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Abstract A center hyperplane in the d-dimensional space minimizes the maximum
of its distances from a finite set of points A with respect to possibly different gauges.
In this note it is shown that a center hyperplane exists which is at (equal) maximum
distance from at least d +1 points of A. Moreover the projections of the points among
these which lie above the center hyperplane cannot be separated by another hyper-
plane from the projections of those that are below it. When all gauges involved are
smooth, all center hyperplanes satisfy these properties. This geometric property allows
us to improve and generalize previously existing results, which were only known for
the case in which all distances are measured using a common norm. The results also
extend to the constrained case where for some points it is prespecified on which side
of the hyperplane (above, below or on) they must lie. In this case the number of points
lying on the hyperplane plus those at maximum distance is at least d + 1. It follows
that solving such global optimization problems reduces to inspecting a finite set of
candidate solutions. Extensions of these results to a separation problem are outlined.
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154 F. Plastria, E. Carrizosa

1 Introduction

In continuous location models, [31], one has a set of users, identified with a set A in
R

d , and the location for a facility of given shape is sought so that some function of the
user-facility distances (e.g. the weighted sum of the distances, or the largest distance)
is optimized. Although the facility is typically assumed to be a point, a good number
of papers address the case in which the facility to be located has a different shape, (e.g.
sphere, hyperplane or polygon in the plane), leading to location models for extensive
facilities. See [2,11,36] and the references therein.

These location problems not only have evident applications in Operations Research,
see e.g. [3,4,11,12,20,25,27,37,38,41], but are also considered in other fields. In
Approximation Theory and Statistics orthogonal regression calls for finding a hyper-
plane minimizing some function of its distances to given data-points [14,15,18,19,
24,29,32,39]. In Computational Geometry [16] obtains the width of a finite set as the
smallest possible distance between two parallel hyperplanes enclosing the set, which
is equivalent to minimizing the maximal distance of any point to the hyperplane in the
middle between these. In Machine Learning [1,5], given two linearly separable sets
of data-points, the support vector machine is a hyperplane maximizing the minimum
distance to the data-points while separating the two sets. For sets that are not linearly
separable, for any hyperplane one associates each set to one of the two corresponding
halfspaces, and seeks a hyperplane minimizing the sum of distances of the points to
their halfspace [6,22,33].

In general, the resulting optimization problems are multimodal, and thus can only
be solved to optimality using expensive global optimization tools such as continuous
branch and bound. However, as happens also in other location models, for particular
shapes of the facility it is often possible to identify a so-called finite dominating set,
i.e. a finite set of candidates known to contain an optimal solution. Hence, the search
of an optimum may be reduced to exhaustive enumeration of this finite candidate set.

For problems in higher dimension, neither branch and bound schemes nor the
inspection of finite sets of (sets of) candidates are realistic alternatives, and one is
forced to use heuristics. Taking into account the geometrical properties adds a combi-
natorial structure in the continuous optimization problem which can be successfully
exploited to develop more powerful heuristics [34].

As examples of finite dominating sets the following basic cases are known. In the
plane with Euclidean distances, some median line, i.e. a line minimizing the sum of
weighted distances to a set of points, is known [29] to pass through at least two of
these points. Similarly, some center line, i.e. a line minimizing the maximum weighted
distance to a finite set of points, exists at maximum weighted distance from three of
these points [27]. More generally, for any norm distance in any dimension d, some
median hyperplane will pass through at least d affinely independent points, and some
center hyperplane will have maximal weighted distance to at least d + 1 points [36,
p153]. Other examples can be found in location of segments [17], obnoxious planes,
[10], as well as for separation problems by hyperplanes [6,33,40].

In this paper we study such geometric properties for center hyperplanes when dis-
tances are measured by norms or gauges, thereby sharpening and generalizing known
results on finite dominating sets. After reviewing in Sect. 2 basic properties of gauges,
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Minmax-distance approximation and separation 155

distances and center problems, we give in Sect. 3 a series of geometrical properties
of the center hyperplanes, enabling us to answer a number of open problems found in
the literature, as summarized in Sect. 3.5. Moreover, center problems with constraints
are also considered, allowing us to also address in Sect. 4, as a byproduct, a problem
of approximate separation by a hyperplane of two sets of points that are not linearly
separable.

2 Gauge distances and center hyperplanes

Given u ∈ R
d , u �= 0 and β ∈ R, let H(u, β) denote the hyperplane of equation

〈 u ; x 〉 = β, and let H(u, β)≥ and H(u, β)≤ denote the two closed halfspaces with
common boundary H(u, β),

H(u, β)≥ def=
{

x ∈ R
d : 〈 u ; x 〉 ≥ β

}

H(u, β)≤ def=
{

x ∈ R
d : 〈 u ; x 〉 ≤ β

}

The hyperplane H(u, β) separates (respectively strictly separates) the subsets
S1 and S2 of R

d , if S1 ⊂ H(u, β)≥ and S2 ⊂ H(u, β)≤, or inversely (resp.
S1 ∩ H(u, β)≤ = ∅ and S2 ∩ H(u, β)≥ = ∅, or inversely).

Distances will be measured through finite gauges, [13,26,32]: Given a compact
convex set B in R

d containing the origin in its interior, its gauge γ is defined as

γ (x)
def= min{t ≥ 0 x ∈ t B}, (1)

and its dual gauge γ ◦ as

γ ◦(v)
def= max{〈 v ; y 〉 γ (y) ≤ 1}.

The class of gauges includes the class of norms, since norms are those gauges whose
unit ball B is symmetric with respect to the origin. Observe that, by definition, if γ

is a norm, then its dual γ ◦ is also a norm, and thus γ ◦(−v) = γ ◦(v) for all v. Any
positive multiple λγ (λ > 0) of a gauge γ is a gauge with dual gauge (λγ )◦ = γ ◦

λ
.

Interesting instances of gauges which are not norms are, for instance, the skewed
gauges, used in Statistics to define a multivariate version of quantiles, [8], and also
suggested in Location Theory to model transportation on an inclined plane, in presence
of steady wind, [30], or to a moving target [7]. Skewed gauges have the form

γ (x) = ‖x‖ + p�x,

where ‖ ·‖ is a norm and p is a vector with ‖p‖◦ < 1. See Fig. 1 for the unit ball of the
gauge γ for ‖·‖ being the Euclidean norm and different values of p, namely p = (0, 0)

(and thus γ is the Euclidean norm), p = (0.3, 0), and p = (0.5, 0) respectively.
See also [30] for further properties on skewed gauges.
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Fig. 1 Unit ball of skewed gauges

Fig. 2 Center hyperplane (Euclidean norm) and balls of smallest common radius.

Gauges are convex functions in R
d . The subdifferential ∂γ (x) of the gauge γ at

x ∈ R
d is never empty, and can be expressed as

∂γ (x) = {v ∈ R
d , γ ◦(v) ≤ 1 〈 x ; v 〉 = γ (x)}.

Note that when the gauge γ is smooth at x , the subdifferential is reduced to a single
subgradient: the gradient ∇γ (x) of γ at x .

Given a hyperplane H, the γ -distance of a point a ∈ R
d to H is defined as

dγ (a, H)
def= min{γ (x − a) x ∈ H}.

Given a non-empty finite set A ⊂ R
d , together with corresponding gauges γa on

R
d with unit ball Ba(a ∈ A), and two finite (not necessarily disjoint, possibly empty)

sets A≥, A≤ ⊂ R
d , a constrained center hyperplane is a hyperplane H(u, β) such

that the two closed halfspaces H(u, β)≥ and H(u, β)≤ contain respectively A≥ and
A≤, and it minimizes the highest γa-distance to a ∈ A, i.e., it minimizes the common
radius r needed to guarantee that all balls a + r Ba intersect H(u, β).

