a),

which is the well-known optimality condition for the mean.
One may wonder if, for l varying from 0 to∞, c(l) describes a monotonic trajec-

tory. The next example shows that this may not be the case.

Example 2. Let A1, A2, A3, A4 be random variables whose probability distributions are
mixtures with the same weights of three normal distributions with means and variances:

Mixture

Case Means Variances Mean Median

1 −1 1 1 1 1 1/16 1/3 0.79297
2 −1 1 2 1 1 1/16 2/3 1.00407
3 −1 1 3 1 1 1/16 1 1.00407
4 −1 1 4 1 1 1/16 2/3 1.00407

Figure 2 depicts the corresponding c functions. The problem is solved numerically
with Mathematica 4.0.

Let M be the set of medians of A, which is known to be an (possibly degenerate)
interval. The median of A−U is related to the median of A, giving the next localization
theorem.

Theorem 5. Any optimal solution to (P=) belongs to the interval M+ [−l, l].

Proof. Let x be an optimal solution to (P=), and, by contradiction, suppose that x /∈
M+ [−l, l].

If p(A � x − l) > 1/2 then

Gl(x) = p(A− U � x) = p(A � x + U) � p(A � x − l) > 1/2

and x would not be optimal.
On the other hand, if p(A � x + l) < 1/2 then Gl(x) < 1/2, and again, x would

not be optimal.
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Figure 2. Functions c for mixtures in example 2.

The remaining x verifies that p(A � x − l) � 1/2 � p(A � x + l). Thus
F(x − l) � 1/2 � F(x + l) and there exists a median in x + [−l, l], which contradicts
the assumption. �

The next theorem gives a new localization result assuming certain symmetry prop-
erty for the probability distribution of A.

Theorem 6. Let m be a point such that

(1) F(m−)+ F(m) = 1, where F(m−) = limx↑m F(x).

(2) A is symmetrical with respect to m in the interval [m− l, m+ l].
Then m is an optimal solution to (P=).

Proof. By the second assumption, one has that

p(m− u < A � m) = p(m � A < m+ u) ∀u ∈ [0, l].
Hence

F(m)− F(m− u) = F
(
(m+ u)−

)− F(m−) ∀u ∈ [0, l]
and

F(m−)+ F(m) = F(m− u)+ F
(
(m+ u)−

) ∀u ∈ [0, l].
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Using this equation one obtains

Gl(m)= 1

2l

∫ l

−l
F (m− u) du

= 1

2l

(∫ 0

−l
F (m− u) du+

∫ l

0
F(m− u) du

)

= 1

2l

∫ l

0

(
F(m− u)+ F(m+ u)

)
du

= 1

2l

∫ l

0

(
F(m− u)+ F

(
(m+ u)−

))
du

= 1

2l

∫ l

0

(
F(m−)+ F(m)

)
du

= 1

2

(
F(m−)+ F(m)

) = 1

2
,

which implies the optimality of m. �

Remark 3. This result implies that for every symmetrical distribution modeling the de-
mand, the median of the distribution is the optimal solution of (P=).

Remark 4. If F is continuous then F(m)+ F(m−) = 1 implies that m is a median, but
this is not true in the general case.

3. Finding optimal solutions: The discrete case

In this section we particularize the results obtained in the preceding section to the dis-
crete case in order to develop an efficient algorithm to solve the problem. Consider the
case in which the demand is discrete: the random variable A takes the values x1, . . . , xm
with probabilities p1, . . . , pm.

We will give an algorithm running in expected linear time. To do this, the problem
is reduced to finding the median of a new random variable, and then a modified version
of a known algorithm is applied.

We must note that the algorithm that find the median in linear time in not applicable
to the transformed demand distribution, because such distribution is not a discrete one.
The others ways to compute the median of the transformed demand distribution need
sort the values of the original demand distribution which means that they do not run
linear time.

This algorithm can be used to find the median of a sample whose data are clustered
in intervals, or to locate a point where the demand is a mixture of uniform distributions
over equal length segments.

First of all, an explicit form for the function Gl(c) is needed. This form is given in
the next lemma with straight proof.
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Lemma 2. Let ψ be the function given by ψ(u) = ∫ u

−∞ F(x) dx. Then

ψ(u) = u
∑
xi�u

pi −
∑
xi�u

pixi .

