
Modeling Logic Gene Networks by Means of
Probabilistic Dynamic P Systems

LUIS VALENCIA–CABRERA1, MANUEL GARCÍA–QUISMONDO1,
MARIO J. P ́EREZ–JIM ́ENEZ1, YANSEN SU2, HUI YU2

AND LINQIANG PAN2

1Research Group on Natural Computing, Dpt. of Computer Science and Artificial Intelligence,
University of Sevilla, Avda. Reina Mercedes s/n. 41012 Sevilla, Spain
E-mail: lvalencia@us.es,mgarciaquismondo@us.es,marper@us.es

2School of Automation, Huazhong University of Science and Technology, Luoyu Road 1037,
Wuhan 430074, China

E-mail: suyansen1985@163.com, yuhuihustac@gmail.com, lqpan@mail.hust.edu.cn

Gene regulatory networks are useful models for biologists to understand
the interactions among genes in living organisms. In this work, we
consider a special class of gene regulatory networks, called logical
networks, where the “links” among genes are inferred by logic analysis
of phylogenetic profiles. We provide a formalization of logic networks,
and introduce a membrane computing model for reconstructing logical
networks and reproducing their dynamics. An example logical network
is simulated by using software P-Lingua and MeCoSim. The simulation
result shows that membrane computing is a versatile framework for
modeling different biological scenarios.

Keywords: System biology, gene, genetic network, logic network, membrane
computing, P system

1 INTRODUCTION

Membrane computing [12] has been an useful modelling framework for
biochemical modelling since its beginning. As a natural evolution of this
research field, genetic networks have also been modelled by means of P
systems. In this work, we propose a membrane computing model for a
specific type of gene networks – logic networks (LN, for short), which can be

generated by logical analysis of phylogenesis profiles (LAPP) [1], a method
for constructing logic networks out of statistical data. In these networks, gene
states can be influenced by single gene or by combinations of multiple genes.
We restrict these combinations to at most two genes, that is a usual case in
the real life. Our model intends to capture the behaviour of LNs constructed
by the improved LAPP method [17]. This method provides a mechanism
to combine different influences on the same gene. It is worth pointing out
that we are interested in reproducing the behaviour of LNs constructed by
the improved LAPP method, rather than contrast its accuracy by using a
membrane computing based approach. On the event of possible evolutions
of the improved LAPP method to capture better the dynamics of LNs, our
membrane computing framework is expected to be adapted to the resulting
versions of the Improved LAPP method, thus providing itself a more accurate
tool to simulate the behaviour of LNs. To the best of our knowledge, our
model is the first membrane computing model to reproduce this behaviour.

This paper is structured as follows. Section 2 formalizes the gene networks
we consider in this work and describes the improved LAPP algorithm, whose
semantics are intended to be captured in this work. Section 3 introduces
the current state of the art about modelization of gene networks within the
framework of membrane computing. Section 4 presents the model introduced
and outlines the formal framework in which it is included. Section 5 describes
a methodology for using MeCoSim interface to simulate the dynamics of
logic networks, including a toy example on a simple logic network, in order to
illustrate the interface and the model. Finally, Section 6 lists the conclusions
obtained and proposes some open problems.

2 LOGIC NETWORKS

This section summarizes the concept of LN and outlines a procedure to
construct them out of statistical genetic data. In addition, the definition of
LNs and their dynamics, providing an algorithmic approach for this purpose,
is described.

2.1 A Formalization of Logic Networks
In this work, we focus on the study of genes regarding their activity or
inactivity given a certain instant. This section gives a formal definition of
LN, including its syntax and semantics.

Syntax of Logic Networks
An alphabet is a nonempty set. Given a finite alphabet � we denote �̄ =
{x̄ : x ∈ �}, where � ∩ �̄ = ∅. We also denote ¯̄x = x , for each x ∈ � ∪ �̄.

Definition 1. A gene g over a finite alphabet � is an element in �. The
behaviour of g is a mapping ϕg from N into {0, 1}. The state of g at any
instant t ∈ N is ϕg(t). If ϕg(t) = 1 (respectively, ϕg(t) = 0) we say that gene
g is active (respectively, inactive) at instant t .

Given a finite alphabet � and a gene g over � we consider the application
ϕḡ as follows: ϕḡ = 1 − ϕg , that is, for each t ∈ N, ϕḡ(t) = 1 − ϕg(t).

