
Proof techniques in Membrane Computing

David Orellana-Martín ∗, Luis Valencia-Cabrera, Mario J. Pérez-Jiménez

Research Group on Natural Computing, Dept. of Computer Science and Artificial Intelligence, Universidad de Sevilla, E.T.S.I. Informática, Avda. Reina Mercedes s/
n, 41012, Sevilla, Spain

a b s t r a c t

Keywords:
Membrane Computing
Computability theory
Computational complexity theory

From the creation of the field of Membrane Computing in 1998, several research lines have
been opened. On the one hand, theoretical questions like the computational power and the
computational efficiency of P systems have been studied. In this sense, several techniques
to demonstrate the ability of these systems to provide solutions to computational problems
have been explored. The study of efficient (polynomial-time) solutions to presumably hard
problems for finding thin frontiers of efficiency is a very active area. On the other hand,
several applications in biology, ecology, economy, robotics and fault diagnosis, among
others, have been investigated. Real systems with some characteristics seem to be easy
to model with membrane systems due to their behaviour. In this work, a survey of the
theoretical part will be given, explaining techniques both in the field of computability
theory and in the field of computational complexity theory.

1. Introduction

Membrane Computing was created by Gh. Păun [17] inspired from the fact that processes which take place in the
complex structure of a living cell can be considered, in some sense, as singular computing procedures. At the beginning
[19], the founder asks about the roots of the Membrane Computing discipline: formal multiset theory, formal language
theory? He is convinced that the whole program of formal language theory can be repeated here, irrespective of the fact whether or
not we deal with languages or with multisets [19]. Nevertheless, it seems that within Membrane Computing there is a lot of
world beyond formal multisets and formal languages.

In this paper, different proof techniques that have been and continue to be used in Membrane Computing, in order to
obtain interesting results, will be described and illustrated. The work is focuses on aspects concerning to the computabil-
ity theory (computational completeness) and to the computational complexity theory (computational efficiency) of membrane
systems. With respect to the computational completeness, the equivalence in power to deterministic Turing machines of
membrane systems, is studied. With respect to the computational efficiency, the capability of membranes systems to pro-
vide efficient (polynomial-time) solutions of computationally hard problems, is analized. For an introduction to membrane
systems and notation used through this paper we refer the reader to [16]. Apart from the techniques appearing in this
paper, we refer the reader to [12].

The paper is organized as follows. In Section 2 some techniques used to demonstrate the computational completeness
of different variants of membrane systems are introduced. Section 3 is devoted to introducing some basic definitions of

* Corresponding author.
E-mail addresses: dorellana@us.es (D. Orellana-Martín), lvalencia@us.es (L. Valencia-Cabrera), marper@us.es (M.J. Pérez-Jiménez).

https://doi.org/10.1016/j.tcs.2020.09.041
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:dorellana@us.es
mailto:lvalencia@us.es
mailto:marper@us.es
https://doi.org/10.1016/j.tcs.2020.09.041

computational complexity terms, as well as some techniques used for this topic among others. The paper concludes with
some comments and suggestions for future research.

2. Computational completeness

The computational completeness of computing models of membrane systems was initially showed by making use of
techniques of formal languages and multisets [4] (i.e. grammars, matrix grammars) as well as simulating the behaviour
of well known universal models, as register machines [8,27]. The universality of basic transition P systems with external
output, as devices able to compute functions, was obtained by showing that these systems have the capability of comput-
ing any partial recursive function on natural numbers [24]. For that, operations of composition, iteration and unbounded
minimization (μ-recursion), among such kinds of P systems were introduced and their closure was established.

The universality of computing models of membrane systems, also can be reached by simulating universal devices as
deterministic Turing machines or by generating diophantine sets. Specifically, given a deterministic Turing machine, a P system
with external output associated with it was constructed, in such manner that it generates the same language as the one
recognized by the Turing machine [22]. In this context, it is worth noting that there is an important difference between
Turing machines and P systems of the type considered above: the Turing machines work with strings (instantaneous de-
scriptions of the tape), while P systems work with symbol/objects and multisets of symbols. Hence, in principle, P systems
can compute nothing else than numbers (of objects). On the other hand, by using only operations of composition and iter-
ation with computing P systems, every diophantine set can be partially generated by such kind of computing models [23].
Thus, by using the MRDP (Matijasevich, Robinson, Davis, Putnam) theorem, the universality of such computing P systems is
followed.

3. Computational efficiency

The computational efficiency of a computing model in a computing paradigm, refers to its ability to provide polynomial
time solutions for computationally hard problems by making use of an exponential workspace constructed in a “natural
way”. Following [11], a computing model is said to be efficient (respectively, presumably efficient) if it has the ability to
provide polynomial-time solutions for intractable problems (resp., NP-complete problems). The term presumably efficient
refers to the fact that in the case, generally believed, that P �= NP, each NP-complete problem is an intractable one;
consequently, under this hypothesis, any presumably efficient computing model would be efficient.

Aspects related to the computational efficiency were first analyzed in 1999 with the introduction of a new computing
model, called P system with active membranes [18]. These systems are non-cooperative (the left hand side of any rule consists
of only one object) and their membranes play a relevant role in computations to the extent that new membranes can
be created by division rules. The membranes of these systems are supposed to have one of the three possible electrical
polarizations: positive, negative or neutral. In this context, an ad-hoc solution to the Boolean satisfiability problem (SAT)
by means of such kind of P systems, was given, understanding that it is an ad-hoc solution since for every instance of the
SAT problem, a specific P system is required. Specifically, a P system with active membranes which makes use of simple
object evolution rules (only one object is produced for this kind of rules), dissolution rules and division rules for elementary
and non-elementary membranes, is associated with every instance ϕ of SAT. Thus, the syntactic structure of the formula
is “captured” by the description of the system and, furthermore, in this context a P system can only process one instance
of the problem. The provided solution runs in linear time with respect to the input length of ϕ , that is, the maximum of
number of variables and number of clauses of the formula ϕ .

The concept of solvability of decision problems in polynomial time and uniform way by means of a family of basic
recognizer transition P systems (initially called decision P systems) were defined in [21].

Definition 1. Let X = (I X , θX) be a decision problem and let R be a class of recognizer membrane systems with input
membrane. Let � + w be a P system � with the multiset w located in the input membrane in the initial configuration.
We say that X is solvable in polynomial time and uniform way by a family {�(n) | n ∈ N} of systems from R, denoted by
X ∈ PMCR , if the following holds:

• The family is polynomially uniform by Turing machines, that is, there exists a deterministic Turing machine working in
polynomial time which constructs the system �(n) from the number n ∈N , expressed in unary.

• There exists a pair (cod, s) of polynomial-time computable functions over I X such that for each n ∈N , the set s−1(n) is
finite, and for each u ∈ I X , s(u) ∈N and cod(u) is an input multiset of the system �(s(u)).

• The family is polynomially bounded with respect to (X, cod, s); that is, there exists k ∈N such that for each u ∈ I X , every
computation of the system �(s(u)) + cod(u) performs at most |u|k steps.

• The family is sound with respect to (X, cod, s), that is, for each u ∈ I X , if there exists an accepting computation of �(s(u)) +
cod(u) then θX (u) = 1.

• The family is complete with respect to (X, cod, s), that is, for each u ∈ I X such that θX (u) = 1 then every computation of
�(s(u)) + cod(u) is an accepting one.
2

According to the previous definition:

– We say that the family {�(n) | n ∈N} provides a polynomial time and uniform solution to the problem X , and the ordered
pair (cod, s) is a polynomial encoding from the problem X to the family {�(n) : n ∈N}.

– For each instance u ∈ I X , the system �(s(u)) processes u when the input multiset cod(u) is supplied to the corre-
sponding input membrane. Besides, the recognizer membrane system �(s(u)) + cod(u) is confluent, in the sense that all
computations must give the same answer (either all computations are accepting ones or all computations are rejecting
ones).

