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Abstract. In this paper, we show that a DC representation can be
obtained explicitly for the composition of a gauge with a DC mapping,
so that the optimization of certain functions involving terms of this kind
can be made by using standard DC optimization techniques. Appli-
cations to facility location theory and multiple-criteria decision making
are presented.
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1. Problem Formulation

DC functions (functions ψ that can be written as the difference of two
convex functions ψ+, ψ−) constitute a wide class of functions that plays an
important role within the field of global optimization (Refs. 1–3). Among
other properties, the class of DC functions is closed under certain oper-
ations. For instance, Proposition 4 in Ref. 3 asserts that the composition of
DC functions is also a DC function. Since the proof is based on the fact
that any locally DC function on a convex set is also DC (Ref. 4), it is a
nonconstructive proof; i.e., it does not provide a DC decomposition for
ψGγ ª f, even when DC decompositions for f and γ are known. From an
optimization point of view, this is an important drawback, since most
powerful DC optimization techniques, such as branch-and-bound methods
(Ref. 1), need a DC representation of the function under study. For this
reason, specific methods for obtaining DC decompositions have been pro-
posed for particular functions γ ; see for example Propositions 3.5–3.7 in
Ref. 5.
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In this paper, we consider the particular case of compositions of DC
functions in which the outer function γ is a gauge, that is, a convex function
γ : �m→�, defined as

γ (x)Ginf{tH0: x ∈ tB}, x ∈ �m, (1)

where B is a convex set, the interior of which contains the origin (Refs.
6–7).

By Theorem 14.5 in Ref. 7, every gauge γ can be written as

γ (x)Gmax{〈u, x〉 : u ∈ B0}, x ∈ �m, (2)

where 〈 · , · 〉 denotes the usual scalar product and B0 is the polar set of B,
that is

B0G{v: 〈v, x〉⁄1, ∀ x ∈ B}.

Using this property, the proof of Proposition 4 in Ref. 3 can be rewritten
for this particular case, yielding a global DC decomposition for γ ª f, as
shown below.

Proposition 1.1. Let Ω⊂ �n be a convex set. Let γ : �m→� be a gauge
in �m with unit ball B, let

fG( f1 , . . . , fm ): Ω→�m

be a DC vector-valued function, with known DC decomposition,

fiGf
+
iAf

−
i ,

with f +
i and f −

i convex. For any iG1, . . . ,m, let

Mi¤max{γ (ei ), γ (−ei )},

where ei is the i th unit vector of �m. Then, γ ª f: Ω→� is a DC function,
and a DC decomposition for it is given by

γ ª fGgAh, (3)

with

gGγ ª fC ∑
m

iG1

Mi ( f
+
iCf

−
i ), hG ∑

m

iG1

Mi ( f
+
iCf

−
i ).

Proof. First, observe that a finite

Mi¤max{γ (ei ), γ (−ei )}

can be chosen, since the origin is an interior point of B and, therefore, the
polar set B0 is bounded. From (2), the gauge γ can be globally represented
as a pointwise maximum of the affine functions ϕu ,
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γ (y)Gmax
u ∈ B0

ϕu (y), ∀ y ∈ �m,

where

ϕu (y)G〈u, y〉.

Then,

ϕu ( f1 , . . . , fm )G ∑
m

iG1

ui f
+
iA ∑

m

iG1

ui f
−
i

G ∑
m

iG1

(MiCui ) f
+
iC ∑

m

iG1

(MiAui ) f
−
i

A ∑
m

iG1

Mi ( f
+
iCf

−
i )

Since

Mi¤γ (ei )Gmax
u ∈ B0

ui

and

Mi¤γ (−ei )Gmax
u ∈ B0

−ui ,

it follows that ª f can be written as the difference of two convex functions,
namely,

ϕu ª fGpuAq,

where

puG ∑
m

iG1

(MiCui ) f
+
iC ∑

m

iG1

(MiAui ) f
−
i ,

qG ∑
m

iG1

Mi ( f
+
iCf

−
i ).

