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1. Introduction
A classification problem has a database with objects
belonging to �C� different classes, and one wants to
derive a classification rule, i.e., a procedure that labels
every future entry as a member of one of the �C� exist-
ing classes. Classification procedures are of two types:
parametric and nonparametric. Parametric procedures
assume that each object from class c ∈ C is associ-
ated with a random vector with known distribution,
perhaps up to some parameters to be estimated, (e.g.
data are multivariate normal vectors with unknown
mean �c and covariance matrix �c), and primarily
use of statistics (see e.g. McLachlan 1992) For com-
plex databases with no evident distributional assump-
tions on the data (typical for databases with both
quantitative and qualitative variables), nonparametric
methods, such as the one described in this paper, are
needed.
There has been increasing interest in deriving (non-

parametric) classification rules via mathematical pro-
gramming, requiring, for each object i, a vector vi

of n numerical variables. This assumes variables to
be ratio-scaled, rather than nominal or ordinal. More-
over, no null values are allowed, which excludes
its direct use for cases in which some measures
are missing or simply do not apply; see Cristianini
and Shawe-Taylor (2000), Freed and Glover (1981),
Gehrlein (1986), Gochet et al. (1997), and Mangasarian
(1994).
A more flexible methodology, which requires only

knowledge of a metric (or, as discussed in Section 2.1,
a dissimilarity), is the nearest-neighbor (NN) method
(Cover and Hart 1967, Dasarathy 1991, Devroye et al.
1996, Hastie et al. 2001), which provides excellent
results (King et al. 1995, Pekalska et al. 2006). In NN
methods, for each new entry i the distances (or dis-
similarities) d	i
 j� to some objects j in the database
(called prototypes) are computed, and i is classified
according to these distances. In particular, in the clas-
sical NN method, (Cover and Hart 1967), all objects
are prototypes, and i is classified as member of the
class c∗ to which its closest prototype j∗ (satisfying
d	i
 j∗�≤ d	i
 j� ∀ j) belongs.
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A generalization of the NN method is the k-NN
method (Devroye et al. 1996), which classifies each i
to the class most frequently found among the k proto-
types closest to i. In particular, NN is the special case
of k-NN for k= 1.
These classification rules, however, require dis-

tances to be calculated to all data in the database
for each new entry, involving high storage and time
resources, making it impractical to perform online
queries, so several variants have been proposed
(Bennett and Willemain 2004, Bezdek and Kuncheva
2001, Dasarathy 1991, Devroye et al. 1996, Geva and
Sitte 1991, Hart 1968, Kuncheva 1997, Kuncheva and
Bezdek 1998). Most proposals differ in the way they
attempt to provide heuristically a set of prototypes of
small size and low misclassification cost (Bezdek and
Kuncheva 2001). An extreme case is the condensed
nearest-neighbor (CNN) rule (Hart 1968), in which
the full database I is replaced by a so-called minimal
consistent subset, a smallest subset S of records such
that, if the NN classifier is used with S (instead of I)
as the set of prototypes, all objects in I are correctly
classified.
Since the size of a minimal consistent subset is

unpredictable and might still be too large, several
procedures have been suggested to reduce its size.
Although such procedures do not necessarily correctly
classify all items in the database (i.e., they are not con-
sistent), they may have similar or even better behavior
to predict class membership on future entries because
they may reduce the possible overfitting suffered by
CNN (Brighton and Mellish 2002, Lipowezky 1998).
In Bezdek and Kuncheva (2001) a number of pro-

cedures of this type are classified according to three
different issues:
• The prototype design: the prototypes can either

be selected from I or be constructed (e.g. by consid-
ering centroids for numerical variables)
• The use of labels, i.e., whether the class labels of

the sample data are used or not to select/construct
the prototypes
• The control on the size of the set of prototypes,

i.e., whether the number of prototypes is specified in
advance or is automatically determined by the algo-
rithm.
We propose a method in which a set of prototypes

of pre-specified cardinality p is sought, minimizing an
empirical misclassification cost. As prototype design,
we assume that prototypes are to be chosen from a
given set, not necessarily equal to the set of avail-
able data. Hence, we give the highest freedom in
this issue. Labels from sample data are used, so all
existing information is taken into account. Finally, the
user chooses the number of prototypes, and therefore
fully controls the query times, which are critical when
the computation of dissimilarities is costly. Indeed,
the effort needed to classify a new entry is directly

proportional to p and may therefore guide the choice
of p.
We restrict ourselves to the classification rule based

on the closest distance, so our method is as a variant
of NN. However, our results may directly be extended
to considering the k closest distances, k ≥ 1
 in the
classification procedure, leading to a variant of the
k-NN method.
The model is introduced in Section 2 and shown

to be ��-hard. In Section 3, two mixed integer pro-
gramming (MIP) formulations are proposed and the-
oretically compared. Numerical results are given in
Section 4. When the optimization problems are solved
exactly (with a standard MIP solver) the behavior of
the classification rule is promising, but at the price
of enormous preprocessing times. For this reason, a
heuristic procedure is also proposed, and its quality
and speed is explored. The rules obtained with this
heuristic procedure have similar behavior on testing
samples as the optimal ones. The method remains
quite stable in the presence of missing values. Some
concluding remarks and possible extensions are in
Section 5.