As an illustration, the left side of Fig. 2 (respectively Fig. 3) represents the uncon-
strained (A≥ = A≤ = ∅) center hyperplane for the points given, with all points mea-
suring distances with a common gauge, namely, the Euclidean norm (respectively, a
skewed gauge). Such a hyperplane H(u, β) has been obtained using the results derived
in Sect. 3 below.
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Minmax-distance approximation and separation 157

Fig. 3 Center hyperplane (skewed gauge) and balls of smallest common radius

For the center hyperplane H(u, β) obtained, the balls a +r Ba of smallest common
radius r needed to guarantee nonempty intersection with H(u, β) are plotted in the
right side of Figs. 2 and 3. Three balls, with centers marked with solid circles, are
tangent to H(u, β), a property stated in generality in Sect. 3.

Center hyperplane problems have already been extensively considered in the liter-
ature in the unconstrained case, i.e., for A≥ = A≤ = ∅, e.g. [11,14,15,19,23,24,36,
37,39], first for Euclidean distances, later for a general norm distance. Some geomet-
rical properties have been obtained for these cases and will be generalized here, both
in form and in application range.

The inclusion of the constraints given by A≥, A≤ ⊂ R
d , allows to make the link

to a problem typical in classification: finding the hyperplane optimizing the margin
needed to separate two sets which are not linearly separable. As detailed in Sect. 4,
this margin optimization problem is strongly related to a center hyperplane problem
for adequate choices of the sets A≥, A≤.

On the other hand, our formulation enables us also to accommodate within the same
framework anchored center hyperplane problems, as introduced in [38]: a hyperplane
H(u, β) is sought minimizing the largest distance to a set of points A, and constrained
to pass through all points of some A0 ⊂ A. It then follows that such a problem is a
particular instance of (4) for A≥ = A≤ = A0.

To express center hyperplane problems as optimization problems, we make use of
the following closed-form formula for γ -distances derived in [32]:

dγ (a, H(u, β)) = max

{
β − 〈 u ; a 〉

γ ◦(u)
,

〈 u ; a 〉 − β

γ ◦(−u)

}
, (2)

which simplifies to

dγ (a, H(u, β)) = |〈 u ; a 〉 − β|
γ ◦(u)

(3)

when γ (and thus γ ◦) is a norm. Note that, for each point a and gauge γ, the distance
function

Da :
(
R

d\{0}
)

× R → R
+ : (u, β) �→ dγ (a, H(u, β))

is continuous.
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For (u, β) ∈ (
R

d \{0})×R, let �(u, β) denote the highest γa-distance from a ∈ A
to the hyperplane H(u, β),

�(u, β)
def= max

a∈A
dγa (a, H(u, β)),

where the γa distances are given by (2).
Finding a constrained center hyperplane H(u, β) amounts to solving the optimiza-

tion problem

min �(u, β)

s.t. A≥ ⊂ H(u, β)≥, A≤ ⊂ H(u, β)≤
u ∈ (

R
d \{0}) , β ∈ R.

(4)

Note that since the objective and the constraints of this optimization problem are
all invariant for multiplication by a positive constant, the constraint u �= 0 may be
replaced at our convenience by ‖u‖ = 1, where ‖ · ‖ is any norm (or gauge).

Assumption 1 Throughout the paper, we assume that (4) is non-degenerate, in the
sense that it is feasible (i.e. A≥ and A≤ can be separated by a hyperplane), and has
strictly positive optimal value (i.e. A is not contained in a hyperplane separating A≥
and A≤).

This is the case for example in the ‘classical’ situation when no constraints are present
and A has dimension d.

3 Geometrical properties of center hyperplanes

In what follows we first prove existence of optimal solutions to (4), and then derive
several structural and geometrical properties of optimal solutions. These properties
reduce the search for a center hyperplane to the inspection of a finite set of candidates,
polynomial in the number of data points for fixed dimension d, but exponential in d.

Somewhat stronger results are obtained for the case in which every gauge γa is
smooth, and/or when all gauges are weighted versions of a same norm or gauge.

3.1 Existence of center hyperplanes

Let us first consider Problem (4) for u �= 0 fixed. Define

δ≤(u) = max
a∈A≤ 〈 u ; a 〉

δ≥(u) = min
a∈A≥ 〈 u ; a 〉

I (u) = {
β : δ≤(u) ≤ β ≤ δ≥(u)

}
,
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and the problem

min
β∈I (u)

�(u, β) (5)

Note that the feasibility assumption of (5) is equivalent to

δ≤(u) ≤ δ≥(u). (6)

Lemma 1 For fixed u ∈ R
d \{0} satisfying (6), one has

1. there exists a unique β∗(u) optimal solution to (5)
2. − maxa∈A≤∪A ‖a‖‖u‖ ≤ β∗(u) ≤ maxa∈A≥∪A ‖a‖‖u‖
3. there exists at least one active a ∈ A, i.e. such that dγa (a, H(u, β∗(u))) =

�(u, β∗(u)). Moreover, if δ≤(u) < β∗(u) < δ≥(u), then there exist at least
two active points.

In addition, β∗ is a continuous function of u, and the intersection of the unit Euclidean
ball with its graph

{(u, β∗(u)) ‖u‖ = 1, δ≤(u) ≤ δ≥(u)}
is compact.

Proof By the expression (2) for the distance (with respect to a gauge) to a hyperplane,
the objective �(u, β) is seen to be the maximum of a finite number of affine functions
with strictly positive or strictly negative slope, tending to +∞ when β tends to ±∞.

It follows that the problem obtained when the constraints on β are dropped,

min
β∈R

max
a∈A

max

{
β − 〈 u ; a 〉

γ ◦
a (u)

,
〈 u ; a 〉 − β

γ ◦
a (−u)

}
(7)

has just one optimal solution β(u).

By convexity, β(u) must be such that the right derivative (respectively left deriva-
tive) of �(u, β) at β = β(u) is non-negative (respectively non-positive). This happens
iff β(u) satisfies

β(u) − 〈 u ; a 〉
γ ◦

a (u)
= 〈 u ; b 〉 − β(u)

γ ◦
b (−u)

(8)

for some a, b ∈ A. Also, by Assumption 1 we have �(u, β(u)) �= 0, so we must have
a �= b. In other words, β(u) is always of the form βab(u),

βab(u) = γ ◦
a (u)

γ ◦
a (u) + γ ◦

b (−u)
〈 u ; b 〉 + γ ◦

b (−u)

γ ◦
a (u) + γ ◦

b (−u)
〈 u ; a 〉

∈ [〈 u ; b 〉, 〈 u ; a 〉]
⊂

[
− max

a∈A
‖a‖‖u‖, max

a∈A
‖a‖‖u‖

]
(9)

for some a �= b ∈ A.
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Now the constrained problem (5) is a one-dimensional convex problem, whose
unconstrained version (7) has as unique optimal solution β(u). Therefore the con-
strained optimal solution is also unique and obtained by

β∗(u) = max
(
δ≤(u), min

(
β(u), δ≥(u)

))

∈
[
− max

a∈A≤∪A
‖a‖‖u‖, max

a∈A≥∪A
‖a‖‖u‖

]
(10)

Existence of an active a ∈ A is a direct consequence of the definition of the objec-
tive �. When δ≤(u) < β∗(u) < δ≥(u) we have β∗(u) = β(u) = βab(u) for some
a �= b ∈ A, which are then both active points.