In order to obtain a simpler expression for ψ let y, w denote the following vectors:

yi = xi − l, wi = pi, i = 1, . . . , m,

ym+i = xi + l, wm+i = −pi, i = 1, . . . , m.

With this notation the next theorem holds.

Theorem 7. One has

Gl(c) =
∑
yi�c

wi(c − yi).

Proof. Since

Gl(c) =
∫ c+l

c−l
F (u) du,

we have by lemma 2 that

Gl(c)=
∫ c+l

c−l
F (u) du

=ψ(c + l)− ψ(c − l)

=
∑

xi�c+l,i=1,...,m

pi(c + l − xi)−
∑

xi�c−l,i=m+1,...,2m

pi(c − l − xi)

=
∑

yi�c,i=1,...,m

wi(c − yi)+
∑

ym+i�c,i=1,...,m

wi(c − yi)

= c
∑

yi�c,i=1,...,2m

wi −
∑

yi�c,i=1,...,2m

wiyi . �

Now we will develop rules to phantom points which cannot be optimal solutions.
To this end, we introduce further notation: For each triplet of vectors Y,W,Z ∈ R

2m,
and each subset I of N = {1, . . . , 2m}, let $I be given by

$I (c, Y,W,Z) = c
∑

Yi�c,i∈I
Wi −

∑
Yi�c,i∈I

Zi.

Remark 5. If z is the vector with coordinates zi = wiyi, it follows that

Gl(c) = 1

2l
$N(c, y,w, z).

The following two lemmas present some elimination rules.



OPTIMAL POSITIONING OF A MSU 85

Lemma 3. Given I ⊂ N and Yj , let I ′ = {i ∈ I : Yi � Yj }. One has

$I ′(c, Y,W,Z) = $I (c, Y,W,Z) ∀c � Yj .

Proof. If c � Yj then {i ∈ I : Yi � c} = {i ∈ I ′: Yi � c}. Hence, since the index sets
are equal in both sums, we obtain that $I (c, Y,W,Z) = $I ′(c, Y,W,Z). �

Lemma 4. Given I ⊂ N and Yj , let I ′, W ′ and Z′ be given by

I ′ = {i ∈ I : Yi > Yj } ∪ {j},

W ′ =



W ′i = Wi, ∀i �= j,

W ′j =
∑

Yi�Yj ,i∈I
Wi,

Z′ =



Z′i = Zi, ∀i �= j,

Z′j =
∑

Yi�Yj ,i∈I
Zi .

One has that

$I ′
(
c, Y,W ′, Z′

) = $I (c, Y,W,Z) ∀c � Yj .

Proof. Given c � Yj , it follows from the definition that

$I (c, Y,W,Z)= c
∑

Yi�c,i∈I
Wi −

∑
Yi�c,i∈I

Zi

= c

( ∑
Yi�Yj ,i∈I

Wi +
∑

Yj<Yi�c,i∈I
Wi

)
−

( ∑
Yi�Yj ,i∈I

Zi +
∑

Yj<Yi�c,i∈I
Zi

)

= c

(
W ′j +

∑
Yj<Yi�Yj ,i∈I

Wi

)
−

(
Z′j +

∑
Yj<Yi�c,i∈I

Zi

)

= c
∑

Yi�c,i∈I ′
W ′i −

∑
Yi�c,i∈I ′

Z′i

=$I ′
(
c, Y,W ′, Z′

)
. �

These lemmas lead to the algorithm presented in table 1. (#I denotes the cardinality
of I .)

Remark 6. For the evaluation of $I (yj , y,w, z) one only has to evaluate
∑

yi�yj ,i∈I wi

and
∑

yi�yj ,i∈I zi . Hence, the actualization of step 0 does not require additional time.
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Table 1
Average linear time algorithm.