2. The Model
2.1. Classification Rules
A key concept in NN-based classification methods is
the concept of distance, or, more generally, dissimilar-
ity. A dissimilarity on a set J is a function d� J × J →
�∪ �+��, satisfying

d	u
v�≥ 0
 ∀u
v ∈ J (1)

d	u
u�= 0
 ∀u ∈ J � (2)

When the set J is (a subset of) the n-dimensional space
�n, the most popular dissimilarities are those derived
from metrics, such as the (weighted) Euclidean or the
Mahalanobis distance. See Plastria (1995, 2001) for fur-
ther details, extensions, and modelling aspects.
However, not all interesting dissimilarity mea-

sures correspond to metrics. In a typical example
(Kaufman and Rousseeuw 1990) J is a finite set of the
n-dimensional space, but for some objects some of its
coordinates cannot be used (because they are miss-
ing, or strongly suspected to be wrong). In that case,
denoting, for each u ∈ �n, by D	u� the set of coordi-
nates of u that can be used, we can extend the defi-
nition of Euclidean distance to the dissimilarity (not
necessarily metric)

d	u
v�=




( ∑
j∈D	u�∩D	v�

�j

�D	u�∩D	v�� 	uj−vj�
2

)1/2
if D	u�∩D	v� �=�

+� otherwise


(3)

for given weights �1
 � � � 
�n.
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Natural definitions abound of dissimilarities for
sets J for which a metric is neither feasible nor re-
commended; see Kaufman and Rousseeuw (1990),
where some dissimilarities are defined for sets J of
objects for which n variables are measured, some
quantitative, some ordinal or nominal, and nulls, as
in (3), exist. Other methods for deriving dissimi-
larities can be found in protein/amino-acid align-
ment in bioinformatics (Altschul et al. 1994, 1990;
Pearson and Lipman 1998), or fuzzy analysis, usually
as the complement to 1 of a fuzzy similarity relation
(Zimmermann 1991). In Yang and Shih (2001) set J is a
set of portraits of people from three different families.
Let J be a finite set of objects with a dissimilarity d

defined on it, partitioned into �C� classes Jc 	c ∈C�. A
classification rule is a function �� J →C that associates
with each object s ∈ J a class that might be its cor-
rect class or not. We consider only classification rules
based on selecting prototypes for the different classes
in C as follows.
For each class c ∈ C we are given a nonempty set

Rc ⊂ J of prototype candidates of class c� We denote the
full set of candidates as R and assume that the sets
Rc produce a partition of R, i.e.

⋃
c∈C Rc =R and Rc ∩

Rc′ = �, c �= c′.
Some nonempty S ⊂R, the set of prototypes, is to be

chosen. For a given S
 let �S be the S-based NN classi-
fication rule, namely the classification rule that labels
each i ∈ J with the (known) label of the prototype in
S closest (i.e., least dissimilar) to i. In other words,
if d	i
 S ∩ Rc� denotes d	i
 S ∩ Rc� = minj∈S∩Rc d	i
 j�,
then let

�S	i�= argmin
c∈C

d	i
 S ∩Rc�
 (4)

if this minimum is attained at a single c� In case of
ties, a least-dissimilar c must be chosen as �S	i�, as
detailed in the next section.

2.2. Performance Measure
For each i ∈ J let c	i� ∈ C denote the class to which
i belongs. In general, misclassification errors, i.e.,
objects i with �S	i� �= c	i�, will exist. Since not all mis-
classification errors are equally important, we assume
we know for each c
 c′ ∈ C, the misclassification
penalty r	c′ � c� ≥ 0, associated with each object of
class c labelled as a member of class c′. Let r	c � c�= 0,
i.e., the cost of correct classification is zero.
A particular but important case is when all wrong

classifications contribute the same cost,

r	c′ � c�=


rc if c′ �= c
0 otherwise

(5)

where, for each c ∈ C
 rc > 0� We will call this the
uniform case. Moreover, when all rc are equal, say, to

unity, one obtains the binary case

r	c′ � c�=


1 if c′ �= c
0 otherwise

(6)

which counts the number of misclassified objects
(Mangasarian 1994). Our method accommodates cost
structures more general than (6), e.g. as needed in
Carrizosa et al. (2005), who construct a classifier for
a cancer-diagnosis problem where different misclassi-
fication types naturally imply different misclassifica-
tion costs.
Assignment rules should also be defined in case of