When ‖u‖ = 1, it was shown above that β(u) takes values in the compact interval
[− maxa∈A ‖a‖, maxa∈A ‖a‖]. Since β is an argmin-function of the continuous max-
imal distance function to the points of A, this implies its continuity on ‖u‖ = 1.
Equation (10) and the continuity of δ≤ and δ≥, imply that β∗ is continuous in u on
the set {u ∈ R

d ‖u‖ = 1, δ≤(u) ≤ δ≥(u)}. The announced compactness then also
directly follows. ��
Theorem 2 There always exists a constrained center hyperplane.

Proof By the previous lemma, the center hyperplane problem is reduced to the fol-
lowing problem

min �(u, β∗(u))

s.t. δ≤(u) ≤ δ≥(u)

‖u‖ = 1,

(11)

which is the minimization of a continuous function on a compact domain. This proves
existence of an optimal solution to (11), and hence, by equivalence, of an optimal solu-
tion (u∗, β∗) to Problem (4). Hence, H(u∗, β∗) is a constrained center hyperplane.

��

3.2 Structural properties

For any solution (u, β) ∈ (
R

d\{0}) × R, define the following sets of points

Upper active distance points

D≥(u, β)
def= {a ∈ A ∩ H≥(u, β) dγa (a, H(u, β)) = �(u, β)} (12)

Lower active distance points

D≤(u, β)
def= {a ∈ A ∩ H≤(u, β) dγa (a, H(u, β)) = �(u, β)} (13)

Active distance points

D(u, β)
def= D≥(u, β) ∪ D≤(u, β) (14)
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Active constraint points

C(u, β)
def= (A≥ ∪ A≤) ∩ H(u, β)

Active points

Act (u, β)
def= D(u, β) ∪ C(u, β)

Remark 3 By the definition of � the sets D≥(u, β) and D≤(u, β) cannot be both
empty , i.e. D(u, β) �= ∅. By the nondegeneracy assumption 1, for any feasible u
these sets are also disjoint. Additionally, Lemma 1 and its proof show that for any
optimal solution (u∗, β∗) with C(u∗, β∗) = ∅, they are both non-empty.

A point pa ∈ H(u, β) is called a γ − projection of a on the hyperplane H(u, β)

when dγ (a, H(u, β)) = γ (pa − a), which happens (see [32]) if and only if

u

γ ◦(u)
∈ ∂γ (pa − a) when a ∈ H(u, β)≤

−u

γ ◦(−u)
∈ ∂γ (pa − a) when a ∈ H(u, β)≥.

(15)

Equivalently, H(u, β) is a supporting hyperplane at pa of the γ -ball
a + dγ (a, H(u, β))B of center a and radius dγ (a, H(u, β)), where B denotes the
unit ball of γ.

Theorem 4 Let (u∗, β∗) be an optimal solution to (4), whose objective value z∗ is
strictly positive by assumption. For each a ∈ D≥(u∗, β∗) (resp. D≤(u∗, β∗)) let pa

be a γa-projection of a on H(u∗, β∗), and denote the set of these projections pa by
P≥ (resp. P≤). One has

1. The sets P≥ and P≤ cannot be strictly separated by a hyperplane containing
C(u∗, β∗).

2. If each γa is a smooth gauge, then H(u∗, β∗) is the only hyperplane containing
C(u∗, β∗) that separates P≥ and P≤

Proof We prove both properties by contradiction.

1. Suppose some hyperplane H(u, β) containing C(u∗, β∗) strictly separates P≥
and P≤. We can assume without loss of generality that 〈 u ; pa 〉 < β for all
pa ∈ P≥ and 〈 u ; pa 〉 > β for all pa ∈ P≤. Defining uk = u∗ + ku and
βk = β∗ + kβ, consider the hyperplanes H(uk, βk) for small values of k > 0.
One then has:
− For any a ∈ A≥ ⊂ H≥(u∗, β∗), either a ∈ C(u∗, β∗) ⊂ H(uk, βk), or

〈 u∗ ; a 〉−β∗ > 0. Now 〈 uk ; a 〉−βk = 〈 u∗ ; a 〉−β∗ + k(〈 u ; a 〉−β)

and for k > 0 sufficiently small, this quantity is strictly positive, implying
that a ∈ H≥(uk, βk). Hence, for any k > 0 sufficiently small, we have
A≥ ⊂ H≥(uk, βk).

− Similarly for any k > 0 sufficiently small, we have A≤ ⊂ H≤(uk, βk).
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− Also for any a ∈ A\D(u∗, β∗) we have

Da(u∗, β∗) = dγa (a, H(u∗, β∗)) < z∗,

and, by continuity of Da , Da(uk, βk) < z∗ as soon as k > 0 is sufficiently
small.

− Consider now any a ∈ D≥(u∗, β∗) and its projection point pa ∈ P≥. Since
γa(pa − a) = dγa (a, H(u∗, β∗)) = z∗ > 0, a cannot lie on H(u∗, β∗), so
we must have 〈 u∗ ; a 〉 > β∗. It follows then as above that for any k > 0
sufficiently small 〈 uk ; a 〉 > βk .
On the other hand, pa ∈ H(u∗, β∗), so 〈 u∗ ; pa 〉 = β∗, while, by assumption,
〈 u ; pa 〉 < β, and therefore 〈 uk ; pa 〉 < βk as soon as k > 0. Therefore,
for sufficiently small k > 0, there exists a (unique) point ak ∈ ]a, pa[ such
that 〈 uk ; ak 〉 = βk , i.e. ak ∈ H(uk, βk). Hence,

dγa (a, H(uk, βk)) ≤ γa(ak − a) < γa(pa − a) = z∗

− Analogously we obtain that dγa (a, H(uk, βk)) < z∗ for sufficiently small
k > 0 and for all a ∈ D≤(u∗, β∗).

In other words, for sufficiently small k > 0, (uk, βk) would be a feasible solution
to problem (4) with �(uk, βk) < z∗, contradicting the optimality of (u∗, β∗).

2. Assume now that each γa is a smooth gauge, and that some hyperplane H(u, β)

different from H(u∗, β∗) contains C(u∗, β∗) and separates P≥ and P≤. Without
loss of generality we assume further that 〈 u ; pa 〉 ≤ β for all pa ∈ P≥, while
〈 u ; pa 〉 ≥ β for all pa ∈ P≤.
All arguments used above may be used again unchanged, except for those
a ∈ D(u∗, β∗) for which 〈 u ; pa 〉 = β. But for any such a all hyperplanes
H(uk, βk)(k > 0) pass through pa and are different from H(u∗, β∗). And this
latter is a hyperplane of support to the γa-ball a + z∗ Ba at pa , which is unique,
by smoothness of γa . Therefore no H(uk, βk) can be a hyperplane of support at
pa to this γa-ball, and therefore they must all contain some interior points of this
ball. But this means that dγa (a, H(uk, βk)) < z∗ for any k > 0. Therefore we
may conclude again that for sufficiently small k > 0, (uk, βk) would be a feasi-
ble solution to problem (4) with �(uk, βk) < z∗, contradicting the optimality of
(u∗, β∗).

��
Theorem 5 Suppose that each γa is a smooth gauge. Let (u∗, β∗) be an optimal
solution to (4). One has

1. The set Act (u∗, β∗) contains at least d + 1 points.
2. Let ν be a smooth norm. If for all a ∈ A, γa = ωaν for some positive ωa,then

Act (u∗, β∗) cannot be contained in a hyperplane, i.e. contains d + 1 affinely
independent points.