As a direct consequence of working with recognizer membrane systems, these complexity classes are closed under comple-
ment. Moreover, it is easy to prove that they are closed under polynomial-time reductions [25]. These families of recognizer
membrane systems provide an efficient solution to a decision problem. Their formal verification is crucial to understand the
behaviour and to prove that the answer of the system is always correct. Some examples of efficient solutions for presumably
intractable problems can be found in the bibliography [2,9,13].

A related concept to maintain compatibility with previous ad-hoc solutions was created, in the sense that these non-
uniform solutions associate a membrane system with a single input; that is, every �(u), u ∈ I X , will solve a single input, in
this case, u. The class of problems solvable in polynomial time and non-uniform way by a family of systems from R (R
being a class of recognizer membrane systems without input membrane) is denoted by PMC∗

R . In order to establish the
presumed efficiency of some computing models of membrane systems it suffices to design polynomial time and uniform
solutions to NP-complete problems by means of families of these kinds of systems. Thus, it is interesting to develop some
design techniques but recalling that this development can not be “mechanized”. However, some patterns can be observed
during the process of creating a new efficient solution to NP-complete problems by means of a uniform family of membrane
systems [26].

It seems interesting to analyse what kind of membrane systems are capable of solving decision problems through only
one unique system. In this context, it is fundamental how the instances of the problem are introduced into the system.
Next, we consider the case in which the instances are directly introduced inside the system (free of resources) by means
of a representation of the problem to be solved; that is, the instance is introduced without any previous encoding, e.g.
X = (I X , θX), and I X = an for n ≥ 0, then the input multiset will be the multiset {an}.

Definition 2. Let X = (I X , θX) be a decision problem where I X is a language over a finite alphabet �X . Let R be a
class of recognizer membrane systems with input membrane. We say that problem X is solvable in polynomial time
by a single membrane system � from R, free of resources, denoted by, X ∈ PMC1 f

R , if the following hold:

• The input alphabet of � is �X .
• The system � is polynomially bounded with regard to X ; that is, there exists k ∈ N such that for each instance u ∈ I X ,

every computation of the system � with input multiset u performs at most |u|k steps.
• The system � is sound with regard to X ; that is, for each instance u ∈ I X , if there exists an accepting computation of

the system � + u then θX (u) = 1.
• The system � is complete with regard to X ; that is, for each instance u ∈ I X such that θX (u) = 1, every computation of

the system � + u is an accepting one.

From the previous definition it is easy to prove that PMC1 f
R ⊆ PMCR , for every class R of recognizer membrane

systems with input membrane, since every single recognizer membrane system free of resources can be seen as a fam-
ily of recognizer membrane systems with a single system � = {�(0)} such that s(u) = 0 and cod(u) = u, for u ∈ I X .
A related concept is created concerning systems that count with a polynomial-time encoding function cod such that
� + cod(u), u ∈ I X , is capable of solving the problem X . This class of problems is denoted by PMC1p

R . It can be easily

proven that PMC1 f
R ⊆ PMC1p

R ⊆ PMCR , since a single recognizer membrane system can be seen as a family of recognizer
membrane systems as seen above, and every single recognizer membrane system free of resources can be seen as a single
membrane system whose cod function is cod(u) = u for every u ∈ I X .

3.1. Dependency graph technique

The dynamic of a membrane system provides, in a natural way, a tree of computations. Specifically, the computation tree
of a membrane system �, denoted Comp(�), is a rooted labelled maximal tree defined as follows:

– Nodes are labelled by configurations of �.
– Edges are labelled by applicability matrices (maximal multiset of rules applicable to a configuration).
– The root of the tree is the initial configuration of �.
– The children of a node labelled by C are the configurations C′ which can be obtained from C in one transition step.
3

The maximal branches of Comp(�) will be called computations of �. A computation of � is a halting computation if and
only if it is a finite branch. The labels of the leaves of Comp(�) are called halting configurations.

Given a semi-uniform or uniform solution (in polynomial time) for a decision problem by means of a family of rec-
ognizer membrane systems, every instance of the problem is processed by a system of the family, which is confluent.
Thus, in order to know the answer of the system for any instance it is enough to consider only one computation of the
previous system. In this context, an exciting challenge would be looking for a computation with minimum length. For
that, it would be interesting to analyze the degree of closeness between two configurations. The problem is specially hard
if we want to quantify that proximity in order to make useful comparisons. Some weak metrics on configurations of a
membrane system with a fixed structure of membranes has been studied in [3]. In this context, in order to search the
shortest paths in that graph providing a sound computation of the system, the dependency graph associated with the set
of rules of a recognizer membrane system, was introduced. This concept is based on the dependence among elements
of the alphabet with respect to the set of rules of the P system. Several weak metrics over the set of configurations of
the system based on the concept of dependency graph, were considered, starting from the notion of distance between
two nodes of that graph (the length of the shortest path that connect v1 and v2, or infinite if there is no path from v1
to v2).

Dependency graph as a proof technique for the non-efficiency of membrane systems

With some kind of recognizer membrane systems, it is possible to consider a directed graph (also called dependency
graph) verifying the following properties: (a) it can be constructed from the working alphabet and the set of rules of the
system, in polynomial time; that is, in a time bounded by a polynomial function depending on the size of the working
alphabet and the total number of rules and the maximum length of them; and (b) accepting computations of such systems
can be characterized by means of a “reachability” property in the dependency graph associated with it (the existence of
a path in the graph between two specific nodes). Therefore, dependency graphs provide a technique to demonstrate the
non-efficiency of membrane systems ([6], [7]).

As an illustration example, recognizer polarizationless P systems with active membranes which do not make use of
dissolution rules, are considered. The rules of such systems can be considered as a dependency relation between the object
triggering the rule and the objects produced by its application. For instance,

– Object evolution rules [a → u]h can be described as follows: the pair (a, h) produces the pair (b, h), for each b being a
symbol belonging to u.

– Send-in communication rules a []h → [b]h can be described as follows: the pair (a, p(h)) produces the pair (b, h).
– Send-out communication rules [a]h → []h b can be described as follows: the pair (a, h) produces the pair (b, p(h)).
– Division rules for elementary membranes [a]h → [b]h [c]h can be described as follows: the pair (a, h) produces the

pairs (b, h) and (c, h).

Let us recall that if h is the label of a membrane, then p(h) denotes the label of the parent of such membrane labelled by
h. We adopt the convention that the father of the skin membrane (the root of the tree) is the environment and its label is
denoted by env .

It is worth pointing out that dissolution rules cannot be expressed in a similar way due to the fact that such kind of
rules affects objects that do not appear in the rule, and therefore depends on the current configuration.

In this context, division rules for non-elementary membranes do not provide any information. These ideas can be for-
malized as follows:

Definition 3. Let � = (�, H, μ, M1, . . . , Mq, R, iin, iout) be a recognizer polarizationless P system with active membranes
of degree q ≥ 1 which do not make use of dissolution rules. Let us assume that the label “env” of the environment of � is
in H . Let supp(u) be the support set of u; that is, its underlying set. The dependency graph associated with � is the directed
graph G� = (V�, E�) defined as follows:

– The set of vertices is V� = {s�} ∪ V L� ∪ V R� , where s� /∈ � × H and:

V L� = {(a,h) ∈ � × H | ∃u ∈ M(�) ([a → u]h ∈R) ∨
∃b ∈ � ([a]h → []hb ∈R) ∨
∃b ∈ � ∃h′ ∈ ch(h) (a[]h′ → [b]h′ ∈R) ∨
∃b, c ∈ � ([a]h → [b]h[c]h ∈R))}.

V R� = {(b,h) ∈ � × H | ∃a ∈ � ∃u ∈ M(�) ([a → u]h ∈R∧ b ∈ supp(u)) ∨
∃a ∈ � ∃h′ ∈ ch(h) ([a]h′ → []h′b ∈R) ∨
∃a ∈ � (a[]h → [b]h ∈R) ∨
∃a, c ∈ � ([a] → [b] [c] ∈R∨ [a] → [c] [b] ∈R)}.
h h h h h h

4

Fig. 1. Graphical representation of the creation of the dependency graph depending on the rule.