Then,

γ ª fGmax
u ∈ B0

ϕu ( f1 , . . . , fm )

Gmax
u ∈ B0

( puAq)

G�max
u ∈ B0

pu�Aq
G(γ ª fCq)Aq,

and the result holds. �
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This provides immediately DC decompositions for important classes of
DC vector-valued functions. In particular, if the gauge γ is an Lp-norm, it
can be taken

MiG1, for every i,

yielding the following corollary.

Corollary 1.1. Let f1 , . . . , fm be DC functions on the convex set Ω,
with DC decompositions fiGf

+
iAf

−
i , iG1, . . . ,m. Then, for any p,

1⁄p⁄S, �� f ��p is DC on Ω, a DC decomposition being given by

�� f ��pGgAh,

with

gG�� f ��pC ∑
m

iG1

( f +
iCf

−
i ), hG ∑

m

iG1

( f +
iCf

−
i ).

The result in Proposition 1.1 can be strengthened if further assumptions
are made on the gauge γ in use. Indeed, the proof above can be rewritten
e.g. for the case in which the polar ball B0 is contained in the positive
orthant.

Proposition 1.2. Let Ω⊂ �n be a convex set. Let γ : �m→� be a gauge
in �m with unit ball B, such that B0 ⊂ �m

C . Let fG( f1 , . . . , fm ): Ω→�m be
a DC vector-valued function, with known DC decomposition, fiGf

+
iAf

−
i ,

with f +
i and f −

i convex. For any iG1, . . . ,m, let Mi¤γ (ei ), where ei is the
i th unit vector of �m. Then, γ ª f: Ω→� is a DC function, and a DC
decomposition for it is given by

γ ª fGgAh, (4)

with

gGγ ª fC ∑
m

iG1

Mi f
−
i , hG ∑

m

iG1

Mi f
−
i .

As a nontrivial application, let us obtain a DC decomposition for the
k th function: given fG( f1 , . . . , fm ), let ( f(1)(x), . . . , f(m)(x)) be the arrange-
ment of ( f1(x), . . . , fm (x)) with

f(1)(x)¤ f(2)(x)¤ · · ·¤ f(m)(x).

Then, we have the following proposition.
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Proposition 1.3. Let Ω⊂ �n be a convex set. Let fG
( f1 , . . . , fm ): Ω→�m be a DC vector-valued function, with known DC
decomposition fiGf

+
iAf

−
i , with f +

i and f −
i convex. Let

hG ∑
m

iG1

f −
i

and, for any kG1, . . . ,m, let

gkGf(1)Cf(2)C· · ·f(k)C ∑
m

iG1

f −
i .

Then, a DC decomposition for f(1)Cf(2)C· · ·Cf(k) is given by

f(1)Cf(2)C· · ·Cf(k)GgkAh. (5)

In particular, a DC decomposition for f(k) is given by

f(k)G(gkCh)A(gkA1Ch). (6)

Proof. The decomposition (5) follows from the fact that

f(1)C· · ·Cf(k)Gmax�〈 f, u〉 : ∑
m

iG1

uiGk, 0⁄ui⁄1, ∀ i� .

Thus, we can use Proposition 1.3 for B0 given by

B0G�u ∈ �m: ∑
m

iG1

uiGk, 0⁄ui⁄1, ∀ i� .

The decomposition (6) follows from (5) and the fact that

f(k)G[ f(1)C· · ·Cf(k) ]A[ f(1)C· · ·Cf(kA1) ]. �

2. Applications

In this section, we analyze applications to the fields of location theory
and multiple-criteria decision making that justify the interest of Proposition
1.1.