3. When no constraints are present (A≥ = A≤ = ∅) and all γa are equal to a same
smooth gauge γ (i.e. unweighted), then Act (u∗, β∗) cannot be contained in a
hyperplane.
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Proof 1. Consider any feasible solution (u, β) with no more than d active points,
and we will show that (u, β) is not optimal to (4). For each a ∈ D≥(u, β) (resp.
D≤(u, β)) let pa be a γa-projection of a on H(u, β), and denote the set of these
projections by P≥ (resp. P≤).
By Remark 3, D(u, β) �= ∅. Take ā ∈ D(u, β). Then

((
P≥ ∪ P≤) \{pā}) ∪

C(u, β) consists of at most d − 1 points, and hence there exist hyperplanes
H(u′, β ′) different from H(u, β) containing this set. By construction any such
hyperplane contains C(u, β) and separates (non strictly!) P≥ and P≤. The second
part of Theorem 4 implies that (u, β) cannot be an optimal solution.

2. Let now γa = ωaν with ωa > 0 (a ∈ A), and consider any solution (u, β),
for which Act (u, β) is fully contained in some hyperplane H(u′, β ′). Note that,
since D(u, β) �= ∅, there exists an a ∈ D(u, β) ⊂ Act (u, β) ⊂ H(u′, β ′) for
which, by non-degeneracy, dγa (a, H(u, β)) = �(u, β) > 0, so a �∈ H(u, β),
and hence H(u′, β ′) �= H(u, β). We may assume without loss of generality that
ν◦(u) = ν◦(−u) = 1. Let then q ∈ R

d be some vector with ν(q) = 1 and
〈 u ; q 〉 = 1 (this always exists: take any q ∈ ∂ν◦(u)), and let us show that for
every a ∈ D≥(u, β) the point pa = a − �(u,β)

ωa
q is then a γa-projection of a on

H(u, β): First, we have �(u, β) = dγa (a, H(u, β)) = 〈 u ; a 〉−β
γ ◦

a (−u)
= 〈 u ; a 〉−β

ν◦(−u)/ωa
=

ωa(〈 u ; a 〉−β), so 〈 u ; pa 〉 = 〈 u ; a 〉− �(u,β)
ωa

= β, i.e. pa ∈ H(u, β). Sec-
ondly, γa(pa −a) = ωaν(pa −a) = ν(�(u, β)q) = �(u, β) = dγa (a, H(u, β)).

Similarly, for every a ∈ D≤(u, β), the point pa = a + �(u,β)
ωa

q is a γa-projection
of a on H(u, β).
Consider now the sets P≥ and P≤ so defined, and assume 〈 u′ ; q 〉 ≥ 0 (otherwise
change the signs of u′ and β ′). For each pa ∈ P≥ we have 〈 u′ ; pa 〉 = 〈 u′ ; a 〉−
�(u,β)

ωa
〈 u′ ; q 〉 ≤ β ′, while for each pa ∈ P≤ we have 〈 u′ ; pa 〉 = 〈 u′ ; a 〉 +

�(u,β)
ωa

〈 u′ ; q 〉 ≥ β ′, or, in other words, H(u′, β ′) separates P≥ and P≤. Since
also C(u, β) ⊂ Act (u, β) ⊂ H(u′, β ′) �= H(u, β), Theorem 4 shows that (u, β)

cannot be optimal.
3. Finally, let A≥ = A≤ = ∅ and all γa = γ (a ∈ A), and consider any solution

(u, β), for which Act (u, β) is fully contained in some hyperplane H(u′, β ′). Note
that as above H(u′, β ′) �= H(u, β). Moreover, by Remark 3, both D≥(u, β) and
D≤(u, β) are nonvoid, which implies that H(u′, β ′) is not parallel to H(u, β).
Let q≥ ∈ R

d be some vector with γ (q≥) = 1 and 〈 −u ; q≥ 〉 = γ ◦(−u), and
q≤ ∈ R

d be some vector with γ (q≤) = 1 and 〈 u ; q≤ 〉 = γ ◦(u). Similarly to
above, for every a ∈ D≥(u, β) (resp. D≤(u, β)) the point pa = a + �(u, β)q≥
(resp. pa = a + �(u, β)q≤) is then a γ -projection of a on H(u, β).
Note that q≥ �= q≤, since otherwise γ ◦(u) = 〈 u ; q≤ 〉 = −〈 −u ; q≥ 〉 =
−γ ◦(−u) which would imply the ruled out u = 0. Therefore �(u,β)

2 (q≥ −q≤)
def=

q̄ �= 0, and since the hyperplane H = H(u′, β ′) + �(u,β)
2 (q≥ + q≤) satisfies

P≥ ⊂ H + q̄ , while P≤ ⊂ H − q̄ , it strictly separates P≥ and P≤. Theorem 4
then shows that (u, β) cannot be optimal.

��
For the case of possibly nonsmooth gauges γ, the following slightly weaker results

may now be obtained:
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Theorem 6 For arbitrary gauges we have:
1. There always exists some (u∗, β∗), optimal solution to (4), with at least d + 1

active points.
2. Let ν be a norm. If for all a ∈ A, γa = ωaν for some positive ωa, then for this

optimal solution Act (u∗, β∗) cannot be contained in a hyperplane.
3. If the problem is unconstrained and all gauges are equal to a fixed gauge γ , then

for this optimal solution Act (u∗, β∗) cannot be contained in a hyperplane.

Proof 1. Take a sequence (ck)k of strictly positive scalars converging to zero; for
each a ∈ A, define the gauge γa,k whose dual gauge is

γ ◦
a,k(x)

def= γ ◦
a (x) + ck‖x‖,

where ‖ · ‖ stands for the Euclidean norm. The gauges γa,k are smooth, since
their dual gauge is strictly convex. For each k, Theorem 2 implies the existence of
some (u∗

k , β
∗
k ) defining a center hyperplane when the gauges considered are γa,k .

Moreover, Theorem 5 asserts that |Act (u∗
k , β

∗
k )| ≥ d + 1.

By homogeneity, we can assume without loss of generality that each u∗
k is

taken with unit Euclidean norm. By Lemma 1 we also have β∗
k = β∗(u∗

k) and
the sequence {(u∗

k , β
∗
k )}k is contained in a compact set. Thus it contains some

subsequence converging to some (u, β). Out of this subsequence and due to
the finiteness of A, A≥, A≤, we may select a subsequence for which the sets
C(u∗

k , β
∗
k ), D≥(u∗

k , β
∗
k ), D≤(u∗

k , β
∗
k ), are constant. For this subsequence, the union

of these sets Act (u∗
k , β

∗
k ) is therefore also constant and, by convergence, is evi-

dently contained in Act (u, β), which therefore contains at least d + 1 elements.
By construction, (u, β) will be optimal for (4) when the gauges γa are considered.

2. For the second part, when each γa is proportional to the same norm ν, γa = ωaν,
we may define the auxiliary norms γa,k by their dual

γ ◦
a,k(x)

def= γ ◦
a (x) + ck

ωa
‖x‖ = 1

ωa

(
ν◦(x) + ck‖x‖)

for which, for each fixed k, we have γa,k = ωa(ν◦ +ck‖·‖)◦ so, for all a ∈ A, γa,k

is proportional to a same smooth norm. By the second part of Theorem 5, the limit
solution (u, β) constructed as above has an active point set Act (u, β) which cannot
be contained in a hyperplane.

3. Previous reasoning applies also in the unconstrained case with a single gauge γ,

now using for each k the fixed auxiliary gauge γk with dual γ ◦ + ck‖ · ‖, and the
third part of Theorem 5.