– The set of arcs is E� = E1
� ∪ E2

� , where:

E1
� = {(s�, (a,h)) | (h ∈ H \ {env} ∧ a ∈Mh) ∨ (h = iin ∧ a ∈ cod(u))}

E2
� = {((a,h), (b,h′)) | ∃u ∈ M(�) ([a → u]h ∈R∧ b ∈ supp(u) ∧ h = h′) ∨

([a]h → []hb ∈R ∧ h′ = p(h)) ∨
(a[]h′ → [b]h′ ∈R ∧ h = p(h′)) ∨
∃c ∈ � ([a]h → [b]h[c]h ∈R∧ h = h′) ∨
∃c ∈ � ([a]h → [c]h[b]h ∈R∧ h = h′)}.

Let us recall that if h is the label of a membrane, then ch(h) denotes the set of labels of the children membranes of such
membrane labelled by h.

The node s� is called the source node of G� . The node (yes, env) is called the accepting node, and the node (no, env)

is called the rejecting node of G� .

A graphical interpretation of the process to create the dependency graph is the following:

• For an evolution rule [a → u]h , a node (a, h) and nodes (b, h), for b ∈ supp(u) are defined. Edges from (a, h) to each
node (b, h) are defined. This can be seen graphically in Fig. 1a.

• For a communication send-out rule [a]h → b []h , a node (a, h) and a node (b, h′), for h′ = p(h) are defined. An edge
from (a, h) to node (b, h′) is defined. This can be seen graphically in Fig. 1b.

• For a communication send-in rule a []h → [b]h , a node (a, h′) and a node (b, h), for h′ = p(h) are defined. An edge
from (a, h′) to node (b, h) is defined. This can be seen graphically in Fig. 1c.

• For a division rule for elementary membranes [a]h → [b]h[c]h , nodes (a, h), (b, h) and (c, h) are defined. Edges from
(a, h) to (b, h) and (c, h) are defined. This can be seen graphically in Fig. 1d.

• For a division rule for non-elementary membranes, neither new nodes nor new edges are defined.

Bearing in mind that all computations of a recognizer P system halt, any path in the dependency graph associated with
it must be simple; that is, all vertices in a path are distinct.

A partial answer to the Păun’s conjecture

At the beginning of 2005, Gh. Păun (problem F from [20]) wrote: My favourite question (related to complexity aspects in
P systems with active membranes and with electrical charges) is that about the number of polarizations. Can the polarizations be
completely avoided? The feeling is that this is not possible – and such a result would be rather sound: passing from no polarization to
two polarizations amounts to passing from non-efficiency to efficiency.

Let us denote AM0(α, β) the class of all recognizer polarizationless P systems with active membranes such that: (a)
if α = +d (resp., α = −d) then dissolution rules are permitted (resp., forbidden); and (b) if β = +ne (resp., β = −ne) then
division rules for elementary and non-elementary membranes (resp., only for elementary membranes) are permitted. Then,
the so-called Păun’s conjecture can be formally formulated in terms of membrane computing complexity classes as follows:
P = PMC 0 .
AM (+d,−ne)

5

An affirmative answer to this conjecture would indicate that the ability to create an exponential amount of workspace
(expressed in terms of the number of membranes and objects) in polynomial time, is not enough in order to solve computa-
tionally hard problems efficiently. On the other hand, assuming that P �= NP, a negative answer to the conjecture would show
that division rules for elementary membranes provide a borderline between the non-efficiency and the presumed efficiency of
polarizationless P systems with active membranes.

The dependency graph associated with a P system from AM0(−d, +ne), can be constructed by a deterministic Turing
machine working in polynomial time (see [7] for details). Moreover, dependency graphs can be used to characterize the be-
haviour of the system through the analysis of simple paths. Specifically, given a recognizer P system � from AM0(−d, +ne),
there exists an accepting computation of � if and only if there exists a simple path in the dependency graph G� from the
source node s� to the accepting node (yes, env) with length greater than or equal to 2 (see [7] for details).

Let {�(n) | n ∈N} be a family of P systems from AM0(−d, +ne) solving a decision problem X = (I X , θX) in polynomial
time. Let (cod, s) be a polynomial encoding associated with that solution. Then, for each instance u ∈ I X , the answer of the
problem is yes; that is, θX (u) = yes, if and only if there exists a simple path in the dependency graph associated with
�′ = �(s(u)) + cod(u), from the source node s�′ to the accepting node (yes, env).

Theorem 1. PMCAM0 (−d,+ne) = P.

Proof. On the one hand, it is well known that if R is a class of recognizer membrane systems then P ⊆ PMCR . On the
other hand, in order to show that PMCAM0(−d,+ne) ⊆ P, let X ∈ PMCAM0(−d,+ne) and let {�(n) | n ∈ N} be a family of
P systems from AM0(−d, +ne) solving X in polynomial time and uniform way. Let (cod, s) be a polynomial encoding
associated with that solution. Let us see that there exists a polynomial time reduction from X to the REACHABILITY
problem.1 For that, let us consider the mapping F from I X to the set of instances IREACHABILITY defined as follows: F (u) =
(G�(s(u))+cod(u), s�(s(u))+cod(u), (yes, env)), for each instance u of X . Then, F is a polynomial time computable function such
that

u ∈ L X ⇐⇒ F (u) ∈ LREACHABILITY.

Finally, we deduce that X ∈ P because the class P is closed under polynomial-time reductions, X ≤p REACHABILITY and
REACHABILITY ∈ P. �

Hence, in the framework of polarizationless P systems with active membranes which do not make use of dissolution
rules we have a partial affirmative answer to Păun’s conjecture, that is, PMCAM0 (−d,+ne) = P. The answer is partial because
dissolution rules have been forbidden.

In [1], a uniform and linear time solution to the QBF-SAT problem, a well known PSPACE-complete problem [15],
by means of a family of recognizer polarizationless P systems from AM0(+d, +ne), was given. Thus, PSPACE ⊆
PMCAM0 (+d,+ne) . Hence, assuming that P �= NP, we have a partial negative answer to Păun’s conjecture in the frame-

work AM0(−d, +ne): computationally hard problems can be efficiently solved avoiding polarizations. The answer is partial
because division rules for non-elementary membranes have been required.

Dependency graph as a proof technique for negative results in Membrane Computing

Let R be a class of recognizer membrane systems such that every system from R is associated with a dependency graph
verifying the following property: a computation of a system from R is an accepting computation if and only if there exists a
path between two distinguished nodes, in the dependency graph associated with the system. In this situation, it is possible
to show that some decision problem X = (I X , θX) cannot be solved in polynomial time and in a uniform way by means of a
single membrane system, free of resources, from R. This remark is illustrated by an example.

The ONLY-ONE-OBJECT problem is the decision problem X = (I X , θX) defined as follows: I X = {an | n ∈ N, n ≥ 1} and
θX (an) = 1 if and only if n = 1. It is easy to design a deterministic Turing machine which takes two computation steps,
solving the ONLY-ONE-OBJECT problem. Let us see that ONLY-ONE-OBJECT /∈ PMC1 f

AM0(−d,+ne)
.

Theorem 2. There is not a recognizer membrane system � from the class AM0(−d, +ne) solving the ONLY-ONE-OBJECT problem
in polynomial time by a single membrane system and free of resources.

1 The REACHABILITY or STCON problem is the following decision problem: given a directed graph G = (V , E) with two specified vertices s and t, determine
whether or not there is a path from s to t . There are algorithms solving this problem, for instance, search algorithms based on breadth-first search or depth-first
search. These algorithms determine whether two vertices are connected in O (max(|V |, |E|)) time. Moreover, they basically need to store at most |V | items,
so these algorithms use O (|V |) space. But this quantity of space can be reduced to O (log2|V |) by using an algorithm that could be called middle-first
search (see [15] for details, pp. 149–150). In particular, REACHABILITY ∈ P.
6

Proof. Let us assume that there exists a recognizer membrane system � from AM0(−d, +ne) verifying the following:
(a) the input alphabet of � is the singleton {a}; (b) every computation of � with input multiset {a} is an accepting
computation; and (c) every computation of � with input multiset {an}, for each n > 1, is a rejecting computation.