For each alphabet � ⊆ � we define the mapping l� from � ∪ �̄ into
{0, 1} as follows: l�(x) = 1, if x ∈ �, and l�(x) = 0 otherwise.

Definition 2. A logic network of size n over an alphabet � such that |�| ≥ n,
is a tuple (�, { f 1

1 , . . . , f α1
1 }, { f 1

2 , . . . , f α2
2 }) where:

1. � ⊆ �, |�| = n (� is the set of genes of the network).

2. For each j, 1 ≤ j ≤ α1, f j
1 = (g j,1

1 , g j,2
1 , ω

j
1, op j

1), where:

� g j,1
1 , g j,2

1 ∈ �;
� ω

j
1 is a real number in [0, 1] which represents the certainty of unary

interaction j (see [17], noting that ω j
1 is equivalent to U (B|A), with

B = g j,2
1 and A = g j,1

1);
� op j

1 is a mapping from N into {−1, 0, 1} which can be of one of the
following types: sp j , si j , wp j , wi j . These kinds of functions are
defined as follows: for each t ∈ N:
� sp j (t) = ϕg j,1

1
(t) − ϕḡ j,1

1 (t) (strong promotion),

� si j (t) = −sp j
1 (t) (strong inhibition),

� wp j (t) = ϕg j,1
1

(t) (weak promotion),

� wi j (t) = −wp j
1 (t) (weak inhibition);

These operations provide the contribution from f j
1 to gene g j,2

1 in
conjunction with ω

j
1 in order to know its state at instant t + 1.

3. For each j, 1 ≤ j ≤ α2, f j
2 = (g j,1

2 , g j,2
2 , g j,3

2 , ω
j
2, op j

2), where:

� g j,1
2 , g j,2

2 , g j,3
2 ∈ � ∪ �̄;

� ω
j
2 is a real number in [0, 1] which represents the certainty of

binary interaction j (see [17], noting that ω
j
2 is equivalent to

U (C | f (A, B)), with C = g j,3
2 , A = g j,1

2 , B = g j,2
2 and f = f j

2);
� op j

2 is a mapping from N into {−1, 1} which can be of one of
the following types: and j , or j , xor j . These kinds of functions are

sp j and wp j

ϕg j,1
1

(t) sp j (t) wp j (t)

1 1 1
0 −1 0

si j and wi j

ϕg j,1
1

(t) si j (t) wi j (t)

1 −1 −1
0 1 0

FIGURE 1
Behaviour of unary operations f j

1

defined as follows: for each t ∈ N,

and j (t) = [ϕg j,1
2

(t) · ϕg j,2
2

(t) − ϕg j,1
2

(t) · ϕg j,2
2

(t)]·
(2 · l�(g j,3

2) − 1),

or j (t) = [ϕg j,1
2

(t) + ϕg j,2
2

(t) − ϕg j,1
2

(t) · ϕg j,2
2

(t)−
ϕg j,1

2
(t) + ϕg j,2

2
(t) − ϕg j,1

2
(t) · ϕg j,2

2
(t)]·

(2 · l�(g j,3
2) − 1),

xor j (t) = [(1 − ϕg j,1
2

(t)) · ϕg j,2
2

(t) + (1 − ϕg j,2
2

(t)) · ϕg j,1
2

(t)−
(1 − ϕg j,1

2
(t)) · ϕg j,2

2
(t) + (1 − ϕg j,2

2
(t)) · ϕg j,1

2
(t)]·

(2 · l�(g j,3
2) − 1),

where b̄ denotes 1 − b, for each b ∈ {0, 1}.
These operations provide the contribution from f j

2 to gene g j,3
2 in

conjunction with ω
j
2 in order to know its state at instant t + 1.

Operations f j
1 and f j

2 (Figures 1 and 2) are informally described.

Note 1 Let us point out that, in graphic representations of operations f j
1 in

the network, only genes in � appear.