��

3.3 Algorithm in special case

Theorem 6 leads to a brute-force finite enumerative procedure to find an unconstrained
center hyperplane provided all distances are measured with one common gauge γ,

123



Minmax-distance approximation and separation 165

and the points in A are in general position, i.e., for any k = 1, . . . , d + 1, any
subset of A with cardinality k has affine dimension k − 1. Indeed, by Theorem 6,
we can restrict the search of an optimal solution to (4) to those (u, β) whose set
D(u, β) = D≤(u, β) ∪ D≥(u, β) of active distance points, as defined in (12)–(14)
has at least d + 1 active points. For any such (u∗, β∗),

dγ (a, H(u, β)) = β − 〈 u ; a 〉
γ ◦(u)

= z ∀a ∈ D≤(u∗, β∗)

dγ (a, H(u, β)) = 〈 u ; a 〉 − β

γ ◦(−u)
= z ∀a ∈ D≥(u∗, β∗)

(16)

where z denotes the optimal value of the center problem.
Choose arbitrary a≤ ∈ D≤(u∗, β∗), a≥ ∈ D≥(u∗, β∗). This is possible, since, by

Remark 3, both are non-empty. Hence (16) can also be written as

β − 〈 u ; a 〉
γ ◦(u)

= β − 〈 u ; a≤ 〉
γ ◦(u)

∀a ∈ D≤(u∗, β∗)

〈 u ; a 〉 − β

γ ◦(−u)
= 〈 u ; a≥ 〉 − β

γ ◦(−u)
∀a ∈ D≥(u∗, β∗) (17)

β − 〈 u ; a≤ 〉
γ ◦(u)

= 〈 u ; a≥ 〉 − β

γ ◦(−u)
,

or equivalently as

〈 u ; a 〉 = 〈 u ; a≤ 〉 ∀a ∈ D≤(u∗, β∗)
〈 u ; a 〉 = 〈 u ; a≥ 〉 ∀a ∈ D≥(u∗, β∗)

β − 〈 u ; a≤ 〉
γ ◦(u)

= 〈 u ; a≥ 〉 − β

γ ◦(−u)
. (18)

Since we are assuming that the points in A are in general position, the homogeneous
system of linear equations

〈 u ; a − a≤ 〉 = 0 ∀a ∈ D≤(u∗, β∗)
〈 u ; a − a≥ 〉 = 0 ∀a ∈ D≥(u∗, β∗)

(19)

has as solution a line, which must thus be of the form {ϑu∗ : ϑ ∈ R}. Hence, defining
β(·) as

β(ω) = γ ◦(ω)

γ ◦(ω) + γ ◦(−ω)
〈 ω ; a≥ 〉 + γ ◦(−ω)

γ ◦(ω) + γ ◦(−ω)
〈 ω ; a≤ 〉, (20)

taking an arbitrary solution u �= 0 of (19), one has that either (u, β(u)) or (−u, β(−u))

is a positive multiple of (u∗, β∗), and thus it defines the same hyperplane and half-
spaces than (u∗, β∗).
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In other words, in order to find an optimal unconstrained center hyperplane it suf-
fices to

1. construct all possible non-empty D≤, D≥ ⊂ A, with D≤ ∪ D≥ of cardinality
d + 1,

2. for any such D≤, D≥ ⊂ A, choose an arbitrary a≤ ∈ D≤, a≥ ∈ D≥ and construct
a solution u of the homogeneous system of linear equations

〈 u ; a − a≤ 〉 = 0 ∀a ∈ D≤

〈 u ; a − a≥ 〉 = 0 ∀a ∈ D≥ (21)

3. using (20) evaluate the objective function at candidates (u, β(u)), (−u, β(−u)).

This strategy was used to solve the instances given in Figs. 2–3.

3.4 Necessity of the assumptions

The following lemma allows to easily show non-optimality of certain configurations.

Lemma 7 Let z be a known feasible objective value, i.e. z = �(u, β) for some fea-
sible (u, β). Consider two disjoint subsets D≥ and D≤ of A, not both empty, and a
subset C of A≥ ∪ A≤.

1. If the two unions of γa-balls of radius z,

⋃
a∈D≥

(a + zBγa ) and
⋃

a∈D≤
(a + zBγa ),

can be strictly separated by some hyperplane containing C, then no optimal solu-
tion (u∗, β∗) can have D≥(u∗, β∗) ⊂ D≥, D≤(u∗, β∗) ⊂ D≤ and C(u∗, β∗) ⊂
C.

2. Let γa be smooth for each a ∈ A. If the two unions of γa-balls of radius z
can be separated by at least two different hyperplanes containing C, then no
optimal solution (u∗, β∗) can have D≥(u∗, β∗) ⊂ D≥, D≤(u∗, β∗) ⊂ D≤ and
C(u∗, β∗) ⊂ C.

Proof Consider any feasible solution (u, β) with D≥(u, β) ⊂ D≥, D≤(u, β) ⊂
D≤, C(u, β) ⊂ C, and �(u, β) ≤ z (if no such exists, the result is true), and we
will show that (u, β) is not optimal. By assumption, for any a ∈ D(u, β) and any
γa-projection pa of a on H(u, β), we have γa(pa − a) = dγa (a, H(u, β)) ≤ z, so
pa ∈ a + zBγa . Hence, for any choice of P≥ and P≤ we have

P≥ ⊂
⋃

a∈D≥
(a + zBγa )

P≤ ⊂
⋃

a∈D≤
(a + zBγa ).

Moreover, under the assumption of part 1, these sets can be strictly separated by a
hyperplane containing C , which, by Theorem 4, proves that (u, β) is not optimal.
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a

b

c

d

Fig. 4 A counterexample in R
2 with a single weighted gauge

On the other hand, under the assumptions of part 2, P≥ and P≤ can be separated
by two different hyperplanes containing C , which, again by Theorem 4, proves that
(u, β) is not optimal. ��

This lemma allows us to build examples showing that the assumptions yielding the
full dimensionality of the set of active points in Theorem 6 cannot be relaxed to either
a single, but unequally weighted, gauge, nor to mixed norms, even in R

2.

Example 8 Take as γ the triangular gauge in R
2 with extreme points of its unit ball

(-1.5,2), (-1,-2) and (1,0). Consider the set A = {a, b, c, d} where a=(0,4), b=(0,2),
c=(0,-2) and d = (10, 0), and respective weights ωa = ωd = 1 and ωb = ωc = 2.

We want to solve the unconstrained minmax hyperplane problem with these data.
Figure 4 shows the balls of weighted distance 2 around each point of A. It is evident
that the line x2 = 0 satisfies the necessary conditions for optimality, with value z = 2.
Here D≥(u, β) = {a, b} and D≤(u, β) = {c}, and they are all on a same line.

Let us show that no better solution can be found. Note that any better solution would
have to be a line cutting all interiors of these balls.

We consider all possible choices for D≥(u, β) and D≤(u, β) in turn and rule each
one out.

− {a}, {b, c} :Impossible : to be at the same side and at equal distance to b and c the
line should be vertical,so would not cut Bd .

− {b}, {a, c} : Impossible : any line with a and c at the same side, has b also on this
same side.

− {d}, {a, b} : Impossible by Lemma 7: the vertical line x1 = 5 separates the balls
strictly.

− {d}, {a, c} idem.
− {d}, {b, c} idem.
− {a}, {d, c} : Impossible by Lemma 7: the line through (−1.75, 0) and (0, 1.75)

separates the balls strictly.
− {c}, {d, b} : Impossible by Lemma 7: the line through (−1.25, 0) and (0,−1.25)

separates the balls strictly.
− {b}, {a, d} : Impossible : the line should be parallel to ad, and intersect [a, b], so

cannot intersect Bc.
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a

b

c

d

Fig. 5 A counterexample in R
2 with mixed norms

− {c}, {a, d} : Impossible : the line should be parallel to ad and intersect Bc, but
then it cannot intersect Bb.