ties: assignment will be done to the least dissimilar
prototype, and ties will be broken randomly or by
some user-defined procedure.
To compute the cost associated with a classifier, we

use a worst-case approach. Since R is a finite set, we
can arbitrarily sort its labels, giving a strict total order
≺ on R� For each i ∈ J , let ≺i be the strict total order
on R yielding the assignment for i: For any j1
 j2 ∈R,
j1 ≺i j2 iff one of the following holds:
• d	i
 j1� < d	i
 j2�
• d	i
 j1�= d	i
 j2�, r	c	j1� � c	i�� > r	c	j2� � c	i��
• d	i
 j1� = d	i
 j2�, r	c	j1� � c	i�� = r	c	j2� � c	i��,

j1 ≺ j2.
Since ≺i is a strict total order on R
 it is also a

strict total order on any nonempty S ⊂ R. Hence,
�j ∈ S� no j ′ ∈ S satisfies j ′ ≺i j� is a singleton and its
class defines �S	i�� This definition is consistent with
(4) and extends it to the case of ties in dissimilarities.
With this cost structure, the total cost  J 	S� within

J of the S-based NN classification rule �S is  J 	S� =∑
i∈J r	�S	i� � c	i��
 which is a performance measure of

the classification rule.
Evaluation of  J 	·� implicitly requires complete

knowledge of the member class of each object in J .
In practice, c	i� will be known only for objects in a
set I ⊂ J , called the training set. Hence, the definition
of  J is of limited use since it cannot be calculated.
However, if we assume that the training set I has been
obtained by a sampling in J , (unbiased) estimators � J
of  J can be used as surrogates; see Cochran (1977) for
an introduction to sampling and statistical estimation
strategies.
Indeed, suppose that I has been obtained after sam-

pling in J 
 using a sampling design such that, for any
c ∈C, any object i in class c is included in the sample
with probability pr	c� > 0. For instance, if I is obtained
by random sampling without replacement of size s,
then

pr	c�= s

�J � ∀ c ∈C� (7)

With stratified random sampling, a random sample
without replacement Ic of size s	c� is drawn from each
c ∈ C, yielding (Cochran 1977) pr	c�= s	c�/�c�. In any
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case, an unbiased estimator for  J 	S� is the Horwitz-
Thompson estimator (Thompson 2002)

 ̂J 	S�=
∑
i∈I
r	�S	i� � c	i��/pr	c	i���

We assume that, as in (7), all probabilities pr	c� are
equal, so  ̂J 	S� is proportional to the total cost  I	S�
within the training sample I ,

 I	S�=
∑
i∈I
r	�S	i� � c	i��
 (8)

called the empirical classification cost. Thus, for the
particular cost structure (6), the empirical classifica-
tion cost is simply the number of misclassified objects
in the training sample I .
Given an integer p, �C� ≤ p ≤ �R�, we determine

the classification rule �S with minimal empirical cost,
measured as (8), such that S is a subset of R, with
cardinality p, and at least one prototype from each
class c is included, i.e. S∩Rc �= �
 ∀ c. We call this the
optimal p-prototypes nearest-neighbor (p-PNN) model. If
R= I , i.e., admitting the full training set as candidates
to prototypes, then �I �-PNN is NN.
2.3. Complexity
In this section we prove that finding a p-PNN rule
is ��-hard and that the problem remains ��-hard
even when restricted to two-class case, the set of can-
didates to prototypes coinciding with the training set,
the dissimilarity is a metric and the misclassification
costs are uniformly equal to one. We formalize this in
the following decision problem
PERFECT CLASSIFICATION: Given a number p

and a finite set I , partitioned into two subsets I1, I2
and equipped with a metric d, does there exist a sub-
set S of I of cardinality p such that the corresponding
classification rule classifies all elements of I correctly?

Proposition 1. PERFECT CLASSIFICATION is an
��-complete problem.

Proof. Our starting point is the following ��-
complete problem (Garey and Johnson 1979):
DOMINATING SET: Given a graph 	V 
E� and

a positive number l ≤ �V �, does there exist an
l-dominating vertex set? An l-dominating vertex set is
a subset V ′ ⊆ V with �V ′� ≤ l and such that all vertices
in V \V ′ are adjacent to V ′.
For instance, consider the graph 	V 
E� in Figure 1.