Note 2 In this example genes g j,1
2 , g j,2

2 , the membership of g ∈ � (respec-
tively, g ∈ �̄) is translated into arrow–type operation → (respectively,
). If
g j,3

2 ∈ �̄ then we denote — upon gene g j,3
2 .

and j

ϕg j,1
2

(t) ϕg j,2
2

(t) and j (t)

1 1 1
1 0 −1
0 1 1
0 0 1

In this example g j,1
2 ∈ � and g j,2

2 , g j,3
2 ∈ �̄

or j

ϕg j,1
2

(t) ϕg j,2
2

(t) or j (t)

1 1 −1
1 0 1
0 1 1
0 0 1

In this example g j,1
2 , g j,2

2 ∈ �̄ and g j,3
2 ∈ �

xor j

ϕg j,1
2

(t) ϕg j,2
2

(t) xor j (t)

1 1 1
1 0 −1
0 1 −1
0 0 1

In this example g j,1
2 , g j,2

2 ∈ � and g j,3
2 ∈ �̄

FIGURE 2
Behaviour of binary operations f j

2

Note 3 In the example given in Figure 2, genes g j,1
2 , g j,2

2 , the membership
of g ∈ � (respectively, g ∈ �̄) is translated into arrow–type operation →
(respectively,
). If g j,3

2 ∈ �̄, then we denote — upon gene g j,3
2 .

Semantics of logic networks
Now, we introduce a semantics for LNs. Let L N = (�, f1, f2) be an LN with
n nodes (genes) from � = {g1, . . . , gn} according to Definition 2. A config-
uration of the logic network L N at instant t is a tuple (ϕg1 (t), . . . , ϕgn (t))
which describes the state of every gene gi at that instant.

In order to define a transition step from t to t + 1 in the logic network L N ,
we must compute ϕgi (t + 1), for 1 ≤ i ≤ n, from the configuration of L N at
any instant t . For that, we introduce some concepts and notations.

� Let f j
1 = (g j,1

1 , g j,2
1 , ω

j
1, op j

1) be a unary operation by which node g j,1
1

acts on node g j,2
1 . We define the action of g j,1

1 on g j,2
1 at instant t ,

denoted by action(g j,2
1 |g j,1

1)(t) = op j
1 · ω

j
1 .

� Let f j
2 = (g j,1

2 , g j,2
2 , g j,3

2 , ω
j
2, op j

2) be a binary operation by which
nodes g j,1

2 and g j,2
2 act on node g j,3

2 . We define the action of g j,1
2 and g j,2

2

on g j,3
2 at instant t , denoted by action(g j,3

2 |g j,1
2 , g j,2

2)(t) = op j
2 · ω

j
2 .

� We define the total effect of the action on gene i as follows:

Action(gi , t) = Action1(gi , t) + Action2(gi , t), where

Action1(gi , t) =
∑

1 ≤ j ≤ α1
g

j,2
1 = gi

action(g j,2
1 |g j,1

1)(t),

Action2(gi , t) =
∑

1 ≤ j ≤ α2
g

j,3
2 = gi

action(g j,3
2 |g j,1

2 , g j,2
2)(t),

and gi (t + 1) is defined as follows:

ϕgi (t + 1) =
{

1, if ϕgi (t) + Action1(gi , t) + Action2(gi , t) ≥ 0.5,

0, otherwise.

Taking into account this concept of logic networks and its associated
dynamics, we introduce a model within the framework of membrane
computing to reproduce the behaviour of these networks. In next section, this
model and the formal framework which defines its semantics are described.

3 MODELLING GENE NETWORKS BY USING P SYSTEMS

This section introduces some previous works on the modelling of biochemi-
cal systems by means of P systems, focusing on gene networks. Then, the for-
mal framework in which our model is based (that is, PDP systems) is defined,
so as to outline the syntax and semantics of the model introduced.

3.1 Previous works
Since its introduction by Gheorghe Păun [11], membrane computing
has been applied as a modelling framework for biological phenomena