Let us denote by G�+{a} (respectively, G�+{an} , for each n > 1) the dependency graph associated with the system � +{a}
(resp. � + {an}). Then, for each n > 1, we have G�+{a} = G�+{an} . Besides, every computation of � + {a} is an accepting
computation if and only if every computation of � + {an}, for each n > 1, is an accepting computation. This is a contradic-
tion. �
3.2. Simulation technique

Let us define the meaning of efficient simulation in the framework of recognizer membrane systems.

Definition 4. Let � and �′ be two recognizer membrane systems. We say that system �′ simulates system � in an efficient
way if the following holds: (a) �′ can be constructed from � by a deterministic Turing machine working in polynomial
time; and (b) there exists an injective function, f , from the set Comp(�) of computations of � onto the set Comp(�′) of
computations of �′ such that:

	 There exists a deterministic Turing machine working in polynomial time that constructs computation f (C) from com-
putation C , for each C ∈ Comp(�).

	 A computation C ∈ Comp(�) is an accepting computation if and only if f (C) ∈ Comp(�′) is an accepting one.
	 There exists a polynomial function p(n) such that for each C ∈ Comp(�) we have | f (C)| ≤ p(|C|).

We say that a configuration Ct of a membrane system is the current state of the system; that is, the structure and the
contents of the cells at the moment t . A computation C = (C0, C1, . . . , Cr) is a sequence of configurations such that: (1) C0
is the initial configuration; and (2) a configuration Ct yields Ct+1 if the second can be obtained from the first by applying a
set of rules according to the semantics of the system, and it is denoted by Ct ⇒� Ct+1. We denote by Ct(i) the contents of
the cells labelled by i in the configuration Ct .

Next, the simulation technique by considering the presumed efficiency of the computing model of recognizer membrane
systems T DC(2) is presented as an illustration of it.

In what follows, throughout this section, let � = {�(n) | n ∈ N} be a family of recognizer tissue P systems with cell
division and with environment solving a decision problem X = (I X , θX) in polynomial time and uniform way. Let r(n) be a
polynomial function such that for each instance u ∈ I X , 2r(|u|) is an upper bound of the number of objects from E which are
moved from the environment to all cells of the system by any computation of �(s(u)) + cod(u).

Definition 5. For each n ∈ N , let �(n) = (�, E, �, M1, . . . , Mq, R, iin, iout) be an element of the family � of degree q,
and for the sake of simplicity we denote r instead of r(n). Let us consider the recognizer tissue P system of degree q1 =
1 + q · (r + 2) + |E | with cell division and without environment

S(�(n)) = (�′,�′,M′
0,M′

1, . . . ,M′
q1

,R′, i′in, i′out)

defined as follows:

• �′ = � ∪ {αi : 0 ≤ i ≤ r − 1}.
• �′ = �.
• Each cell i ∈ {1, . . . , q} of � provides a cell of S(�(n)) with the same label. In addition, S(�(n)) has:

– r + 1 new cells, labelled by (i, 0), (i, 1), . . . , (i, r), respectively, for each i ∈ {1, . . . , q}.
– A distinguished cell labelled by 0.
– A new cell, labelled by lb , for each b ∈ E .

• Initial multisets: M′
lb

= {α0}, for each b ∈ E , and

M′
(i,0)

= Mi

M′
(i,1)

= ∅
.

M′
(i,r) = ∅

M′
i = ∅

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(1 ≤ i ≤ q)
7

• Set of rules:

R′ = R ∪ {[α j]lb → [α j+1]lb [α j+1]lb : b ∈ E ∧ 0 ≤ j ≤ r − 2}
∪ {[αp−1]lb → [b]lb [b]lb : b ∈ E}
∪ {(lb, b/λ ,0) : b ∈ E}
∪ {((i, j), a/λ , (i, j + 1)

) : a ∈ � ∧ 1 ≤ i ≤ q ∧ 0 ≤ j ≤ p − 1}
∪ {((i, r), a/λ , i

) : a ∈ � ∧ 1 ≤ i ≤ q}
• i′in = (iin, 0), and i′out = 0.

Let us notice that S(�(n)) can be considered as an extension of �(n) without environment, in the following sense:

	 � ⊆ �′, � ⊆ �′ and E = ∅.
	 Each cell in � is also a cell in S(�(n)).
	 There is a distinguished cell in S(�(n)) labelled by 0 which plays the role of environment of �(n).
	 R ⊆R′ , and now 0 is the label of a “normal cell” in S(�(n)).

Next, we analyze the structure of the computations of system S(�(n)) and we compare them with the computations of
�(n).

Lemma 1. Let C′ = (C′
0, C′

1, . . .) be a computation of S(�(n)). For each t (1 ≤ t ≤ r) the following holds:

• C′
t(i) = ∅, for 0 ≤ i ≤ q.

• For each 1 ≤ i ≤ q, and 0 ≤ j ≤ r we have:

C′
t(i, j) =

{
Mi, if j = t

∅, if j �= t

• For each b ∈ E , there exist 2t cells labelled by lb whose content is:

C′
t(lb) =

{
αt, if 1 ≤ t ≤ r − 1

b, if t = r

Proof. By induction on t .
Let us start with the basic case t = 1. The initial configuration of system S(�(n)) is the following:

• C′
0(i) = ∅, for 0 ≤ i ≤ q.

• For each 1 ≤ i ≤ q we have C′
0(i, 0) =Mi , and C′

0(i, j) = ∅, for 1 ≤ j ≤ r.
• For each b ∈ E , there exists only one cell labelled by lb whose contents is {α0}.

At configuration C′
0, only the following rules are applicable:

• [α0]lb → [α1]lb [α1]lb , for each b ∈ E .
• (

(i, 0), a/λ , (i, 1)
)
, for each a ∈ supp(Mi).

Thus,

• For each i (1 ≤ i ≤ q) we have:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

C′
1(i) = ∅

C′
1(0) = ∅

C′
1(i,0) = ∅

C′
1(i,1) = Mi

C′
1(i, j) = ∅, for 2 ≤ j ≤ r

• For each b ∈ E , there are 2 cells labelled by lb whose content is {α1}.

Hence, the result holds for t = 1.
By induction hypothesis, let t be such that 1 ≤ t < r, and let us suppose the result holds for t , that is,
8

• C′
t(i) = ∅, for 0 ≤ i ≤ q.

• For each 1 ≤ i ≤ q, and 0 ≤ j ≤ r we have:

C′
t(i, j) =

{
Mi, if j = t

∅, if j �= t

• For each b ∈ E , there exist 2t cells labelled by lb whose contents is C′
t(lb) = {αt} (because t ≤ r − 1).

Then, at configuration C′
t only the following rules are applicable:

(1) If t ≤ r − 2, the rules [αt]lb → [αt+1]lb [αt+1]lb , for each b ∈ E .
(2) If t = r − 1, the rules [αt]lb → [b]lb [b]lb , for each b ∈ E .
(3)

(
(i, t), a/λ , (i, t + 1)

)
, for each a ∈ �.

From the application of rules of type (1) or (2) at configuration C′
t , we deduce that there are 2t+1 cells labelled by lb in

C′
t+1, for each b ∈ E , whose content is {αt+1}, if t ≤ r − 2, or {b}, if t = r − 1.

From the application of rules of type (3) at configuration C′
t , we deduce that

C′
t+1(i, j) =

{
Mi, if j = t + 1

∅, if 0 ≤ j ≤ r ∧ j �= t + 1

Bearing in mind that no other rule of system S(�(n)) is applicable, we deduce that C′
t+1(i) = ∅, for 0 ≤ i ≤ q.