�v4
v5
v6
v8� is a 4-dominating vertex set for 	V 
S�,
whereas �v4
v5
v6� is not a 3-dominating vertex set,
since it contains no vertex adjacent to v9.
Given an instance of DOMINATING SET, we con-

struct an instance of PERFECT CLASSIFICATION as
follows. Let I1 = V and I2 = �w� where w is an arbi-
trary object not in V and p = l + 1. The dissimilari-
ties are defined by the shortest-path distances in the
extended graph 	V ∪ �w�
 E ∪ 	V × �w��� with edge
lengths 2 on E and 3 on all new edges. See in Figure 2

v2

v1 v4

v5

v3 v6

v7 v8

v9

Figure 1 An Example of Graph �V � E�

the extended graph for the graph 	V 
E� of Figure 1,
where edges of length 2 are plotted as continuous
lines, and the edges of length 3 (those adjacent to w)
are dashed.
Then for any set of prototypes S ⊆R,
• w is always correctly classified because I2 is a

singleton.
• For any v ∈ I1 = V only one of the following three

possibilities for assignment may arise:
—if v ∈ S, it is assigned to itself since dissimilar-

ity is then 0, while d	v
w� > 0 ∀v �=w
—if v � S but adjacent to some v′ ∈ S ∩V , it will

be assigned to v′ since d	v
v′�= 2, which is the min-
imal nonzero possibility for the dissimilarity

—if v � S and not adjacent to S ∩ V , it will be
assigned to w since d	v
w�= 3, while the dissimilar-
ity to any prototype in V is at least 4.
Thus, misclassification by S of some object is equiv-

alent to being vertex-dominated by �w�.

v1

v2 v5

v4

v3 v6

v7 v8

v9

ω

Figure 2 Extended Graph for the Graph �V � E� of Figure 1
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For instance, see Figure 1 with S = �w
v4
v5
v6�
as set of prototypes. Since v5 ∈ S, d	v5
v5� = 0 < 3 =
d	v5
w�; hence, v5 is assigned to class I1 so is cor-
rectly classified. On the other hand, since v1 is adja-
cent to v4 ∈ S, d	v1
v4� = 2 < 3 = d	v1
w� and v1
is also correctly classified. However, v9 is misclassi-
fied since d	v9
v4� = 6 > 3 = d	v9
w�, d	v9
v5� = 6 >
3= d	v9
w�, and d	v9
v6�= 4> 3= d	v9
w�, so v9 is
assigned to I2. Hence, such S does not classify cor-
rectly all objects, or, equivalently, it is not a 4-domi-
nating vertex set for the extended graph.
Hence, S∩V being an l-dominating set is equivalent

to all objects being correctly classified by S with �S� ≤
l+ 1. �

Corollary 2. Finding a p-PNN rule is ��-hard.

In Section 3 we formulate as integer programs the
problem of determining the classification rule �S with
minimal empirical misclassification cost, measured as
(8), both for general misclassification penalties and
also for the uniform case (5).

3. Integer-Programming Formulations
3.1. General Costs
For each i ∈ I , s ∈R, let Ris denote the set of prototypes
that are more preferred by i (according to ≺i) than s,
Ris = �t ∈R� t ≺i s�. Let
• xs ∈ �0
1�, ∀ s ∈ R, answering the question “Is

candidate s chosen to be a prototype?” Hence, a clas-
sification rule �S , as defined in (4), is identified by the
vector x ∈ �0
1��R� defined by

xs =


1 if s ∈ S
0 otherwise�

• yis ∈ (0
1), ∀ i ∈ I and s ∈R, answering the assign-
ment question “Is s the prototype least dissimilar
to i?” Although, in principle, these variables should
be binary, the model allows us to consider them as
continuously relaxed to lie between 0 and 1.
The misclassification cost for object i ∈ I belong-

ing to the class c	i� is then
∑

s∈R r	c	s� � c	i��yis , so the
empirical misclassification cost  I	S� of classification
rule �S , as defined in (4) is

∑
i∈I

∑
s∈R r	c	s� � c	i��yis .

The problem is to find the set S ⊂R with cardinality
�S� = p (with p given) containing at least one element
in each class c, such that the empirical misclassifi-
cation cost is minimized. This yields the following
(mixed) integer program:

(P1) min
∑
i∈I

∑
s∈R
r	c	s� � c	i��yis

subject to
∑
s∈Rc

xs ≥ 1 ∀ c ∈C (9)

∑
s∈R
xs = p (10)

∑
s∈R
yis = 1 ∀ i ∈ I (11)

xs − yis ≤
∑
t∈Ris

xt ∀ 	i
 s� ∈ I ×R (12)

yis ≤ xs ∀ 	i
 s� ∈ I ×R (13)

xs ∈ �0
1� ∀ s ∈R
yis ∈ (0
1) ∀ 	i
 s� ∈ I ×R�

Constraints (9) force each class to have at least
one prototype and (10) says that we choose p proto-
types in total. (11) and (13) ensure that each object
has a prototype and that an object can only be as-
signed to a candidate chosen as prototype. Following
Plastria (2002), (12) ensure that an object is assigned
to the least dissimilar of the prototypes in the follow-
ing way:
If s is a prototype and there is no prototype pre-

ferred by i then i must be assigned to s or equiva-
lently
If xs = 1 and xt = 0, ∀ t ∈Ris , then yis = 1,

which, from Plastria (2002), is expressed by 1− yis ≤∑
t∈Ris xt + 	1− xs� ∀ 	i
 s� ∈ I ×R, yielding (12).