− {a}, {b, d} : Impossible : the line should intersect Bd and [a, b], so cannot intersect
Bc.

− {b}, {c, d} : Impossible : any line at equal γ -distance smaller than 2, separating b
and c, and intersecting Bd , cannot intersect Ba ; indeed, any such line would be
increasing with slope less than 1, intersecting the first axis between point (−1.5,0)
and the origin.

Hence, part 2 of Theorem 6 does not hold if ν is an arbitrary (non-symmetric) gauge
��

Example 9 Consider the set A = {a, b, c, d} where a = (0, 4), b = (0, 2), c =
(0,−3) and d = (10, 0). Each norm νa, νb and νc has quadrangular unit ball with
extreme points ±α(1, 1) and ±β(1,−1), with (α, β) = (4, 0.1), (2, 0.1), (0.1, 3)

respectively, whereas νd = �1.
We want to solve the unconstrained minmax hyperplane problem with these data.

Figure 5 shows the balls Bs of νs-distance 1 around each point s ∈ A. It is evident
that the line x2 = 0 satisfies the necessary conditions for optimality, with value z = 1.
Here D≥(u, β) = {a, b} and D≤(u, β) = {c}, and they are all on a same line.

Any better solution would have to be a line cutting all interiors of these balls. Let
us show again that no better solution can be found, by considering all possible choices
for D≥(u, β) and D≤(u, β) in turn and ruling each one out.

− {b}, {a, c} : Impossible : any line with a and c at the same side, has b ∈ ]a, c[ also
on this same side.

− {d}, {a, b} : Impossible by Lemma 7: the vertical line x1 = 8 separates the balls
strictly.

− {d}, {a, c} idem.
− {d}, {b, c} idem.
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− {a}, {b, c} : Impossible by Lemma 7: the line through (−3.5, 0) and (0,3.5) sepa-
rates the balls strictly.

− {a}, {d, c} : idem
− {a}, {b, d} : idem
− {c}, {d, b} : Impossible by Lemma 7: the line through (−2.5, 0) and (0,2.5) sepa-

rates the balls strictly.
− {b}, {a, d} : Impossible : no line intersecting Bd and [a, b] can also intersect Bc.
− {c}, {a, d} : Impossible : any line at equal γa and γc-distance smaller than 1,

separating a and c, and intersecting Bd , cannot intersect Bb.
− {b}, {c, d} : Impossible : no line intersecting Bb, Bc and Bd can also intersect Ba .

Hence, part 2 of Theorem 6 does not hold if ν is an arbitrary (non-symmetric) gauge

��
Remark 10 In both previous examples the center hyperplane is unique. In other words,
any other hyperplane with at least d + 1 active points yields a strictly larger objective
value. Therefore, similarly to the approximation arguments used in the proof of The-
orem 5 one may adapt these examples to involve a single weighted smooth gauge or
mixed smooth norms sufficiently close to the polyhedral ones used above, so that the
same choice of D≥ and D≤ yields the unique central hyperplane, thereby showing
that the assumptions of Theorem 5 also cannot be relaxed to either a single weighted
smooth gauge, or to mixed smooth norms, even in R

2.

3.5 Connection with known results

When A≥ = A≤, the constrained center hyperplane problem becomes an anchored
hyperplane problem, as defined in [38], in which the sought hyperplane must pass
through all points of P = A≥ = A≤. Setting k the affine dimension of P , we may
equivalently reduce P to k affinely independent points. Since the hyperplane must
contain these k points of P , Theorem 6 states the existence of an anchored center
hyperplane with at least d +1− k distance active points. When all gauges are smooth,
by Theorem 5, this property holds for all anchored center hyperplanes. In the case of a
single weighted norm, the second part of Theorem 6 shows that all d + 1 active points
may be affinely independent, generalising Theorems 2 and 3 of [38] which state affine
independence of the distance active points for at least one, respectively all, anchored
center hyperplanes. Note that the non-separability result of Theorem 4 states the even
stronger property that the upper distance active points cannot be strictly separated
(simply separated in the smooth case) from the lower active distance points by another
anchored hyperplane containing P .

The table on p182 of [36] states a number of conjectures concerning unconstrained
center hyperplane problems to which our previous results provide answers.

− For (possibly mixed) gauges the first part of Theorem 6 confirms the conjectured
property Cen1, i.e. existence of d + 1 distance active points.

− For a single (weighted) gauge the same table conjectures a property called Cen1’,
asserting existence of d + 1 affinely independent distance active points. For an
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unweighted gauge the third part of Theorem 6 shows this is correct, and when
this gauge is smooth Theorem 5 confirms the property for all (unweighted) cen-
ter hyperplanes. However, for a weighted gauge affine independence cannot be
guaranteed, even in the plane, as shown in Example 8.

− The corresponding negative conjecture about property Cen1’ in case of mixed
gauges turns out to be correct, and may even be strengthened to mixed norms,
already in the plane, as shown in Example 9.

4 Distance to linear separation

In Sect. 3 geometrical properties of center hyperplane problems have been derived.
These geometrical properties have enabled us to give an answer to a number of con-
jectures posed in [36], as detailed in Sect. 3.5. Moreover, as stated in Sect. 3.3, the
existence of finite dominating sets for the single-gauge case reduces the search of an
unconstrained center hyperplane to inspecting a finite candidate list. Now we go one
step further by showing how these results are also of direct use in a quite different
problem of linear separation, as posed in what follows.

Consider two non-empty finite sets S≥,S≤ ⊂ R
d . Such sets are said to be linearly

separable if (u, β) ∈ (Rd \{0}) × R exists such that

S≥ ⊂ H(u, β)≥

S≤ ⊂ H(u, β)≤
(22)

Procedures to check the feasibility of (22) and to construct particular feasible solu-
tions have a very long tradition in the literature, e.g. [9,21,28,35], and applications,
among other fields, in Machine Learning.

When linear separation is not possible, i.e., when (22) is unfeasible, we may try
to perturb the points in S≥ and S≤ so that the perturbed sets are linearly separable.
The smallest perturbation needed to make the sets separable will be referred to as the
distance to linear separability τ(S≥,S≤) of the sets S≥,S≤.

Let us formally introduce the concept of distance to linear separability. For each
point a ∈ S≥ ∪ S≤, let Ba be a compact convex set in R

d containing the origin in
its interior, which will represent the perturbations (translations) of unit strength on
point a. Define the gauge γa following (1), thus if point a is perturbed to a + za, we
will say that the strength of the perturbation at a is γa(za). For instance in Fig. 6 the
points in S≥,S≤, represented respectively by crosses and stars, are the extreme points
of two non-disjoint (thus not linearly separable) polytopes. The balls Ba around each
point are derived from the Euclidean distances. It should be stressed that, although
the very same gauge γ may be used for all data points, we also allow different points
to have different associated gauges, reflecting possibly different types of sources of
perturbations for each datapoint.

The distance to linear separability τ(S≥,S≤) of the nonseparable sets S≥,S≤ is
defined as the smallest perturbation strength required to make the sets separable. In
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Fig. 6 Perturbations with a
common gauge (Euclidean)

other words, τ(S≥,S≤) is the optimal value of the optimization problem

min λ

s.t. 〈 u ; a + za 〉 − β ≥ 0 ∀a ∈ S≥
〈 u ; a + za 〉 − β ≤ 0 ∀a ∈ S≤
γa(za) ≤ λ ∀a ∈ S≥ ∪ S≤
u �= 0
β, λ ∈ R.