at a microscopical level. One of its main features is the capability of
modelling different comparments by means of membranes interconnected by
communication rules. The idea is that the reactions which take place may
differ according to the compartment in which they occur. Some traditional
approaches such as Ordinary Differential Equations (ODEs) already allowed
this feature. For instance, Kawai [7] proposed a multidimensional stochastic
ODE system. This system describes the evolution of the concentration of
chemical drugs inside biological tissues such as liver, guts and muscles.
Although ODEs are a well–known framework for biomolecular systems,
they require some assumptions on the system to be modelled. Specifically,
they require that the differential in the concentration of substances within
each compartment is constant. In addition, their accuracy fails when the
number of molecules taken into account is too small. This is due to
their continuous nature, that is, the numbers of molecules of the modelled
substances are approximated to a real number. This approximation works
well when the number of molecules is big, but it does not reflect reality
appropriately on scenarios which consider only a few molecules. A different
approach from the field of membrane computing can help sort out these
bimolecular constraints. In contrast to ODEs, the computational devices
in this field, P systems, do not need to make these assumptions. That is,
they reproduce faithfully scenarios with few molecules and non-constant
concentration differentials. There also exists another advantage of P systems
over ODEs, the modularity of the system. A system is considered to be
modular if small changes in the behaviour of the modelled system, usually
entails a relatively small change in the model. ODE–based models have
not this practical property. The model introduced in this paper aims to
characterize the behaviour of a thoroughly studied kind of biomolecular
systems known as genetic regulatory networks (GRNs). Informally speaking,
GRNs are directed graphs in which vertices represent genes, whereas edges
represent interactions between them. The dynamics of these networks are
heavily influenced by the variations in the concentrations of the biochemical
substances which interact with the genes, such as proteins. These variations
of concentrations have been specially studied within the field of membrane
computing, in order to understand the evolution of GRNs (e.g., [6]). To the
best of our knowledge, the previously existing models of gene GRNs based
on membrane computing do not reflect the case in which the combination
of states of two genes influence the state of a third one. Bowers et al. [1, 2]
claim that these scenarios are not rare on GRNs. In order to reflect them,
they describe a statistical procedure to construct GRNs out of experimental
data, where thresholds are set to the frequency in which gene states are
interrelated. The idea is to identify which combined gene states encode
interactions and which ones are just coincidences. However, it remains open

how to simulate the influences of several interactions on a single gene.
Shmulevich et al. [15] propose a solution by combining different influences
on a gene by means of logic gates. In contrast to Bowers, they also maintain
the probabilistic information within the constructed GRN, permitting a more
thorough understanding of the interaction between genes and more data to
simulate the evolution of their states. This problem has been addressed in
a different manner by Wang et al. [17], where they propose an improved
LAPP method, a weight is assigned to each gene interaction. This weight
is equal to its probability to occur. On each step, the sum of all weights on
each influenced gene, plus an influence assigned to its own previous state,
is computed in order to calculate a state weight. Eventually, they define the
state of the gene in the next step by thresholding it against 0.5. That is, if the
previous sum is greater or equal to 0.5, then the gene is active. Otherwise, it
is inactive.

In our work, we formalize the concept of LN. We also propose a
membrane computing model to capture the behaviour of logic network
constructed by the improved LAPP method. For its simulation, the model
has been specified on P–Lingua [4]. In addition, we propose a methodology
for the simulation and analysis of LNs, based on a custom–designed interface
on MeCoSim.

3.2 A Formal Framework: Population Dynamics P Systems

Definition 3. A population dynamics P system (PDP system, for short) of
degree (q, m) with q, m ≥ 1, taking T ≥ 1 time units, is a tuple

(G, �,�, T, RE , μ, R, { fr, j : r ∈ R, 1 ≤ j ≤ m},
{Mi j : 1 ≤ i ≤ q, 1 ≤ j ≤ m})

where:

� G = (V, S) is a directed graph. Let V = {e1, . . . , em} whose elements
are called environments;

� � is the working alphabet and � � � is an alphabet for the objects that
can be present in the environments;

� T is a natural number that represents the simulation time of the system;
� RE is a finite set of communication rules among environments of the

form (x)e j

p−−→ (y1)e j1
. . . (yh)e jh

, where x, y1, . . . , yh ∈ �, (e j , e jl) ∈
S (l = 1, . . . , h) and p(t) ∈ [0, 1], for each t(1 ≤ t ≤ T). Function p
depends on the variables x, j, j1, . . . , jh . If p(t) = 1, for each t, then
we omit the probabilistic function. These rules verify the following:
for each environment e j and for each object x, the sum of functions

associated with the rules from RE whose left-hand side is (x)e j

coincides with the constant function equal to 1.
� μ is a rooted tree consisting of q membranes, with the membranes

injectively labeled by 1, . . . , q. The skin membrane is labeled by
1. We also associate electrical charges from the set {0,+,−} with
membranes.

� R is a finite set of evolution rules of the form r : u[v]αi → u′[v′]α
′

i

where u, v, u′, v′ are multisets over �, i ∈ {1, . . . , q}, and α, α′ ∈
{0,+,−}.

� For each r ∈ R and for each j , 1 ≤ j ≤ m, fr, j is a computable
function whose domain is {1, . . . , T } and its range is [0, 1], verifying
the following:

� For each u, v ∈ �∗, i ∈ {1, . . . , q} and α, α′ ∈ {0,+,−}, if r1, . . . , rz

are the rules from R whose left-hand side is u[v]αi and the right-hand
side have polarization α′, then

∑z
j=1 fr j (t) = 1, for 1 ≤ t ≤ T .