This completes the proof of this Lemma. �
Lemma 2. Let C′ = (C′

0, C′
1, . . .) be a computation of the tissue P system S(�(n)). Configuration C′

r+1 is the following:

(1) C′
r+1(0) = b2r

1 . . .b2r

α , where E = {b1, . . . , bα}.
(2) C′

r+1(i) =Mi = C0(i), for 1 ≤ i ≤ q.
(3) C′

r+1(i, j) = ∅, for 1 ≤ i ≤ q, 0 ≤ j ≤ r.
(4) There exist 2r cells labelled by lb whose content is empty, for b ∈ E .

Proof. From Lemma 1, the configuration C′
r is the following:

• C′
r(i) = ∅, for 0 ≤ i ≤ q.

• For each i (1 ≤ i ≤ q) we have

C′
r(i, j) =

{
Mi, if j = r

∅, if j �= r

• For each b ∈ E , there exist 2r cells labelled by lb whose content is {b}.

At configuration C′
r only the following rules are applicable:

• (
(i, r), a/λ , i

)
, for each a ∈ � ∩ supp(Mi).

• (
lb, b/λ , 0

)
, for each b ∈ E .

Thus,

• C′
r+1(0) = b2r

1 . . .b2r

α , where E = {b1, . . . , bα}.
• C′

r+1(i) =Mi = C0(i), for 1 ≤ i ≤ q.
• C′

r+1(i, j) = ∅, for 1 ≤ i ≤ q and 0 ≤ j ≤ r.
• There exist 2r cells labelled by lb whose content is empty, for each b ∈ E . �

Definition 6. Let C = (C0, C1, . . . , Cm) be a halting computation of �(n). Then we define the computation S(C) =
(C′

0, C′
1, . . . , C′

r, C′
r+1, . . . , C′

r+1+m) of S(�(n)) as follows:

(1) The initial configuration is:
9

⎧⎪⎪⎪⎨⎪⎪⎪⎩
C′

0(i) = ∅, for 0 ≤ i ≤ q

C′
0(i,0) = C0(i), for 1 ≤ i ≤ q

C′
0(i, j) = ∅, for 1 ≤ i ≤ q and 1 ≤ j ≤ r

C′
0(lb) = α0, for each b ∈ E

(2) The configuration C′
t , for 1 ≤ t ≤ r, is described by Lemma 1.

(3) The configuration C′
r+1 is described by Lemma 2.

(4) The configuration C′
r+1+s , for 0 ≤ s ≤ m, coincides with the configuration Cs of �, that is, Cs(i) = C′

r+1+s(i), for 1 ≤ i ≤ q.
The content of the remaining cells (excluding cell 0) at configuration C′

r+1+s is equal to the content of that cell at
configuration C′

r+1, that is, these cells do not evolve after step r + 1.

That is, every computation C of �(n) can be “reproduced” by a computation S(C) of S(�(n)) with a delay: from step
r + 1 to step r + 1 + m, the computation S(C) restricted to cells 1, . . . , q provides the computation C of �(n).

From Lemma 1 and Lemma 2 we deduce the following:

(a) S(C) is a computation of S(�(n)).
(b) S is an injective function from Comp(�(n)) onto Comp(S(�(n))).

Moreover, if r is a polynomial function on the size of �(n), then we have the following result.

Proposition 1. The tissue P system S(�(n)) from Definition 5 simulates �(n) in an efficient way.

Proof. In order to show that S(�(n)) can be constructed from �(n) by a deterministic Turing machine working in polyno-
mial time, it is enough to note that the amount of resources needed to construct S(�(n)) from �(n) is polynomial in the
size of the initial resources of �(n). Indeed,

1. The size of the alphabet of S(�(n)) is |�′| = |�| + r.
2. The initial number of cells of S(�(n)) is 1 + q · (r + 2) + |E |.
3. The initial number of objects of S(�(n)) is the initial number of objects of �(n) plus |E |.
4. The number of rules of S(�(n)) is |R′| = |R| + (r + 1) · |E | + |�| · q · (r + 1).
5. The maximal length of a communication rule of S(�(n)) is equal to the maximal length of a communication rule of

�(n).

From Lemma 1 and Lemma 2 we deduce that:

(a) Every computation C′ of S(�(n)) has an associated computation C of �(n) such that S(C) = C′ in a natural way.
(b) The function S is injective.
(c) A computation C of � is an accepting computation if and only if S(C) is an accepting computation of S(�(n)).

Finally, let us notice that if C is a computation of �(n) with length m, then S(C) is a computation of S(�(n)) with length
r + 1 + m. �

Taking into account these results, we analyze the role of the environment in the efficiency of tissue P systems with cell
division. That is, we study the ability of these P systems with respect to the computational efficiency when the alphabet of
the environment is an empty set.

Theorem 3. For each k ∈N we have PMCTDC(k+1) = PMCT̂DC(k+1) .

Proof. Let us recall that PMCTDC(1) = P (see [6] for details). Then,

P ⊆ PMCT̂DC(1) ⊆ PMCTDC(1) = P

Thus, the result holds for k = 0. Let us show the result for k ≥ 1. Since T̂DC(k + 1) ⊆ TDC(k + 1) it suffices to prove that
PMCTDC(k+1) ⊆ PMCT̂DC(k+1) . For that, let X ∈ PMCT DC(k+1) .

Let {�(n) : n ∈ N} be a family of tissue P systems from TDC(k + 1) a polynomial time and uniform solution to X . Let
(cod, s) be a polynomial encoding associated with that solution. Let u ∈ I X be an instance of the problem X that will be
processed by the system �(s(u)) + cod(u). According to Proposition 1, let r(n) be a polynomial function such that 2r(|u|) is
an upper bound of the number of objects from E which are moved from the environment to all cells of the system by any
computation of �(s(u)) + cod(u) = (�, E, �, M1, . . . , Miin + cod(u), . . . , Mq1 , R, iin, iout).

Then, we consider the tissue P system without environment

S(�(s(u))) + cod(u) = (�′,�′,M′ ,M′
1, . . . ,M′ + cod(u), . . . ,M′

q ,R′, i′ , i′out)
0 iin 1 in

10

JID:TCS AID:12652 /FLA Doctopic: Theory of natural computing
according to Definition 5, where q1 = 1 + q · (r(|u|) + 2) + |E |.
Therefore, S(�(s(u))) + cod(u) is a tissue P system from ̂T DC(k + 1) such that verifies the following:

• A distinguished cell labelled by 0 has been considered, which will play the role of the environment in the system
�(s(u)) + cod(u).

• At the initial configuration, it has enough objects in cell 0 in order to simulate the behaviour of the environment of the
system �(s(u))) + cod(u).

• After r(n) + 1 steps, computations of �(s(u)) + cod(u) are reproduced by the computations of S(�(s(u))) + cod(u)

exactly.

Let us suppose that E = {b1, . . . , bα}. In order to simulate �(s(u)) + cod(u) by a tissue P system without environment in an
efficient way, we need to have enough objects in the cell of S(�(s(u))) + cod(u) labelled by 0 available. That is, 2r(n) objects
in that cell are enough.

In order to start the simulation of any computation C of �(s(u)) + cod(u), it would be enough to have 2r(n) copies of
each object b j ∈ E in the cell of S(�(s(u))) + cod(u) labelled by 0. For this purpose

• For each b ∈ E we consider a cell in S(�(s(u))) + cod(u) labelled by lb which only contains object α0 initially. We also
consider the following rules:
– [α j]lb → [α j+1]lb [α j+1]lb , for 0 ≤ j ≤ r(|u|) − 2,
– [αp(n)−1]lb → [b]lb [b]lb ,
– (lb, b/λ, 0).

• By applying the previous rules, after r(|u|) transition steps we get 2r(|u|) cells labelled by lb , for each b ∈ E in such a
way that each of them contains only object b. Finally, by applying the third rule we get 2r(|u|) copies of objects b in cell
0, for each b ∈ E .

Therefore, after the execution of r(|u|) + 1 transition steps in each computation of S(�(s(u))) + cod(u) in cell 0 of the
corresponding configuration, we have 2r(|u|) copies of each object b ∈ E . This number of copies is enough to simulate any
computation C of �(s(u)) + cod(u) through the system S(�(s(u)) + cod(u)).