(23)

Since, by assumption, the sets S≥,S≤ are not linearly separable, the optimal value
of (23) is strictly positive. By definition of dual gauge, we have for u, λ fixed, that

max {〈 u ; za 〉 : γa(za) ≤ λ} = λγ ◦
a (u)

min {〈 u ; za 〉 : γa(za) ≤ λ} = −λγ ◦
a (−u),

(24)

and the maximum (respectively the minimum) is attained at any za ∈ λ∂γ ◦
a (u) (res-

pectively at any za ∈ λ∂γ ◦
a (−u)). Hence, Problem (23) can be rephrased as

min λ

s.t. 〈 u ; a 〉 + λγ ◦
a (u) − β ≥ 0 ∀a ∈ S≥

〈 u ; a 〉 − λγ ◦
a (−u) − β ≤ 0 ∀a ∈ S≤

u �= 0
β, λ ∈ R,

(25)

and, due to the positive homogeneity of the gauges, also as

min max
{

maxa∈S≥ β−〈 u ; a 〉
γ ◦

a (u)
, maxa∈S≤ 〈 u ; a 〉−β

γ ◦
a (−u)

}

s.t u �= 0
β ∈ R.

(26)
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Fig. 7 Separable sets after
minimal perturbation

Remark 11 If all datapoints in S≥ measure all distances with the same common gauge
γS≥ , then all problems in the first line of (24) attain their maxima at a common vec-
tor pS≥ . In other words, all points in S≥ need a common perturbation vector pS≥ .

Similarly, if all datapoints in S≤ measure all distances with the same common gauge
γS≤ , a common perturbation pS≤ is obtained for all points in S≤, yielding the sets
S≥ + pS≥ and S≤ + pS≤ linearly separable. If γS≥ = γS≤ and the common gauge is
a norm, then pS≤ = −pS≥ , and thus we are moving S≥ and S≤ the same length in
opposite directions. This is shown in Fig. 7, which represents the optimal perturbation
for the sets in Fig. 6.

Remark 12 We have from (26) that, for a given nonempty finite set S, the distance
τ(S,S) to linear separability of S with itself is given by the optimal value of

min max
{

maxa∈S β−〈 u ; a 〉
γ ◦

a (u)
, maxa∈S 〈 u ; a 〉−β

γ ◦
a (−u)

}

s.t u �= 0
β ∈ R,

(27)

which coincides with (4). In other words, τ(S,S) is the optimal value of the center
problem, and the (u, β) yielding τ(S,S), a center hyperplane.

Hence, the center problem can be seen as a particular case of the problem of finding
the distance to linear separability.

This remark shows that distance to linear separability of two sets is an extension of
the (unconstrained) center problem, this latter boils down to calculating the distance
to linear separability of two copies of the given set. In fact, as shown below, the two
problems are actually equivalent: distance to linear separability of two sets can be
seen as a constrained center hyperplane problem. Hence, the geometrical properties
of the approximation problem studied in previous sections are directly applicable to
the separation problem in this section.

Theorem 13 Let S≥ and S≤ be two finite subsets of R
d which are nonseparable,

then
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1. There exists an optimal solution (u∗, β∗, λ∗) to Problem (25). Moreover, any such
(u∗, β∗, λ∗) satisfies the following:
(a) The hyperplane H(u∗, β∗) is a constrained center hyperplane for the sets

A≥(u∗, β∗), A≤(u∗, β∗), A(u∗, β∗) defined as

A≥(u∗, β∗) def= {a ∈ S≥ 〈 u∗ ; a 〉 > β∗}
A≤(u∗, β∗) def= {a ∈ S≤ 〈 u∗ ; a 〉 < β∗}

A(u∗, β∗) def= (S≥\A≥(u∗, β∗)) ∪ (S≤\A≤(u∗, β∗)) (28)

(b) Define the sets

I ≥(u∗, β∗, λ∗) def= {a ∈ S≥ : β∗ − 〈 u∗ ; a 〉
γ ◦

a (u∗)
= λ∗}

(29)

I ≤(u∗, β∗, λ∗) def= {a ∈ S≤ : 〈 u∗ ; a 〉 − β∗

γ ◦
a (−u∗)

= λ∗}.

Then, I ≥(u∗, β∗, λ∗) and I ≤(u∗, β∗, λ∗) are both nonempty, disjoint,
and cannot be strictly separated by a hyperplane parallel to some
p ∈ ⋂

a∈I ≥(u∗,β∗,λ∗)∪I ≤(u∗,β∗,λ∗) ∂γ ◦
a (u∗). Moreover, if all gauges γa are

smooth, then separation by such a hyperplane is not possible.
2. There exists some (u∗, β∗, λ∗), optimal for (25), such that I ≥(u∗, β∗, λ∗)

∪ I ≤(u∗, β∗, λ∗) has cardinality at least d + 1. When all gauges γa are smooth,
this property holds for any optimal solution.

Proof Existence of optimal solutions for Problem (26), and thus also to Problem (25),
is easily shown along the same lines as in Theorem 2 for center hyperplanes. Let
(u∗, β∗, λ∗) be any such optimum. Let us first show Part 1a. Given any (u, β) with
u �= 0, A≥(u∗, β∗) ⊂ H(u, β)≥ and A≤(u∗, β∗) ⊂ H(u, β)≤, define the objective
function of the corresponding center hyperplane problem (4) as

�(u, β) = max
a∈A(u∗,β∗)

max

{
β − 〈 u ; a 〉

γ ◦
a (u)

,
〈 u ; a 〉 − β

γ ◦
a (−u)

}
. (30)

First observe that �(u, β) > 0, since otherwise H(u, β) would separate S≥ and S≤,
which was assumed not to be possible. One has

�(u, β) = max

{
max

a∈A(u∗,β∗)

β − 〈 u ; a 〉
γ ◦

a (u)
, max

a∈A(u∗,β∗)

〈 u ; a 〉 − β

γ ◦
a (−u)

}

= max

{
max

a∈S≥\A≥(u∗,β∗)

β − 〈 u ; a 〉
γ ◦

a (u)
, max

a∈S≤\A≤(u∗,β∗)

β − 〈 u ; a 〉
γ ◦

a (u)
,

max
a∈S≥\A≥(u∗,β∗)

〈 u ; a 〉 − β

γ ◦
a (−u)

, max
a∈S≤\A≤(u∗,β∗)

〈 u ; a 〉 − β

γ ◦
a (−u)

}
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≥ max

{
max

a∈S≥\A≥(u∗,β∗)

β − 〈 u ; a 〉
γ ◦

a (u)
, max

a∈S≤\A≤(u∗,β∗)

〈 u ; a 〉 − β

γ ◦
a (−u)

}

= max

{
max
a∈S≥

β − 〈 u ; a 〉
γ ◦

a (u)
, max

a∈S≤
〈 u ; a 〉 − β

γ ◦
a (−u)

}
,

where the last equality follows from the fact that, by assumption, A≥(u∗, β∗) ⊂
H(u, β)≥ and A≤(u∗, β∗) ⊂ H(u, β)≤. By definition of the sets A≥(u∗, β∗) and
A≤(u∗, β∗), one has that

λ∗ = �(u∗, β∗) = max

{
max
a∈S≥

β∗ − 〈 u∗ ; a 〉
γ ◦

a (u∗)
, max

a∈S≤
〈 u∗ ; a 〉 − β∗

γ ◦
a (−u∗)

}
. (31)

Moreover, by assumption, (u∗, β∗, λ∗) is optimal for Problem (26). This implies for
an arbitrary feasible (u, β) that

�(u, β) ≥ max

{
max
a∈S≥

β − 〈 u ; a 〉
γ ◦

a (u)
, max

a∈S≤
〈 u ; a 〉 − β

γ ◦
a (−u)