2.1. Facility Location. As an application of Proposition 1.1 to facility
location theory, we consider the Fermat–Weber problem with forbidden
regions and mixed gauges. The aim is to find a location outside int(S ), the
interior of a region S, for a new facility in the plane in such a way that the
weighted sum of the distances between the facility and the demand points
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(fixed facilities) is minimized; that is, we have to solve the optimization
problem

min� ∑
n

iG1

γ i (xAai ): x ∈ �2 \ int(S )� , (7)

were γ i is a gauge measuring the distance from any point in the plane to ai ,
x is the unknown location of the new facility, ai is the location of the i th
demand point, and S is a subset of �2 that can be represented as the union
of m pairwise disjoint connected (not necessarily convex) sets,

SG*
m

jG1
Sj .

The usual strategy for finding an optimal solution of (7) consists of first
solving the unconstrained problem, and then checking if any element in the
set X* of optimal solutions is a feasible point for problem (7). If this is the
case, then we have an optimal location for the restricted problem. In other
cases, the convexity of the objective function allows us to ensure the exist-
ence of an optimal solution belonging to bd(S ), the boundary of S; thus,
we just need to solve, for jG1, . . . ,m,

min� ∑
n

iG1

γ i (xAai ): x ∈ bd(Sj )� . (8)

Most papers in the literature do not address the problem in its full
generality, since they impose strong assumptions on the gauge (assumed to
be the L1 norm or L2 norm) and the forbidden region, which is considered
to have an extremely simple form (a polyhedron or a circle); see Refs. 8–
10.

Suppose that a parametric description for bd(Sj ) is known; i.e., we have
a function wj: [0, 1] > �2 parametrizing bd(Sj ). Then, (8) can be written as

min
0⁄ t⁄1

∑
n

iG1

γ i (wj (t)Aai ), (9)

which is a one-dimensional optimization problem whose objective function
will be multimodal in general, so global optimization techniques must be
used for its solution.

In the particular case in which wj is a DC function with a known DC
decomposition, Proposition 1.1 provides a DC representation for the objec-
tive of (9), so the optimal solution can be obtained by solving a DC univari-
ate problem. Several results given in the literature enable us to obtain such
DC decomposition, either directly or by using simpler functions with known
representation (Refs. 1, 3, 5, 11, 12). For instance, if wj is twice continuously
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differentiable and K¤0 is a bound for the second derivative, a DC
decomposition for wj is given by

wj (t)G[wj (t)C(1�2)Kt2]A(1�2)Kt2. (10)

Example 2.1. As illustration of this technique, we have considered the
following Weber problem with a forbidden region:

min ∑
3

iG1

ωi ��xAai ��2 ,

s.t. x ∈ �2 \ int(S ),

where

a1G(0, 3), a2G(−2, 4), a3G(4, −2),

w1G2, w2G3, w3G2,

and S is the region enclosed by the curve R, a parametric description of
which is given by

RG{(u(t), v(t)), t ∈ [0, 1]},

with

u(t)G5 cos(8πt) cos(2πt),

v(t)G5 cos(8πt) sin(2πt).
The optimal solution for the unconstrained problem is a1G(0, 3), an

interior point of S (see Fig. 1), so the optimal solution for the constrained
problem will be located at its boundary.

Fig. 1. Forbidden region and demand points, Example 2.1.
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Taking into account that a parametric description for bd(S ) is already
given, the optimal solution can be computed by solving

min
t ∈ [0,2π]

F (t)_ ∑
3

iG1

ωi ��(u(t)Aai1 , v(t)Aai2)��2 .

The objective is a multimodal function, as can be seen in Fig. 2, so the use
of global optimization techniques is required.

Since u and v are C
2 in [0, 1], they are DC functions and (10) provides

the DC decomposition

u(t)GuC(t)Au−(t), v(t)Gv+(t)Av−(t),

with

u+(t)G5 cos(8πt) cos(2πt)C170π2t2, u−(t)G170π2t2,

v+(t)G5 cos(8πt) sin(2πt)C170π2t2, v−(t)G170π2t2.