� If (x)e j is the left-hand side of a rule r ∈ RE, then none of the rules
of R has a left-hand side of the form u[v]α0 , for any u, v ∈ �∗ and
α ∈ {0,+,−}, having x ∈ u.

� For each j (1 ≤ j ≤ m), M1 j , . . . ,Mq j are multisets over �, describ-
ing the objects initially placed in the q regions of μ, within the environ-
ment e j .

A system as described in the previous definition can be viewed as a
set of m environments e1, . . . , em linked between them by the arcs from
the directed graph G. Each environment e j contains a P system, � j =
(�,μ, R,M1 j , . . . ,Mq j), of degree q , such that M1 j , . . . ,Mq j represent
the initial multisets for this environment, and every rule r ∈ R has a
computable function fr, j associated with it.

The tuple of multisets of objects present at any instant in the m
environments and at each of the regions of each � j , together with the
polarizations of the membranes in each P system, constitutes a configuration
of the system at that instant. At the initial configuration we assume that all
environments are empty and all membranes have a neutral polarization.

We assume that a global clock exists, marking the time for the whole
system, that is, all membranes and the application of all rules (both from
RE and R) are synchronized in all environments.

The P system can pass from one configuration to another by using the
rules from R = RE ∪ ⋃m

j=1 R� j as follows: at each transition step, the
rules to be applied are selected according to the probabilities assigned to
them, and all applicable rules are simultaneously applied in a maximal way.

After the application of the selected rules, no further rule can be applied
to the remaining objects. For each j (1 ≤ j ≤ m) there is just one further
restriction, concerning the consistency of charges: in order to apply several
rules of R� j simultaneously to the same membrane, all the rules must have
the same electrical charge on their right-hand side.

When a communication rule between environments (x)e j

p−−→ (y1)e j1

. . . (yh)e jh
is applied, object x passes from e j to e j1 , . . . , e jh possibly modified

into objects y1, . . . , yh , respectively. At any instant t , 1 ≤ t ≤ T , for each
object x in environment e j , if there exist communication rules whose left-
hand side is (x)e j , then one of these rules will be applied. If more than
one communication rule can be applied to an object, the system selects one
randomly, according to their probability which is given by p(t).

4 A FAMILY OF P SYSTEMS BASED ON LOGIC NETWORKS

In this work, we present a family of P systems, known as logic network
dynamic P systems (LN DP systems), which is an expansion of PDP systems.
These P systems aim to capture the behaviour of LNs constructed by the
improved LAPP method [17].

An LN DP system �L N of degree (q, m) with q, m ≥ 1, taking T ≥ 1
time units, is a tuple

�L N = (G, �,�, T, RE , μ, R, { fr, j : r ∈ R, 1 ≤ j ≤ m},
{Mi j : 1 ≤ i ≤ q, 1 ≤ j ≤ m}, {M j : 1 ≤ j ≤ m}),

where, (G, �, �, T , RE , μ, R, { fr, j : r ∈ R, 1 ≤ j ≤ m}, {Mi j : 1 ≤ i ≤
q, 1 ≤ j ≤ m}) is a PDP system; fr, j = 1 for r ∈ R, 1 ≤ j ≤ m; for each j
(1 ≤ j ≤ m), M j are multisets over �, describing the objects initially placed
in environment e j .

That is, an LN DP system can be viewed as a PDP system whose
initial multisets are placed in the environments of the system. The improved
LAPP method is a deterministic algorithm, so probabilities associated to
communication rules are not necessary. Thus, they are not used in LN DP
systems. In practical terms, rules in LN DP system do not compete for
objects. That is, the multisets associated to the left–hand sides of any two
rules associated to any membrane in a system are disjoint. As the PDP
system framework requires every rule to have an associated probability, the
probability associated to every rule in LN DP systems is equal to 1. The
PDP system framework also requires that the sum of all probabilities of these
rules with the same left–hand side (that is, all rules within the same block)
is equal to 1. As the multisets associated to the left–hand sides of any two

rules associated to any membrane in a system are disjoint, there are no two
rules with the same left–hand side. Thus, that property is conserved in LN
DP systems.