From Proposition 1 we deduce that the family {S(�(n))| n ∈ N} solves X in polynomial time and uniform way. Hence,
X ∈ PMC

̂T DC(k+1)
. �

3.3. Algorithmic technique

In order to simulate the behaviour of a recognizer membrane system, �, when an input multiset, m, is supplied to the
corresponding input membrane, the algorithmic technique can be used. This technique consists on the construction of a
deterministic decision algorithm A working in polynomial time that receives as input a recognizer membrane system �
and an input multiset m of �. Then, the algorithm A reproduces the behaviour of one computation of � + m. Since the
recognizer membrane system � + m is confluent, then the algorithm will provide the same answer of the system; that is,
the answer of algorithm A is affirmative if and only if the system � + m has an accepting computation (and then, any
computation is an accepting one). In [14], another application of the algorithmic technique to prove the non-efficiency of
certain kind of P systems is found.

The goal of this section is the use of the algorithmic technique to show that only tractable problems can be solved
efficiently by using tissue P systems with communication rules of any length, separation rules and without environment.
That is, we will prove that P = PMCT̂SC .

For this purpose, given a family of recognizer tissue P systems, we provide a deterministic algorithm A working in poly-
nomial time that receives as input a recognizer tissue P system from T̂SC together with an input multiset, and reproduces
the behaviour of a computation of such system.

The pseudocode of the algorithm A is described as follows:

Input: A recognizer tissue P system � from T̂SC and an input multiset m
Initialization stage: the initial configuration C0 of � + m
t ← 0
while Ct is a non halting configuration do

Selection stage: Input Ct, Output (C′
t , A)

Execution stage: Input (C′
t , A), Output Ct+1

t ← t + 1
end while

Output: Yes if Ct is an accepting configuration, No otherwise

The selection stage and the execution stage implement a transition step of a recognizer tissue P system �. Specifically,
the selection stage receives as input a configuration Ct of � at an instant t . The output of this stage is a pair (C′

t , A),
where A encodes a multiset of rules selected to be applied to Ct , and C′

t is the configuration obtained from Ct once the
labelled objects corresponding to the application of rules from A have been consumed. The execution stage receives as
11

JID:TCS AID:12652 /FLA Doctopic: Theory of natural computing
input the output (
C′

t , A) of the selection stage. The output of this stage is the next configuration Ct+1 of Ct . Specifically, at
this stage, the configuration Ct+1 is obtained from C′

t by adding the labelled objects produced by the application of rules
from A.

Next, selection stage and execution stage are described in detail.

Selection stage.
Input: A configuration Ct of � at instant t

C′
t ← Ct; A ← ∅; B ← ∅

for r ≡ (i, u/v, j) ∈ RC according to the order chosen do
for each pair of cells (i, σi), (j, σ j) of C′

t according to the
lexicographical order do

nr ← maximum number of times that r is applicable to (i, σi), (j, σ j)

if nr > 0 then
C′

t ← C′
t \ nr · LH S(r, (i, σi), (j, σ j))

A ← A ∪ {(r, nr , (i, σi), (j, σ j))}
B ← B ∪ {(i, σi), (j, σ j)}

end if
end for

end for
for r ≡ [a]i → [�0]i [�1]i ∈ R S according to the order chosen do

for each (a, i, σi) ∈ C′
t, according to the lexicographical order, and

such that (i, σi) /∈ B do
C′

t ← C′
t \ {(a, i, σi)}

A ← A ∪ {(r, 1, (i, σi))}
B ← B ∪ {(i, σi)}

end for
end for

This algorithm is deterministic and works in polynomial time. Indeed, the cost in time of the previous algorithm is
polynomial in the size of � because the number of cycles of the first main loop for is of orderO (|R| · (2M+q)(2M+q−1)

2),
and the number of cycles of the second main loop for is of order O (|R| · |�| · (2M + q)). Besides, the last loop includes a
membership test of order O (2M + q).

In order to complete the simulation of a computation step of the system �, the execution stage takes care of the
effects of applying the rules selected in the previous stage: updating the objects according to the right-hand side of the
rules.

Execution stage.

Input: The output C′
t and A of the selection stage

for each (r, nr , (i, σi), (j, σ j)) ∈ A do
C′

t ← C′
t + nr · R H S(r, (i, σi), (j, σ j))

end for
for each (r, 1, (i, σi)) ∈ A do

C′
t ← C′

t + {(λ, i, σi)/σi 0}
C′

t ← C′
t + {(λ, i, σi 1)}

for each (x, i, σi) ∈ C′
t according to the lexicographical order do

if x ∈ �0 then
C′

t ← C′
t + {(x, i, σi)/σi 0}

else
C′

t ← C′
t + {(x, i, σi)/σi 1}

end if
end for

end for
Ct+1 ← C′

t

This algorithm is deterministic and works in polynomial time. Indeed, the cost in time of the previous algorithm is
polynomial in the size of � because the number of cycles of the first main loop for is of order O (|R|), and the number
of cycles of the second main loop for is of order O (|R| · |�| · (2M + q)). Besides, inside the body of the last loop there is a
membership test of order O (|�|).

Throughout this algorithm we have deterministically simulated a computation of � in such a manner that the answer of
the algorithm is affirmative if and only if the simulated computation is accepting.

Theorem 4. P = PMCT̂SC .

Proof. It suffices to prove that PMCT̂SC ⊆ P. Let k ∈N such that X ∈ PMCT̂SC(k) and let {�(n) : n ∈N} be a family of tissue P
systems from T̂SC(k) solving X according to Definition 1. Let (cod, s) be a polynomial encoding associated with that solution.
If u ∈ I X is an instance of the problem X , then u will be processed by the system �(s(u)) + cod(u).

Let us consider the following algorithm A′:
12

JID:TCS AID:12652 /FLA Doctopic: Theory of natural computing
Input: an instance u of the problem X.

Construct the system �(s(u)) + cod(u).
Run algorithm A with input �(s(u)) + cod(u).

Output: Yes if �(s(u)) + cod(u) has an accepting computation, No otherwise

The algorithm A′ receives as input an instance u of the decision problem X = (I X , θX) and works in polynomial time.
The following assertions are equivalent:

1. θX (u) = 1; that is, the answer of problem X to instance u is affirmative.
2. Every computation of �(s(u)) + cod(u) is an accepting computation.
3. The output of the algorithm with input u is Yes.

Hence, X ∈ P. �
4. Conclusions

A survey on proof techniques to demonstrate, on the one hand the completeness of classes of membrane systems, and on
the other hand the presumed efficiency or non-efficiency of classes of membrane systems, is presented. The refinement of
these techniques has supported the demonstration of several new frontiers of efficiency. Apart from these techniques, other
techniques have been used both in demonstrating the computational power [5] and the computational efficiency [10,28] can
be found in the literature. However, due to the restriction of length of the work it would be impossible to include them all.

Let M1 be a non-efficient model of computation and M2 a presumably efficient model of computation. Passing from M1
to M2 is equivalent to passing from the non-efficiency to presumed efficiency. If we have a solution to an NP-complete
problem in M2, passing that solution to M1 would directly imply P = NP. Finding thinner frontiers provides easier ways to
demonstrate that statement.

The development of new techniques, or the refinement of existing ones, for demonstrating the non-efficiency of classes
of membrane systems seems crucial to solve some open problems in the field of computational complexity theory in Mem-
brane Computing, as the Păun’s conjecture.

Another interesting research line is to keep finding efficient solutions to NP-complete (or even PSPACE-complete) prob-
lems with families of membrane systems that could be implemented in highly-parallel platforms that could compete with
current problem-solvers.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

This work was supported in part by the research project TIN2017-89842-P, cofinanced by Ministerio de Economía, In-
dustria y Competitividad (MINECO) of Spain, through the Agencia Estatal de Investigación (AEI), and by Fondo Europeo de
Desarrollo Regional (FEDER) of the European Union.