Hence, by Corollary 1.1, it can be claimed that [F (t)Ch(t)]Ah(t) is a
DC decomposition for F, with

h(t)G7[u+(t)Cv+(t)Cu−(t)Cv−(t)]A16

G7[5 cos(8πt) cos(2πt)C5 cos(8πt) sin(2πt)C680π2t2 ]A16.

An (-optimal solution for the problem above has been obtained by using a
covering algorithm (Ref. 13), yielding

t*G0.28527653858,

Fig. 2. Objective function over bd(S ), Example 2.1.
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which corresponds to the point

x*G(−0.6947487405, 3.082955211). �

Whereas it might be the case, as in Example 2.1, that a DC parametriz-
ation of bd(Sj ) is already given, in general such parametrization must also
be determined. Fortunately, this is an easy task when Sj is a convex and
compact set. Indeed, assuming without loss of generality that the origin is
an interior point of Sj , we have the following parametric description of its
boundary:

ω j (t)G[cos(2πt)�γ j (cos 2πt, sin 2πt),

sin(2πt)�γ j (cos 2πt, sin 2πt)], t ∈ [0, 1], (11)

where γ j is the gauge with unit ball Sj . Both cos(2πt) and sin(2πt) are DC
functions; so, by Proposition 1.1, γ j (cos 2πt, sin 2πt) is also DC (with a DC
decomposition at hand); thus, every component of (11) is the quotient of
two DC functions, thus DC.

In order to solve (9) with the ωj (t) in (11) via e.g. a branch-and-bound
method, we will simply need a DC decomposition and a procedure for eval-
uating the objective function and constructing the subgradients at given
points.

In the search of a DC representation for every component of w, it
suffices to obtain a DC decomposition for the quotient of a convex function
and a DC function, since the numerators of (11) can be expressed easily as
the difference of two convex functions. In order to achieve this, we need the
following lemma.

Lemma 2.1. Let U be a bounded set with U ⊂ {(x, y, z) ∈ �3: yAz¤α },
where αH0, and let u:U> � be defined as u(x, y, z)Gx · ( yAz)−1. Then,
there exist ρ*, A, B, C ∈ � such that

u+(x, y, z)Gu(x, y, z)C(1�2)ρ*(x2Cy2Cz2)CAxCByCCz,

u−(x, y, z)G(1�2)ρ*(x2Cy2Cz2)CAxCByCCz

are convex and increasing componentwise functions.

Proof. The Hessian matrix for u is given by

HG[1�( yAz)2]�
0 −1 1

−1 2x�( yAz) −2x�( yAx)

1 −2x�( yAz) 2x�( yAz)
� ,
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and its eigenvalues are

λ 1G0,

λ 2G[2xC14x2C2( yAz)2]�( yAz)3,

λ 3G[2xA14x2C2( yAz)2�( yAz)3,

from which one derives immediately the following upper bound for the spec-
tral radius of H:

ρ*G[2M�x�C14M2
�x�C2m2

yAz]�m3
yAz ,

where

M�x�¤sup{�x�: (x, y, z) ∈ U},

0FmyAz⁄ inf{yAz: (x, y, z) ∈ U}.

By the choice of ρ*, it follows that the functions

u1(x, y, z)Gu(x, y, z)C(1�2)ρ*(x2Cy2Cz2),

u2(x, y, z)G(1�2)ρ*(x2Cy2Cz2)

are convex and that u+ and u− are also convex for any A, B, C.
In order to make u+ and u− componentwise increasing, we choose A, B,

C in such a way that the partial derivatives of these functions with respect
to x, y, z are nonnegative. This yields the following lower bounds for these
constants:

A¤−ρ*mx ,

B¤max{Mx�m2
yAzAρ*my , −ρ*my},

C¤max{−mx�m2
yAzAρ*mz , −ρ*mz},

with

mx⁄ inf{x: (x, y, z) ∈ U},

Mx¤sup{x: (x, y, z) ∈ U},

my⁄ inf{y: (x, y, z) ∈ U},

mz⁄ inf{z: (x, y, z) ∈ U},

and the result holds. �

It is now possible to provide a DC decomposition for the quotient of
a convex function and a DC function, from which we obtain a DC represen-
tation for ωj in (11).
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Proposition 2.1. Let T ⊂ � k be a convex set, and let f, g, h:T> �

be finite convex functions such that inf{g(t)Ah(t): t ∈ T}H0. Then, a DC
representation for f (t) · [g(t)Ah(t)]−1 is given by

f (t)�[g(t)Ah(t)]G{ f (t)�[g(t)Ah(t)]Cn(t)}An(t), (12)

where

n(t)G(1�2)ρ*[ f 2(t)Cg2(t)Ch2(t)]CAf (t)CBg(t)CCh(t)

and

ρ*G[2M� f �C14M2
� f �C2m2

gAh]�m3
gAh ,

A¤−ρ*mf ,

B¤max{Mf�m2
gAhAρ*mg , −ρ*mg},

C¤max{mf�m2
gAhAρ*mh , −ρ*mh},

and

mf⁄ inf
t ∈ T
f (t),

Mf¤sup
t ∈ T
f (t),

M� f �¤sup
t ∈ T

� f (t) �,

mg⁄ inf
t ∈ T
g(t),

mh⁄ inf
t ∈ T
h(t),

0FmgAh⁄ inf
t ∈ T

{g(t)Ah(t)}.

Proof. Consider the convex mapping

F: t ∈ T> F (t)G( f (t), g(t), h(t)) ∈ �3.

Since u+ and u− in Lemma 2.1 are convex and increasing componentwise, a
basic result from convex analysis (Ref. 14) asserts that u+ ª F and u− ª F are
convex functions, providing a DC decomposition for u ª F. The constants
involved in the definition of n(t) are directly taken from the proof of Lemma
2.1. �

Remark 2.1. Although the use of this representation can be hard for
general functions, it allows us to find a DC decomposition for (11) with no
great effort. Finding a DC representation for sin(2πt) and cos(2πt) is a
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trivial task and, from here, one obtains immediately the bounds mf , Mf ,
M� f � , mg , mh . The calculation of bound mgAh may be a little more difficult,
since it is related to the optimal value of mint ∈ [0,1] γ (cos 2πt, sin 2πt). This
is a DC optimization problem and a DC decomposition for the objective is
known from Proposition 1.1, so one can solve it by applying the covering
algorithm provided in Ref. 13 or any other DC optimization method. In
fact, since one needs only a lower bound for the optimal value, it suffices
to perform some iterations of that algorithm in order to obtain it.

Thanks to Proposition 2.1, in order to solve (9) by branch-and-bound
methods, we need only a procedure to evaluate γ j and find a subgradient of
γ j at a given point. This is easy when Sj is given in the form

SjG{x ∈ �2: gj (x)⁄0},

for some convex function gj with bounded level sets and gj (0)F0. Indeed,
since by the definition of the gauge, for any nonzero x,

γ j (x)Gsup{sH0, gj (sx)⁄0}−1,

evaluating γ j (x) amounts to solving the nonlinear univariate equation
g(sx)G0, for which we can use e.g. any line-search method (Ref. 15).

Regarding the subdifferential, a subgradient of γ j at a given point can
be computed by using the following result.

Proposition 2.2. Let g: �n> � be a convex function such that the
set SG{x ∈ �n: g(x)⁄0} is compact and g(0)F0. Let x̄≠0, and let
u ∈∂ g(x̄�γ (x̄)), where γ is the gauge with unit ball S. Then,

[γ (x̄)�〈u, x̄ 〉]u ∈∂ γ (x̄).