4.1 A logic network model based on LN DP systems
Here, we present a logic network model that is based on LN DP systems.
For a given network, each gene is represented by a P system with a single
membrane inside an environment. The state of each gene in the network
at every moment will be coded by the presence of a counter (1: active; 0:
inactive) in its environment. This model covers every P system in this family,
so the multisets, rules, etc. depend on the specific instance of a LN. The
general model requires the use of parameters in our constructs, as explained
at the end of this subsection. Let L N be a logic network. Let ng, nu, nb
be the number of genes, unary and binary interactions, respectively. Let
m = ng + nu + nb. The model consists of the following PDP system of
degree (1, n),

�L N = (G, �,�, T, RE , μ, R, {Mi j : 0 ≤ i ≤ q − 1, 1 ≤ j ≤ m},
{M j : 1 ≤ j ≤ m})

where:

� G is a directed graph containing a node (environment) for each gene,
unary or binary interaction, following this order.

� In the alphabet �, we represent gene states, interaction types, contribu-
tion weights and targets as the following.

� = {ai , bi , ci : 0 ≤ i ≤ 1} ∪ {go, d0}∪
{unop j , binop j : 1 ≤ j ≤ 4} ∪
{aux Desti,g j,1,k : 0 ≤ i ≤ 1, 1 ≤ j ≤ ng,

1 ≤ k ≤ nb + nu} ∪
{desti,g j,1,tk,1+ng : 0 ≤ i ≤ 1, 1 ≤ j ≤ ng, 1 ≤ k ≤ nb} ∪
{desti,g j,1,untk−nb,1+ng+nb : 0 ≤ i ≤ 1, 1 ≤ j ≤ ng,

nb + 1 ≤ k ≤ nb + nu} ∪

{etk,4∗i+(1−i)∗(1−tk,4),tk,1+ng : 0 ≤ i ≤ 1, 1 ≤ k ≤ nb} ∪
{etk,6∗i+(1−i)∗(1−tk,6),tk,1+ng : 0 ≤ i ≤ 1, 1 ≤ k ≤ nb} ∪
{euntk−nb,4∗i+(1−i)∗(1−untk−nb,4),untk−nb,1+ng+nb :
0 ≤ i ≤ 1, nb + 1 ≤ k ≤ nb + nu} ∪

{eFtk,8∗i+(1−i)∗(1−tk,8),tk,1+ng : 0 ≤ i ≤ 1, 1 ≤ k ≤ nb} ∪
{eFi,(untk,1+ng+nb) : 0 ≤ i ≤ 1, 1 ≤ k ≤ nu} ∪
{clock j : 0 ≤ j ≤ cc + 3}.

� Object go triggers the start of a new cycle in the evolution of the
gene states. Objects clocki synchronize some steps of the cycle, such
as the sum of the different contributions to each gene as a result of
the interactions of each cycle.

� Objects ai represent the gene state: (a0: inactive; a1: active).
Objects bi represent the weight of the interactions (including self–
influence interactions).

� Objects unop j , 1 ≤ j ≤ 4, participate in the unary interactions,
representing strong promotion, strong inhibition, weak promotion and
weak inhibition, respectively. Objects binop j , 1 ≤ j ≤ 3, participate
in the binary ones, representing or, and and xor.

� Objects desti, j,k , aux Desti, j,k , ei,k , ci and eFi,k are auxiliary objects
involved in the interactions.

� The environment alphabet is � = � \ {d0}.
� Each cycle evolution from a real network configuration to the next one

involves 15 computational steps, so T = 15 · Cycles, where Cycles is
the number of cycles to simulate.

� μ = []1 is the membrane structure.
� The initial multisets are:

� Mgk,1 = {a1
gk,3 , a0

1−gk,3,go : 1 ≤ k ≤ ng}. That is, inside each gene
environment (labelled by gk,1), we have its gene state (a1: active or
a0: inactive), depending on the introduced value gk,3, 0 or 1. Object
go triggers the start of a cycle.

� Mng+ti,1 = {binopti,2 : 1 ≤ i ≤ nb}. That is, inside each binary inter-
action environment (labelled by ng + ti,1, we have an object
(binopti,2) representing the interaction (or, and, xor).

� Mng+nb+unti,1 = {unopunti,2 : 1 ≤ i ≤ nu}. That is, inside each unary
interaction environment (labelled by ng + nb + unti,1, we have
an object (unopunti,2) representing the interaction (strong or weak
promotion or inhibition).

� The rules of R and RE to apply are shown as follows. Their execution
follows the sequential order. Environment rules start with re and
skeleton rules start with rs.

� Cycle start, and contribution of each gene over its state: rs1,i ≡
go ai []1 −−→ cibi

max∗i b0
thresholdclock0[]1 : 0 ≤ i ≤ 1.