References

[1] A. Alhazov, M.J. Pérez-Jiménez, Uniform solution to QSAT using polarizationless active membranes, in: J. Durand-Lose, M. Margenstern (Eds.), Proceed-
ings of the 5th International Conference: Machines, Computations, and Universality, MCU 2007, Orléans, France, September 10–13, 2007, in: Lecture
Notes in Computer Science, vol. 4664, 2007, pp. 122–133.

[2] K. Buño, H. Adorna, Distributed computation of a k P systems with active membranes for SAT using clause completion, J. Membr. Comput. 2 (2020)
108–120.

[3] A. Cordón-Franco, M.A. Gutiérrez, M.J. Pérez-Jiménez, A. Riscos-Núñez, Weak metrics on configurations of a P system, in: Gh. Păun, A. Riscos, Á.
Romero, F. Sancho (Eds.), Proceedings of the Second Brainstorming Week on Membrane Computing, 2004, pp. 139–151, Report RGNC 01/2004.

[4] R. Freund, Asynchronous P systems and P systems working in the sequential mode, in: G. Mauri, Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg, A. Salomaa
(Eds.), Membrane Computing, WMC 2004, in: Lecture Notes in Computer Science, vol. 3365, Springer, Berlin, Heidelberg, 2005, pp. 36–62.

[5] R. Freund, How derivation modes and halting conditions may influence the computational power of P systems, J. Membr. Comput. 2 (2020) 14–25.
[6] R. Gutiérrez-Escudero, M.J. Pérez-Jiménez, M. Rius-Font, Characterizing tractability by tissue-like P systems, in: International Conference on Membrane

Computing, in: Lecture Notes in Computer Science, vol. 5957, 2010, pp. 289–300.
[7] M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez, F.J. Romero-Campero, On the power of dissolution in P systems with active membranes,

in: R. Freund, Gh. Păun, G. Rozenberg, A. Salomaa (Eds.), Membrane Computing, 6th International Workshop, WMC 2005, Vienna, Austria, July 18–21,
in: Lecture Notes in Computer Science, vol. 3850, 2006, pp. 224–240, Revised Selected and Invited Papers.

[8] Y. Jiang, Y. Su, F. Luo, An improved universal spiking neural P system with generalized use of rules, J. Membr. Comput. 1 (2019) 270–278.
[9] A. Leporati, L. Manzoni, G. Mauri, A.E. Porreca, C. Zandron, Characterizing PSPACE with shallow non-confluent P systems, J. Membr. Comput. 1 (2019)

75–84.
[10] A. Leporati, L. Manzoni, G. Mauri, A.E. Porreca, C. Zandron, Shallow laconic P systems can count, J. Membr. Comput. 2 (2020) 49–58.
[11] L.F. Macías-Ramos, M.J. Pérez-Jiménez, A. Riscos-Núñez, L. Valencia-Cabrera, Membrane fission versus cell division: when membrane proliferation is

not enough, Theor. Comput. Sci. 608 (2015) 57–65.
13

http://refhub.elsevier.com/S0304-3975(20)30552-1/bibCEF89008C1CA5BCA6E3CEA8DC30B5F9As1
http://refhub.elsevier.com/S0304-3975(20)30552-1/bibCEF89008C1CA5BCA6E3CEA8DC30B5F9As1
http://refhub.elsevier.com/S0304-3975(20)30552-1/bibCEF89008C1CA5BCA6E3CEA8DC30B5F9As1
http://refhub.elsevier.com/S0304-3975(20)30552-1/bibFF2039BA7D0071FAE650873FE9F14BE0s1
http://refhub.elsevier.com/S0304-3975(20)30552-1/bibFF2039BA7D0071FAE650873FE9F14BE0s1
http://refhub.elsevier.com/S0304-3975(20)30552-1/bib7ECC19E1A0BE36BA2C6F05D06B5D3058s1
http://refhub.elsevier.com/S0304-3975(20)30552-1/bib7ECC19E1A0BE36BA2C6F05D06B5D3058s1
http://refhub.elsevier.com/S0304-3975(20)30552-1/bibE055EF65CF32F3405D5795C72637616Cs1
http://refhub.elsevier.com/S0304-3975(20)30552-1/bibE055EF65CF32F3405D5795C72637616Cs1
http://refhub.elsevier.com/S0304-3975(20)30552-1/bib6D41059413FA86C8E08340FD7FBE40CBs1
http://refhub.elsevier.com/S0304-3975(20)30552-1/bib979C2C570AF9D74AA1C8888089530ADCs1
http://refhub.elsevier.com/S0304-3975(20)30552-1/bib979C2C570AF9D74AA1C8888089530ADCs1
http://refhub.elsevier.com/S0304-3975(20)30552-1/bib7C7DF7D05D47CE8DA9DEC90740625CEDs1
http://refhub.elsevier.com/S0304-3975(20)30552-1/bib7C7DF7D05D47CE8DA9DEC90740625CEDs1
http://refhub.elsevier.com/S0304-3975(20)30552-1/bib7C7DF7D05D47CE8DA9DEC90740625CEDs1
http://refhub.elsevier.com/S0304-3975(20)30552-1/bibF0DAE6D7366C7D0076E3986AD3015218s1
http://refhub.elsevier.com/S0304-3975(20)30552-1/bib260AE941BA05A4ACEBA2121C71DFC09Cs1
http://refhub.elsevier.com/S0304-3975(20)30552-1/bib260AE941BA05A4ACEBA2121C71DFC09Cs1
http://refhub.elsevier.com/S0304-3975(20)30552-1/bib5349606712D4D5D0B13DE1FE7F34EEBBs1
http://refhub.elsevier.com/S0304-3975(20)30552-1/bib4C1C5E47615108F82115DD6FE93B9894s1
http://refhub.elsevier.com/S0304-3975(20)30552-1/bib4C1C5E47615108F82115DD6FE93B9894s1

[12] G. Mauri, A. Leporati, A.E. Porreca, C. Zandron, Recent complexity-theoretic results on P systems with active membranes, J. Log. Comput. 25 (2015)
1047–1071.

[13] D. Orellana-Martín, L. Valencia-Cabrera, A. Riscos-Núñez, M.J. Pérez-Jiménez, Minimal cooperation as a way to achieve the efficiency in cell-like mem-
brane systems, J. Membr. Comput. 1 (2019) 85–92.

[14] D. Orellana-Martín, L. Valencia-Cabrera, A. Riscos-Núñez, M.J. Pérez-Jiménez, P systems with proteins: a new frontier when membrane division disap-
pears, J. Membr. Comput. 1 (2019).

[15] C.H. Papadimitriou, Computational Complexity, Addison–Wesley, Massachusetts, 1995.
[16] Gh. Păun, G. Rozenberg, A. Salomaa (Eds.), The Oxford Handbook of Membrane Computing, Oxford University Press, Oxford, 2010.
[17] Gh. Păun, Computing with membranes, J. Comput. Syst. Sci. 61 (1) (2000) 108–143.
[18] Gh. Păun, P systems with active membranes: attacking NP-complete problems, J. Autom. Lang. Comb. 6 (1) (2001) 75–90. A preliminary version in

Centre for Discrete Mathematics and Theoretical Computer Science, CDMTCS Research Report Series-102, May 1999, 16 pages.
[19] Gh. Păun, Computing with Membranes (P Systems): Twenty Six Research Topics, Centre for Discrete Mathematics and Theoretical Computer Science,

CDMTCS Research Report Series, vol. 119, February 2000, 16 pages.
[20] Gh. Păun, Further twenty six open problems in membrane computing, in: M.A. Gutiérrez-Naranjo, A. Riscos-Núñez, F.J. Romero-Campero, D. Sburlan

(Eds.), Proceedings of the Third Brainstorming Week on Membrane Computing, Fénix Editora, Sevilla, 2005, pp. 249–262.
[21] M.J. Pérez-Jiménez, Á. Romero-Jiménez, F. Sancho-Caparrini, Decision P systems and the P �= NP conjecture, in: Gh. Păun, Gr. Rozenberg, A. Salomaa, C.