Step 0: Initialization
For i = 1, . . . , m {yi← xi − l ym+i← xi + l}
For i = 1, . . . , m {wi←pi wm+i←−pi + l}
For i = 1, . . . , 2m zi← yiwi

I ← {1, . . . , 2m}
Step 1: Elimination
While (#I > 5) Repeat

Select at random j ∈ I

Evaluate $I (yj , y, w, z)

If ($I (yj , y, w, z) < l) Then
I ← {i ∈ I : yi > yj } ∪ {j}
wj ←

∑
yi�yj ,i∈I wi

zj ←
∑

yi�yj ,i∈I zi
End If
If ($I (yj , y, w, z) > l) Then I ← {i ∈ I : yi � yj }

End Repeat

Step 2: Solve
Sort {yi : i ∈ I } → y′
For each y′i , y′i+1 Solve $I (c, y, w, z) = l within [y′i , y′i+1]

Remark 7. At every iteration of the procedure, the cardinality of the set {i ∈ I :
$I (yi, y,w, z) = l} is at most 3. Indeed, the cardinality of the set {yi: $I (yi, y,w, z) =
l} is not greater than 2, and there is at most one index repeated.

Theorem 8. The algorithm given in table 1 gives all the optimal solutions to (P=).

Proof. After step 0 one has Gl(·) = (1/2l)$I (·, y,w, z).
In step 1, given yj , one of the following three cases hold:

1. $I (yj , y,w, z) < l. Then all the solutions to the equation Gl(c) = 1/2 are greater
than yj . Hence, by lemma 4, in the following step Gl(c) = (1/2l)$I (c, y,w, z) for
all c � yj .

2. $I (yj , y,w, z) > l. Then all the solutions to the equation Gl(c) = 1/2 are smaller
than yj . Hence, by lemma 3, in the following step Gl(c) = (1/2l)$I (c, y,w, z) for
all c � yj .

3. $I (yj , y,w, z) = l. In this case the algorithm does nothing.

Hence, after step 1, Gl(yi) = (1/2l)$I (c, y,w, z), ∀i ∈ I , and then all the optimal
solutions are found in step 2. �

Remark 8. The equation $I (c, y,w, z) = l can be solved by linear interpolation.



OPTIMAL POSITIONING OF A MSU 87

Now, we are going to study the complexity of the algorithm. This is a probabilistic
algorithm so the complexity must be studied in average time. Note that the probabilistic
behavior is due to the algorithm itself and not to the input.

Theorem 9. The algorithm in table 1 runs in expected linear time.

Proof. Let B(l) be the worst case time for one execution of one elimination step when
#I = l. Firsts of all, note that the evaluation of $I is done in linear time in l. Thus B(l) is
bounded by a linear function. Let T (j) be the average time to finish the elimination step.
Consider

α= #
{
i ∈ I : $(yi, y,w, z) < l

}
,

β = #
{
i ∈ I : $(yi, y,w, z) > l

}
,

γ = #
{
i ∈ I : $(yi, y,w, z) = l

}
.

Thus

p
(
$(yi, y,w, z) < l

) = α/j,

p
(
$(yi, y,w, z) > l

) = β/j,

p
(
$(yi, y,w, z) = l

) = γ /j.

If $I (yj , y,w, z) < l then #{i ∈ I : yi � yj } − 1 is the number of points removed,
and this number is uniformly distributed between 0 and α − 1. On the other hand, if
$I (yj , y,w, z) > l then the number of points removed is #{i ∈ I : yi > yj }, which is
uniformly distributed between 0 and β − 1.

This implies that

T (j)=B(l)+ α

j

∑α
i=1 T (j − i + 1)

α
+ β

j

∑β

i=1 T (j − i + 1)

α
+ γ

j
T (j)

=B(l)+ 1

j

α∑
i=1

T (j − i + 1)+ 1

j

β∑
i=1

T (j − i + 1)+ γ

j
T (j).

Taking into account that γ � 3 and B(l) is bounded by a linear function in l, this equa-
tion implies that T (l) is average linear time. �

4. Conclusions

We have solved the problem of locating a patrolling unit, whose position will be uni-
formly distributed the patrolling area (a segment of length at least 2l > 0) and mini-
mizes its average distance to the demand points, assumed to be distributed on the real
line according to an arbitrary random variable A with finite first moment.

The problem is reduced to a one-dimensional convex differentiable optimization
program, whose derivative is written in terms of average distances:

∫ ‖ · −a‖ dF(a).
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For the particular case of symmetrical distribution of the demand for requests, an
explicit form of the solution is developed for any finite l > 0. Also the limit cases of
length 0 and infinity are explicitly solved.

For the case in which the distribution of the demand is discrete, we present an
algorithm that runs (in average) in linear time. It is worth nothing that this algorithm can
also be used to find the median of a set of data clustered in segments.
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