}

≥ max

{
max
a∈S≥

β∗ − 〈 u∗ ; a 〉
γ ◦

a (u∗)
, max

a∈S≤
〈 u∗ ; a 〉 − β∗

γ ◦
a (−u∗)

}
= �(u∗, β∗),

showing that H(u∗, β∗) is a constrained center hyperplane, as asserted.
To show Part 1b, observe that since, by assumption, S≥ and S≤ cannot be separated,

we have that �(u∗, β∗) > 0. Moreover, the set of active constraint points C(u∗, β∗),
defined as

(
A≥(u∗, β∗) ∪ A≤(u∗, β∗)

)∩H(u∗, β∗), is, by construction, empty. Hence,
by Remark 3, the sets of active distance points D≥(u∗, β∗) and D≤(u∗, β∗) of the
center hyperplane H(u∗, β∗) are nonempty and disjoint. But

D≥(u∗, β∗) = {a ∈ A(u∗, β∗) ∩ H(u∗, β∗)≥ : dγa (a, H(u∗, β∗)) = �(u∗, β∗)}
= {a ∈ ((S≥\A≥(u∗, β∗)

) ∪ (S≤\A≤(u∗, β∗)
)) ∩ H(u∗, β∗)≥ :

dγa (a, H(u∗, β∗)) = �(u∗, β∗)}
= {a ∈ (S≤ ∩ H(u∗, β∗)≥

) : dγa (a, H(u∗, β∗)) = �(u∗, β∗)}
= {a ∈ S≤ : 〈 u∗ ; a 〉 − β∗

γ ◦
a (−u∗)

= �(u∗, β∗) = λ∗}
= I ≤(u∗, β∗, λ∗), (32)

and similarly

D≤(u∗, β∗) = I ≥(u∗, β∗, λ∗). (33)

Hence, I ≥(u∗, β∗, λ∗) and I ≤(u∗, β∗, λ∗) are both nonempty and disjoint.
Assume p ∈ ⋂

a∈I ≥(u∗,β∗,λ∗)∪I ≤(u∗,β∗,λ∗) ∂γ ◦
a (u∗) exists. We will show that no hyp-

erplane parallel to p can strictly separate the sets I ≥(u∗, β∗, λ∗) and I ≤(u∗, β∗, λ∗).
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Define the sets

P≥ def= I ≥(u∗, β∗, λ∗) + �(u∗, β∗)p

P≤ def= I ≤(u∗, β∗, λ∗) − �(u∗, β∗)p.

It follows that P≥ and P≤ are projections on H(u∗, β∗) of the sets I ≥(u∗, β∗, λ∗)
and I ≤(u∗, β∗, λ∗) respectively. Indeed, for any a ∈ I ≥(u∗, β∗, λ∗), one has that
p ∈ ∂γ ◦

a (u∗), i.e. 〈 p ; u∗ 〉 = γ ◦
a (u∗) and (γ ◦

a )◦(p) = γa(p) = 1, so first

〈 u∗ ; a + �(u∗, β∗)p 〉 = 〈 u∗ ; a + β∗ − 〈 u∗ ; a 〉
γ ◦

a (u∗)
p 〉 = β∗,

thus a + �(u∗, β∗)p ∈ H(u∗, β∗), and secondly γa(a + �(u∗, β∗)p − a) =
�(u∗, β∗)γa(p) = �(u∗, β∗) = dγa (a, H(u∗, β∗)) so a + �(u∗, β∗)p is a γa-
projection of a on H(u∗, β∗). Hence, P≥ is a projection of I ≥(u∗, β∗, λ∗), and, by a
similar argument, P≤ is a projection of I ≥(u∗, β∗, λ∗) on H(u∗, β∗).

Assuming then that I ≥(u∗, β∗, λ∗) and I ≤(u∗, β∗, λ∗) can be strictly separated
by some H parallel to p would mean that H strictly separates the sets P≥ and P≤,
contradicting Theorem 4.

Assume now that each γa is smooth, and we will show that separation is not pos-
sible. H parallel to p �= 0, would mean y = x + p ∈ H for any x ∈ H ∩ H(u∗, β∗).
But, since p ∈ ∂γ ◦

a (u∗) for all a, we have that

dγa (y, H(u∗, β∗)) = max

{ 〈 x + p ; u∗ 〉 − β∗

γ ◦
a (u∗)

,
β∗ − 〈 x + p ; u∗ 〉

γ ◦
a (−u∗)

}

= max

{ 〈 u∗ ; p 〉
γ ◦

a (u∗)
,
〈 −u∗ ; p 〉
γ ◦

a (−u∗)

}
> 0.

Hence y �∈ H(u∗, β∗), and so H �= H(u∗, β∗).
If H separates I ≥(u∗, β∗, λ∗) and I ≤(u∗, β∗, λ∗), it also separates I ≥(u∗, β∗, λ∗)+

�(u∗, β∗)p and I ≤(u∗, β∗, λ∗) + �(u∗, β∗)p. Hence H is a hyperplane different
from H(u∗, β∗) which separates P≥ and P≤, which contradicts Theorem 4 when the
gauges are smooth.

Now let us show Part 2, first assuming that all gauges γa are smooth. Let (u∗, β∗, λ∗)
be an optimal solution to (25). Then, (u∗, β∗) is also an optimal solution to

min maxa∈A max
{ 〈 u ; a 〉−β

γ ◦
a (u)

,
β−〈 u ; a 〉

γ ◦
a (−u)

}

s.t. 〈 u ; a 〉 − β ≥ 0 ∀a ∈ A≥(u∗, β∗)
〈 u ; a 〉 − β ≤ 0 ∀a ∈ A≤(u∗, β∗).

(34)

By Theorem 5, Act (u∗, β∗) contains at least d +1 points. Since, by construction, none
of the constraints is active at (u∗, β∗), we have that I ≥(u∗, β∗, λ∗) ∪ I ≤(u∗, β∗, λ∗)
contains at least d + 1 points. This shows the result for smooth gauges.

For the general case, take, as in the proof of Theorem 6, a sequence of positive sca-
lars ck converging to zero, and the sequence of smooth gauges γa,k = (

γ ◦
a + ck‖ · ‖)◦

.

123



176 F. Plastria, E. Carrizosa

Applying the result for the optimal solutions (uk, βk, λk) of the problems with smooth
gauges, it follows that the sets I ≥(uk, βk, λk)∪ I ≤(uk, βk, λk) have cardinality at least
d + 1.

Since such sets can take only a finite set of values, a subsequence, converging to
some (u∗, β∗, λ∗) can be extracted with constant I ≥(uk, βk, λk)∪ I ≤(uk, βk, λk). For
such (u∗, β∗, λ∗), the result follows. ��
Remark 14 Using the same arguments as in Sect. 3.3 for center hyperplanes, one can
derive from Theorem 13 a procedure to calculate the distance to linear separation by
complete enumeration of a finite candidate set when a common gauge γ is used to
measure distances, since the list of candidate hyperplanes can be obtained by solving
linear systems of equations.

Applying this strategy to the problem in Fig. 6 one obtains the optimal solution
represented in Fig. 7.

5 Concluding remarks

In this paper we have obtained geometrical properties of the center hyperplanes when
distances are measured by arbitrary norms, or, more generally, gauges. We have
extended known results, and have given proofs or counterexamples to several open
problems, stated as conjectures in [36].

In Sect. 4 the results have been extended to a separation problem. The results
obtained for center hyperplanes immediately lead to similar results for separation.

For both types of problems these results lead to a brute force solution method by
solving a finite set of candidate subproblems. How these properties may lead to effi-
cient algorithms and quick heuristics in large-dimensional problems, as suggested in
[34] for a related problem, deserves further attention.
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