3.2. Uniform Costs
Now we discuss in some detail the particular case in
which the cost structure is given by (5), because, as
shown below, we can derive an alternative formula-
tion with fewer variables and constraints than (P1).
The additional advantage of this formulation is,
remarkably, that its LP relaxation is at least as tight as
the LP relaxation of (P1).
Indeed, in this case, the objective of (P1) is∑
i∈I

∑
s∈R
r	c	s� � c	i��yis

=∑
i∈I

∑
s∈Rc	i�

r	c	s� � c	i��yis +
∑
i∈I

∑
s�Rc	i�

r	c	s� � c	i��yis

= 0+∑
i∈I

∑
s�Rc	i�

r	c	s� � c	i��yis

=∑
i∈I
rc	i�

∑
s∈R
yis −

∑
i∈I
rc	i�

∑
s∈Rc	i�

yis

=∑
i∈I
rc	i�−

∑
i∈I
rc	i�

∑
s∈Rc	i�

yis�

Define, for each i ∈ I , zi =
∑

s∈Rc	i� yis which answers
the (fuzzy) question “Is object i correctly classified?”
With this, the objective at any feasible solution is∑

i∈I rc	i�−
∑

i∈I rc	i�zi.
To guarantee that the variables zi answer the ques-

tion above, the only thing that must be specified is
when zi must be 0: when the choice of zi’s value is left
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free there will always be an optimal solution where
zi = 1. The former is obtained by stating
If t �Rc	i� is chosen as a prototype and no prototype

in Rc	i� is preferred (according to ≺i) than t, then i ∈ I
will not be correctly classified
or, for each t �Rc	i�,
If xt = 1 and xs = 0 	∀ s ∈Rc	i� ∩Rit�, then zi = 0,

which is expressed by the constraint

zi ≤ 	1− xt�+
∑

s∈Rc	i�∩Rit
xs� (14)

Note that this constraint indeed expresses exactly the
desired property even when zi is continuously relaxed
(Plastria 2002). Thus, we may rewrite (P1) as

(P2) min
∑
i∈I
rc	i�−

∑
i∈I
rc	i�zi

subject to
∑
s∈Rc

xs ≥ 1 ∀ c ∈C
∑
s∈S
xs = p

zi ≤ 	1− xt�+
∑

s∈Rc	i�∩Rit
xs ∀ i ∈ I
 t �Rc	i�

xs ∈ �0
1� ∀ s ∈R
zi ∈ (0
1) ∀ i ∈ I �

Calling (LP1) and (LP2) the LP relaxations of (P1)
and (P2), we may state

Proposition 3. (LP2) is at least as tight as (LP1).

Proof. See Carrizosa et al. (2005). �

Since the integer variables are the same in both
models, the subproblems generated when fixing some
of these variables satisfy the same property. Therefore,
if available, (P2) is preferred when solving the prob-
lem with a branch-and-bound algorithm.
Note that

∑
i∈I rc	i� in (P2)’s objective is constant,

and, since we are only interested in optimal solu-
tions, and not in the optimal objective value, it may
be dropped. Sign inversion then leads to the simpler
objective max

∑
i∈I rc	i�zi, defining our model (P2′) sub-

ject to the same constraints as (P2) above.
The variables above can also be used to model as

IPs other variants of NN. For instance, finding the
consistent subset of minimal cardinality, i.e., Hart’s
CNN-rule (Hart 1968), amounts to solving

(PCNN) min
∑
s∈S
xs

subject to
∑
s∈Rc

xs ≥ 1 ∀ c ∈C

1≤ 	1−xt�+
∑

s∈Rc	i�∩Rit
xs ∀ i∈ I
 t�Rc	i�

xs ∈ �0
1� ∀ s ∈R�

Table 1 Parameters of the Databases

Database J �J� �C� n

glass 214 6 9
glassw 163 3 9
wine 178 3 13
yeastME 258 3 8
abalone 4�177 3 7
spam 4�601 2 57

4. Computational Experience
4.1. Aims
The storage requirements and processing time of
the p-PNN rule are smaller than those of NN. Our
aim here is to compare empirically the classification
power of the p-PNN rule, for different values of p,
against NN.
For completeness, we also compare p-PNN with

other benchmark methods. In particular, we tested the
performance of p-PNN against
• k-NN (k-NN in the tables) for different values

of k.
• Support vector machines (SVM), Cristianini and

Shawe-Taylor (2000), with linear kernel (Lin), poly-
nomial kernel (Pol), and radial bases function kernel
(Rbf).
• Classification trees, denoted here by Trees,