� For each source gene environment:

� Auxiliary objects aux Dest for all possible interactions from the
source gene are created:

re2,i, j,k ≡ (ci −−→{aux Desti,g j,1,k :

{1 ≤ k ≤ nb + nu}})g j,1 :

0 ≤ i ≤ 1, 1 ≤ j ≤ ng.

� Destination objects are created for each possible binary interaction,
including information about the target interaction environment
tk,1 + ng:

re3,i, j,k ≡ (aux Desti,g j,1,k −−→ desti,g j,1,tk,1+ng)g j,1

: 0 ≤ i ≤ 1, 1 ≤ j ≤ ng, 1 ≤ k ≤ nb.

� The same is done for each possible unary interaction, includ-
ing information about the target interaction environment
untk − nb, 1 + ng + nb:

re4,i, j,k ≡ (aux Desti,g j,1,k −−→
desti,g j,1,untk−nb,1+ng+nb)g j,1 : 0 ≤ i ≤ 1,

1 ≤ j ≤ ng, nb + 1 ≤ k ≤ nb + nu.

� For each actual interaction, in the gene environments, objects ei,k

(value i and target k) are created for the contribution of each source
gene involved in an interaction, from their source values tk,4 and tk,6

(binary interactions) and untk−nb,4 (unary interactions):

re5,i,k ≡ (desti,tk,3,tk,1+ng −−→
etk,4∗i+(1−i)∗(1−tk,4),tk,1+ng)tk,3

: 0 ≤ i ≤ 1, 1 ≤ k ≤ nb,

re6,i,k ≡ (desti,tk,5,tk,1+ng −−→
etk,6∗i+(1−i)∗(1−tk,6),tk,1+ng)tk,5 : 0 ≤ i ≤ 1, 1 ≤ k ≤ nb,

re7,i,k ≡ (desti,untk−nb,3,untk−nb,1+ng+nb −−→
euntk−nb,4∗i+(1−i)∗(1−untk−nb,4),untk−nb,1+ng+nb)untk−nb,3

: 0 ≤ i ≤ 1, nb + 1 ≤ k ≤ nb + nu.

� Sending the values to the interaction environments:

re8,i,k ≡ ()tk,1+ng(ei,tk,1+ng)tk,3 −−→(ai)tk,1+ng()tk,3

: 0 ≤ i ≤ 1, 1 ≤ k ≤ nb,

re9,i,k ≡ ()tk,1+ng(ei,tk,1+ng)tk,5 −−→(ai)tk,1+ng()tk,5

: 0 ≤ i ≤ 1, 1 ≤ k ≤ nb,

re8,i,k ≡ ()untk−nb,1+ng+nb(ei,untk−nb,1+ng+nb)untk−nb,3

−−→(ai)untk−nb,1+ng+nb()untk−nb,3

: 0 ≤ i ≤ 1, nb + 1 ≤ k ≤ nb + nu.

� Evaluating the result of the interactions (1/2).
� Binary interactions ot type or:

rs11 ≡ binop1 a0
2[]1 −−→ binop1 c0[]1,

rs12 ≡ binop1 a1
2[]1 −−→ binop1 c1[]1,

rs13 ≡ binop1 a1 a0[]1 −−→ binop1 c1[]1.

� Binary interactions ot type and:

rs14 ≡ binop2 a1
2[]1 −−→ binop2 c1[]1,

rs15 ≡ binop2 a0
2[]1 −−→ binop2 c0[]1,

rs16 ≡ binop2 a1 a0[]1 −−→ binop2 c0[]1.

� Binary interactions ot type x or:

rs17 ≡ binop3 a1
2[]1 −−→ binop3 c0[]1,

rs18 ≡ binop3 a0
2[]1 −−→ binop3 c0[]1,

rs19 ≡ binop3 a1 a0[]1 −−→ binop3 c1[]1.

� Unary interactions of types strong promotion, strong inhibition,
weak promotion and weak inhibition, respectively:

rs23,i ≡ unop1 ai []1 −−→ unop1 ci []1 : 0 ≤ i ≤ 1,

rs24,i ≡ unop2 ai []1 −−→ unop2 ci−1[]1 : 0 ≤ i ≤ 1,

rs25,i ≡ unop3 ai []1 −−→ unop3 ci
i []1 : 0 ≤ i ≤ 1,

rs26,i ≡ unop4 ai []1 −−→ unop4 c1−i
i []1 : 0 ≤ i ≤ 1.