Zandron (Eds.), Membrane Computing 2002, in: Lecture Notes in Computer Science, vol. 2597, 2003, pp. 388–399. A preliminary version in Gh. Păun,
C. Zandron (eds.) Pre-proceedings of Workshop on Membrane Computing 2002, MolCoNet project-IST-2001-32008, Publication No. 1, Curtea de Arges,
Romanian, August 19–23, 2002, pp. 345–354.

[22] M.J. Pérez-Jiménez, Á. Romero-Jiménez, Simulating Turing machines by P systems with external output, Fundam. Inform. 49 (2002) 1–3, 273–287,
Annales Societatis Mathematicae Polonae, Series IV, IOS Press, Amsterdam.

[23] M.J. Pérez-Jiménez, Á. Romero-Jiménez, Generation of diophantine sets by computing P systems with external output, in: C. Calude, M.J. Dinneen, F.
Peper (Eds.), Unconventional Models of Computation, in: Lecture Notes in Computer Science, vol. 2509, 2002, pp. 176–190.

[24] M.J. Pérez-Jiménez, Á. Romero-Jiménez, Computing partial recursive functions by transition P systems, in: C. Martín-Vide, Gh. Păun, Gr. Rozenberg, A.
Salomaa (Eds.), Membrane Computing, in: Lecture Notes in Computer Science, vol. 2933, 2004, pp. 320–340. A preliminary version in A. Alhazov, C.
Martín Vide, Gh. Păun (eds.), Pre-proceedings of the Workshop on Membrane Computing, WMC-2003, Tarragona, Spain, July 17–22, 2003, pp. 428–444.

[25] M.J. Pérez-Jiménez, Á. Romero-Jiménez, F. Sancho-Caparrini, A polynomial complexity class in P systems using membrane division, J. Autom. Lang.
Comb. 11 (2006) 423–434. A preliminary version in E. Csuhaj-Varjú, C. Kintala, D. Wotschke, Gy. Vaszil (eds.), Proceedings of the Fifth International
Workshop on Descriptional Complexity of Formal Systems, DCFS 2003, Budapest, Hungary, July 12–14, 2003, pp. 284–294.

[26] Á. Romero-Jiménez, D. Orellana-Martín, Design patterns for efficient solutions to NP-complete problems in membrane computing, in: C. Graciani, A.
Riscos-Núñez, Gh. Păun, G. Rozenberg, A. Salomaa (Eds.), Enjoying Natural Computing, in: Lecture Notes in Computer Science, vol. 11270, Springer,
Cham, 2018, pp. 237–255.

[27] P. Sosík, M. Langer, Small (purely) catalytic P systems simulating register machines, Theor. Comput. Sci. 623 (2016) 65–74.
[28] C. Zandron, Bounding the space in P systems with active membranes, J. Membr. Comput. 2 (2020) 137–145.
14

http://refhub.elsevier.com/S0304-3975(20)30552-1/bib19D66D206BB7FD9BCA863CA7B08982F5s1
http://refhub.elsevier.com/S0304-3975(20)30552-1/bib19D66D206BB7FD9BCA863CA7B08982F5s1
http://refhub.elsevier.com/S0304-3975(20)30552-1/bib71EBE2CD3174CB5B9B2B6A84E64C561Bs1
http://refhub.elsevier.com/S0304-3975(20)30552-1/bib71EBE2CD3174CB5B9B2B6A84E64C561Bs1
http://refhub.elsevier.com/S0304-3975(20)30552-1/bib075D97DB95651190BEC9F4C55AAC254As1
http://refhub.elsevier.com/S0304-3975(20)30552-1/bib075D97DB95651190BEC9F4C55AAC254As1
http://refhub.elsevier.com/S0304-3975(20)30552-1/bib568DADDF0C4870B5B7B3FE881B20625Cs1
http://refhub.elsevier.com/S0304-3975(20)30552-1/bib613D572E7D2BE6B74D1092A6D1620F62s1
http://refhub.elsevier.com/S0304-3975(20)30552-1/bibFB7015D29832324D57E6D020374A5C2Es1
http://refhub.elsevier.com/S0304-3975(20)30552-1/bib67DAD6AB0DD635E22DCA8101D4CB27FCs1
http://refhub.elsevier.com/S0304-3975(20)30552-1/bib67DAD6AB0DD635E22DCA8101D4CB27FCs1
http://refhub.elsevier.com/S0304-3975(20)30552-1/bib76805616317D2BF4CC04353C536510D3s1
http://refhub.elsevier.com/S0304-3975(20)30552-1/bib76805616317D2BF4CC04353C536510D3s1
http://refhub.elsevier.com/S0304-3975(20)30552-1/bib84FB2E12992924E15A3A3EADFB996BA8s1
http://refhub.elsevier.com/S0304-3975(20)30552-1/bib84FB2E12992924E15A3A3EADFB996BA8s1
http://refhub.elsevier.com/S0304-3975(20)30552-1/bibB9B9E36C1A5D1BE22158DF398F2E29B8s1
http://refhub.elsevier.com/S0304-3975(20)30552-1/bibB9B9E36C1A5D1BE22158DF398F2E29B8s1
http://refhub.elsevier.com/S0304-3975(20)30552-1/bibB9B9E36C1A5D1BE22158DF398F2E29B8s1
http://refhub.elsevier.com/S0304-3975(20)30552-1/bibB9B9E36C1A5D1BE22158DF398F2E29B8s1
http://refhub.elsevier.com/S0304-3975(20)30552-1/bib1463A21F02E04F435C7AE552EDD62735s1
http://refhub.elsevier.com/S0304-3975(20)30552-1/bib1463A21F02E04F435C7AE552EDD62735s1
http://refhub.elsevier.com/S0304-3975(20)30552-1/bib8D0B50C37AD0D89391E38B8A2FDC0D10s1
http://refhub.elsevier.com/S0304-3975(20)30552-1/bib8D0B50C37AD0D89391E38B8A2FDC0D10s1
http://refhub.elsevier.com/S0304-3975(20)30552-1/bib2DB2AB660E55A4486A958BA1BA0BF5ADs1
http://refhub.elsevier.com/S0304-3975(20)30552-1/bib2DB2AB660E55A4486A958BA1BA0BF5ADs1
http://refhub.elsevier.com/S0304-3975(20)30552-1/bib2DB2AB660E55A4486A958BA1BA0BF5ADs1
http://refhub.elsevier.com/S0304-3975(20)30552-1/bib684E1388A91900480C702AC5B8F6B4D8s1
http://refhub.elsevier.com/S0304-3975(20)30552-1/bib684E1388A91900480C702AC5B8F6B4D8s1
http://refhub.elsevier.com/S0304-3975(20)30552-1/bib684E1388A91900480C702AC5B8F6B4D8s1
http://refhub.elsevier.com/S0304-3975(20)30552-1/bib9DEA51B41AD380AA83F2A25A7CECC5EBs1
http://refhub.elsevier.com/S0304-3975(20)30552-1/bib9DEA51B41AD380AA83F2A25A7CECC5EBs1
http://refhub.elsevier.com/S0304-3975(20)30552-1/bib9DEA51B41AD380AA83F2A25A7CECC5EBs1
http://refhub.elsevier.com/S0304-3975(20)30552-1/bib9DE4A97425678C5B1288AA70C1669A64s1
http://refhub.elsevier.com/S0304-3975(20)30552-1/bibDD345F643341D136F82D210081ADB7B1s1

	Proof techniques in Membrane Computing
	1 Introduction
	2 Computational completeness
	3 Computational efficiency
	3.1 Dependency graph technique
	Dependency graph as a proof technique for the non-efficiency of membrane systems
	A partial answer to the Păun’s conjecture
	Dependency graph as a proof technique for negative results in Membrane Computing
	3.2 Simulation technique
	3.3 Algorithmic technique

	4 Conclusions
	Declaration of competing interest
	Acknowledgements
	References