(Breiman et al. 1984), with and without pruning
(Pruned and Crude respectively), as implemented in
Matlab 6.5 Statistics Toolbox.
We performed numerical tests on different standard

databases from the UCI Machine Learning Repository
(Blake and Merz 1998). The details are in Section 4.2.
Since some of the benchmark methods do not ac-

commodate in a simple way different misclassification

Table 2 Results with k-NN, SVM, and Classification Trees

k-NN SVM Trees

Database 1-NN 2-NN 3-NN 4-NN 5-NN Lin Pol Rbf Pruned Crude

glass
tr 100 100 100 100 100 60 72 67 78 89
test 71 67 66 66 63 58 62 60 67 64

glassw
tr 100 100 100 100 100 61 73 71 80 91
test 67 63 67 70 71 56 67 68 71 69

wine
tr 100 100 100 100 100 99 100 99 96 98
test 95 96 96 95 95 99 96 99 87 90

yeastME
tr 100 100 100 100 100 87 90 89 90 95
test 80 84 86 87 84 84 86 86 87 88

abalone
tr 100 100 100 100 100 64 63 65 65 87
test 57 57 60 61 61 63 63 64 63 59

spam
tr 100 100 100 100 100 90 69 93 94 98
test 91 89 90 90 90 90 69 93 92 92
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Table 3 Results of glass

Random
pPNN (%) choice (%)

Heuristic

tr test Time
p tr test tr test (%) (%) (sec.)

6 66 60 39 32 67 60 1.34
10 70 57 43 31 76 65 1.20
15 76 60 49 42 78 64 1.34
20 80 67 57 49 81 61 1.48

costs, the comparisons were made using the binary
cost structure (6). Hence, both (P1) and (P2) apply.
Since the LP bound of (P2) is at least as good as that
from (P1), by Proposition 3, all our results refer to the
simpler variant (P2′) of (P2).

4.2. The Databases
The UCI-Repository databases we used are of differ-
ent sizes. A first group of databases consists of the
Glass Identification Database (called here glass), a
subset of the glass database (glassw) consisting only
of the “window glass” classes, the Wine Recognition
Database (wine), and Yeast Database (yeastME), from
which only the three “membrane protein” classes
(denoted as ME1, ME2, ME3 in the UCI Repository)
are used. Moreover, two bigger databases are also
considered: the Abalone Database (abalone), and the
Spambase Database (spam). In abalone, three classes
(grouping classes 1–8, 9–10, and 11 on) are considered,
as cited in Blake and Merz (1998), and the qualitative
variable was excluded.
For each database J , the total number of objects �J �,

the number of classes �C�, and the number of variables
(all quantitative) n are in Table 1.
The databases contain only continuous variables,

and one can thus calculate dissimilarities according
to the weighted Euclidean distance, defined for u =
	u1
 � � � 
un� ∈�n, v= 	v1
 � � � 
 vn� ∈�n as

d	u
v�=
( ∑
1≤j≤n

�j	uj − vj�2
)1/2


 (15)

Table 4 Results of glassw

Random
pPNN (%) choice (%)

Heuristic

tr test Time
p tr test tr test (%) (%) (sec.)

3 67 59 37 31 67 58 0.90
5 72 69 44 40 74 65 0.93
10 80 69 51 44 79 71 1.02
15 83 72 60 52 82 74 1.10
20 87 66 63 54 84 70 1.17
30 92 68 70 65 88 67 1.29
40 96 61 74 65 90 63 1.42

Table 5 Results of wine

Random
pPNN (%) choice (%)

Heuristic

tr test Time
p tr test tr test (%) (%) (sec.)

3 99 99 85 84 98 96 0.91
05 100 93 88 85 99 96 0.97
10 100 94 90 88 100 94 1.10
15 100 97 93 92 100 96 1.19
20 100 95 93 92 100 96 1.26
30 100 95 94 92 100 91 1.38
40 100 97 95 92 100 95 1.52

with each weight �i given by

�i =
1

	+̄i−+i�2

 (16)

where +̄i and +i represent the highest and the low-
est value for the ith variable in the database, respec-
tively. This model is equivalent to considering the
unweighted Euclidean distance after rescaling each
variable to the interval (0
1).
All results presented were obtained by ten-fold

crossvalidation (Kohavi 1995).
The averaged percentages of correctly classified

objects in both the training samples (tr) and testing
samples (test) obtained using the benchmark meth-
ods are in Table 2.