Proof. Let ȳGx̄�γ (x̄), thus g( ȳ)G0. Since u ∈∂ g( ȳ), given x ∈ S one
has the following:

0¤g(x)¤g( ȳ)C〈u, xAȳ 〉 ;

thus,

〈u, x〉⁄ 〈u, ȳ 〉, for each x ∈ S.

Since ȳ ∈ S, it follows from the previous relation and the definition of dual
gauge that

γ 0(u)Gmax
x ∈ S

〈u, x〉G〈u, ȳ 〉 ;

therefore,

〈u�γ 0(u), ȳ 〉G[1�γ 0(u)]〈u, ȳ 〉G1Gγ ( ȳ).
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Then, we conclude that a subgradient of γ at ȳ is given by

[1�γ 0(u)]uG[γ (x̄)�〈u, x̄ 〉]u,

and taking into account that

∂γ ( ȳ)G∂γ (x̄),

the result follows. �

2.2. Multiple-Criteria Decision Making. Compromise programming
(Refs. 16–18) provides an effective tool in multiple-criteria decision making
(MCDM). Given a multiple-objective problem

max
x ∈ X

f (x)_ ( f1(x), . . . , fm (x)),

with X ⊂ �n, in compromise programming one proceeds as follows: compute
the ideal point of the problem

frG( fr1 , . . . , frm ),

where

friGmax
x ∈ X

fi (x).

If fr corresponds to a feasible point (which seldom happens), it will be the
optimal solution; in the other case, the best compromise solution is pro-
vided, that is, the output closest to the ideal point. The distance between
every feasible solution and the ideal point is measured via an Lp-metrics,
1⁄p⁄S, namely,

� ∑
m

iG1

wpi �[ friAfi (x)]�( friAqfi ) �p�
1/p

∀ x ∈ X,

where wi is a weight, chosen by the decision maker, which measures the
relative importance of the i th criterion and

qf iGmin
x ∈ X

fi (x).

Thus, the measure of closeness is given by the Lp-norm of the vector whose
i th component is

wi�[ friAfi (x)]�( friAqf i ), iG1, . . . ,m.

Again, if every fi is DC, with a DC decomposition known, finding the best
compromise solution amounts to solving a DC problem with a DC represen-
tation of the objective known.
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Compromise programming is not the only MCDM approach in which
Proposition 1.1 can be applied, since (as it is shown in Ref. 19) any of the
goal programming, multiobjective programming, and compromise program-
ming approaches can be derived from the following distance function
model:

min
x ∈ X � ∑

m

iG1

wpi �[biAfi (x)]�ki �p�
1/p

, (13)

where bi is the aspiration level for the i th criterion and ki a normalizing
constant. If every fi is DC, and if a DC representation is known for all of
them, Proposition 1.1 will provide a DC decomposition for the objective
function of (13).

Hence, standard branch-and-bound algorithms can be used to solve it,
whereas the techniques proposed so far perform only local searches (Refs.
20–21), so they can be trapped in locally (not globally) optimal decisions,
as illustrated below.

Example 2.2. Following (13), we have considered a goal-program-
ming problem with mG5, wiGkiG1, iG1, . . . ,m, and functions and goals
given by

f1(x, y)GxC10 cos(5πy), b1G10,

f2(x, y)Gx
2A6xCy2, b2G0,

f3(x, y)G10xC7y, b3G70,

f4(x, y)Gx
2A6xC4y, b4G11,

f5(x, y)Gx
2Cy2, b5G9.

The feasible region is the rectangle

SG{(x, y) ∈ �2: 0⁄x⁄6, 0⁄y⁄4}.

Figure 3 contains a plot of the objective function for pG2, showing its
multimodal character.

The problem above has been solved for a grid of 50 values of p between
1 and 2, yielding the optimal solutions x*j , jG1, . . . , 50, depicted in Fig. 4.
The trajectory traced by these points seems not to be continuous, due to
changes in the local minimum providing the global optimum.
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Fig. 3. Objective function, Example 2.2.

Fig. 4. Trajectories of optimal solutions.
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