4.3. Solving to Optimality
The worst-case complexity of the problem was ad-
dressed in Section 2.3, and now we discuss the empir-
ical behavior. To compare the running times and the
classification power of p-PNN, the IPs were solved on
a 2.86 GHz Pentium 4 and 256 MB RAM. CPLEX 8.1.0
was used as the MIP solver. Due to the hardness of
these MIP formulations we imposed an upper bound
(MAXT) on the computing time of 10,800 seconds. In
most instances, running times exceeded MAXT and
the optimization process stopped prematurely.
Tables 3–6 display for different values of the num-

ber p of prototypes (first column), the percentage of

Table 6 Results of yeastME

Random
pPNN (%) choice (%)

Heuristic

tr test Time
p tr test tr test (%) (%) (sec.)

3 82 69 70 71 88 84 1.00
5 88 83 74 76 90 86 1.10
10 91 88 77 78 90 86 1.32
15 93 84 77 74 91 81 1.53
20 93 82 78 74 92 85 1.75
30 96 78 80 78 92 82 2.03
40 99 82 81 76 94 82 2.27
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Table 7 Results for abalone

Random
choice (%)

Heuristic

tr test Time
p tr test (%) (%) (sec.)

3 41 42 63 63 23�40
5 42 42 64 64 25�01
10 48 48 65 64 29�35
30 51 52 66 63 47�02
50 53 53 67 64 64�45
70 54 53 67 63 85�97

500 62 55 70 60 407�40

correctly classified objects in the training sample (sec-
ond column) and in the testing sample (third column)
for the four smallest databases. (The other columns
are for later use in Section 4.4.) Further computational
results can be found in Carrizosa et al. (2005).
Comparing with the benchmark results in Table 2,

several conclusions can be drawn. First, no method
systematically outperforms the others. In particu-
lar, the p-PNN shows to be comparable against the
remaining methods. Moreover, an adequate choice of
the parameter p makes our method be among the best
classifiers. However, how to choose p is not evident to
us, and a crossvalidation process seems to be needed
unless the choice of p is guided by the query times
requirements.
On the other hand, the computing times are, in

all cases, extremely large, suggesting heuristic proce-
dures for solving (P2); see Section 4.4. Moreover, from
the columns giving the proportion of correctly clas-
sified objects in the training and the testing samples,
the former strongly overestimates the latter. Hence,
overfitting happens.

4.4. Heuristic Approach
The ��-hardness of the problem as well as the empir-
ical results of Section 4.3 suggest heuristic proce-
dures to speed up computing times. A first and sim-
ple choice, yielding promising results (Pekalska et al.
2006), might consist of randomly selecting p proto-
types. The results (random choice in Tables 3–8) are

Table 8 Results for spam

Random
choice (%)

Heuristic

tr test Time
p tr test (%) (%) (sec.)

2 61 60 84 83 78�67
5 68 67 85 85 80�66
10 69 69 86 85 88�62
25 72 73 88 87 105�57
50 75 75 89 87 122�10

100 78 77 89 87 175�73
500 85 82 92 88 496�95

1. Initialization. Randomly choose an initial solution x.
Choose a stopping criterion.

2. Repeat until the stopping condition:
(a) Set ,← 1.
(b) Repeat until ,= p:

i. Generate randomly a new solution x′ differing in
at most , prototypes with the current solution x.

ii. If x′ is better than x, set x′ ← x and go to 2(a);
otherwise, set ,← ,+ 1.

3. Return the best solution found so far.

Figure 3 VNS Heuristic

discouraging, particularly when p is small. Hence,
more sophisticated heuristics are needed.
The structure of the problem is such that several

existing (meta) heuristic procedures can be easily
adapted to our problem. Multistart, genetic algo-
rithms or tabu search have been proposed for proto-
type selection, with encouraging results (Bezdek and
Kuncheva 2001).
VNS combines local search with redefinitions of the

neighborhood structure. We use the same neighbor-
hoods as Hansen and Mladenović (1998, 2001a) for
the p-median problem. Given a feasible solution, i.e.
a set of p prototypes including at least one for each
class, its neighborhood of order , consists of all fea-
sible solutions that differ from it in at most , proto-
types. The procedure works as described in Figure 3.
In our experiments, the procedure stops after 5,000

calls to step 2(b)i in Figure 3. The results for the small
data sets for which the exact solution was also sought
with CPLEX are under Heuristic in Tables 3–6. More-
over, much larger data sets, such as abalone or spam,
can be handled (Tables 7 and 8).
A very simple heuristic yields, with very low com-

puting times, rather sharp solutions on the training
samples. However the quality of the procedures
should not be measured on the training sample
(which overestimates the quality results) but on the
testing sample. On testing samples, the heuristic
yields (at much lower computing times) solutions
with comparable quality than those obtained with the
exact method.
We selected variable neighborhood search (VNS),

proposed by Hansen and Mladenović (2001b), both

Table 9 Results with Missing Values for glass

Fraction of missing values

p 0 0.025 0.05 0.075 0.1 0.15 0.175 0.2 0.25 0.3 Slope

6 65 61 59 56 58 53 52 56 53 58 −25.70
8 67 60 57 57 55 56 55 54 52 48 −44.84
10 60 61 59 55 57 56 54 55 54 49 −32.09
12 61 58 58 58 55 55 55 53 52 51 −30.34
14 60 60 57 58 59 55 54 55 53 52 −27.56
16 53 58 58 57 56 54 56 55 53 52 −13.12
18 55 59 58 59 56 56 55 55 52 51 −21.90
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Table 10 Results with Missing Values for glassw

Fraction of missing values

p 0 0.025 0.05 0.075 0.1 0.15 0.175 0.2 0.25 0.3 Slope

3 49 59 57 53 58 58 59 54 51 47 −16�19
5 57 61 59 59 60 59 54 57 59 59 −3�72
7 67 61 63 61 59 61 58 59 55 51 −39�83
9 65 64 61 60 60 62 59 59 60 56 −21�62

for simplicity of its implementation and the excel-
lent results obtained for related problems, such as
the p-median problem. Other metaheuristics could be
used to tackle the MIP (P1), but an empirical com-
parison of such methods is beyond the scope of this
paper.

4.5. Missing Values
As mentioned in Section 2.1, dissimilarities can also
be constructed for databases with missing values.
We performed experiments to explore the stability of
the classification rule with respect to the existence of
(many) missing values. For different values of - , a
fraction - of data were randomly chosen and replaced
by nulls.
We considered the dissimilarity described in (3),

with each �j defined by (16). The optimization was
performed using the VNS heuristic from Section 4.4
with its stopping rule. To reduce the random effects
due to the inclusion of nulls, we ran each test 100
times. The average proportion of correctly classified
objects in the testing sample, for different values of p
and - , together with the slopes of the regression lines
linking percentage of correctly classified objects with
fraction of missing data, are shown in Tables 9–12 for
the small databases; see Carrizosa et al. (2005) for fur-
ther details.
As expected, the quality of the classification rule

deteriorates as the number of nulls increases. How-
ever, the correct classification rates decrease slowly
since, for instance, in yeastME, the rules still classify
correctly more than 70% of the objects when 30%
of the values are missing. It is not evident how the
degradation in classification is affected by the number
of prototypes, since no trend is found in the slopes of
the corresponding regression lines.

Table 11 Results with Missing Values for wine

Fraction of missing values

p 0 0.025 0.05 0.075 0.1 0.15 0.175 0.2 0.25 0.3 Slope

3 92 94 93 94 93 92 91 85 92 90 −14.58
5 96 95 90 95 93 93 92 93 89 88 −20.61
7 96 94 95 94 93 94 93 92 90 89 −20.27
9 94 94 93 93 93 92 90 88 90 88 −21.53

Table 12 Results with Missing Values for yeastME

Fraction of missing values

p 0 0.025 0.05 0.075 0.1 0.15 0.175 0.2 0.25 0.3 Slope

3 82 78 76 74 79 77 76 74 73 71 −25.90
5 77 79 81 79 75 75 75 74 70 71 −30.91
7 84 79 79 75 78 75 76 75 73 71 −32.79
9 78 74 79 76 76 74 74 71 72 73 −19.45

5. Conclusion and Further Research
We have introduced an optimization-based method
for multiclass classification problems. Since the only
requirement for the data is knowledge of a dissimi-
larity between entries, no statistical assumptions on
data are needed, and qualitative variables, as well
as missing values, are easily handled. Contrary to
other competitive procedures, differences in misclassi-
fication costs are naturally accommodated within the
model.
MIP formulations have been developed yielding

classifiers with performance comparable to bench-
mark procedures. However, the computational effort
required makes them prohibitive for databases of
moderate size. Stronger MIP formulations, using valid
inequalities, as well as more sophisticated bounding
strategies, should be investigated since they might
allow solving larger instances of this ��-hard prob-
lem in reasonable time.
For large databases heuristics seem to be the only

feasible approach. The results obtained using VNS
are encouraging. An empirical comparison with other
(meta)heuristics remains.
The dissimilarity d has been considered given.

However, the dissimilarity itself can be seen as a
(modelling) decision variable. Hints to choose an ap-
propriate d, e.g. by choosing appropriate weights �j
in (15), are now under research.
Further study is also needed for the choice of the

parameter p. Indeed, our numerical results do not
lead to clear guidelines for choosing p. We propose
crossvalidation, but in applications in which query-
ing time is a critical issue, p will have to be fixed
exogenously.
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