� Evaluating the result of the interactions (2/2).
For each interaction, objects of type eF are generated and sent to the
target gene environment, depending on the previous result ci and the
type of the contribution (+ or −).

re27,i,k ≡ (ci)tk,1+ng()tk,7 −−→()tk,1+ng

(eFtk,8∗i+(1−i)∗(1−tk,8),tk,1+ng)tk,7 : 0 ≤ i ≤ 1, 1 ≤ k ≤ nb,

re28,i,k ≡ (ci)untk,1+ng+nb()untk,5 −−→
()untk,1+ng+nb(eFi,(untk,1+ng+nb))untk,5

: 0 ≤ i ≤ 1, 1 ≤ k ≤ nu.

� The contribution of each interaction is calculated from the previously
generated objects of type eF . These rules generate bi objects whose
multiplicity depends on the weight of the interaction.

rs29,i,k ≡ eFi,(tk,1+ng)[]1 −−→ bi
tk,9 []1 :

0 ≤ i ≤ 1, 1 ≤ k ≤ nb,

rs30,i,k ≡ eFi,(untk,1+ng+nb)[]1 −−→ bi
untk,6 []1 :

0 ≤ i ≤ 1, 1 ≤ k ≤ nu.

� Once the contribution of all the interactions over each gene has been
received, the global influence over the gene is calculated. The next
rule removes each pair of objects (b1,b0), whose contributions cancel
each other.

rs31 ≡ b1 b0[]1 −−→[]1.

� The clock objects control the cycle flow, ensuring that all the
contributions caused by the interactions and auto-influences have
reached the target genes.

rs32,i ≡ clocki−1[]1 −−→ clocki []1 : 1 ≤ i ≤ cc + 3.

� If objects b0 are present, then the next state of the gene will be
inactive. The object d0 is created inside the membrane labelled by
1, and in a subsequent step will imply a new change of the charge of
the membrane. Otherwise, any objects b1 are removed, becoming the
state of the gene active. The remaining objects (not used destination
objects, for example) are removed from the configuration.

rs33 ≡ b0[]−1 −−→[d0]−1 , rs34 ≡ b1[]−1 −−→[]−1 ,

rs35,i, j,k ≡ desti, j,tk,1+ng[]−1 −−→[]−1 : 0 ≤ i ≤ 1,

1 ≤ j ≤ ng, 1 ≤ k ≤ nb,

rs36,i, j,k ≡ desti, j,untk−nb,1+ng+nb[]−1 −−→[]−1
: 0 ≤ i ≤ 1, 1 ≤ j ≤ ng, nb + 1 ≤ k ≤ nb + nu,

rs37 ≡ [d0]−1 −−→[]+1 .

� Once the last step of the cycle is reached, the state of the gene is set
to active (1) or inactive (0) depending of the charge of membrane
labelled by 1. Although electrical charges are no part of gene
regulation, its use is required to set the state of the skin membrane of
each environment, ensuring that all remaining objects d0 are removed.

Parameter Description

General parameters for the system

ng Number of genes in the network
nb Number of binary interactions
nu Number of unary interactions
threshold Maximum strength for an interaction
cc Clock control

Gene configuration parameters

gi,1 Gene number (id)
gi,3 Initial state of the gene

Binary interactions parameters

ti,1 Binary interaction number (id)
ti,2 Interaction type (or: 1, and: 2, xor: 3)
ti,3 1st source gene number (id)
ti,4 1st source gene contribution (positive: 1, negative: 0)
ti,5 2nd source gene number (id)
ti,6 2nd source gene contribution (positive: 1, negative: 0)
ti,7 Destination gene number (id)
ti,8 Influence over destination gene (positive: 1, negative: 0)
ti,9 Strength of the destination

Unary interactions parameters

unti,1 Unary interaction number (id)
unti,2 Interaction type (strong promotion: 1, inhibition: 2; weak ones: 3, 4)
unti,3 Source gene number (id)
unti,4 Source gene contribution (positive, negative)
unti,5 Destination gene number (id)
unti,6 Influence over destination gene (positive, negative)

TABLE 1
Parameters in the logic network model based on LN DP systems

In addition, the corresponding go objects are generated, the clock is
removed and the charge of the membrane is reset to 0.

rs38 ≡ clockcc+3[]+1 −−→ go a0[]0
1,

rs39 ≡ clockcc+3[]−1 −−→ go a1[]0
1.

4.2 LN state interpretation
After the P system takes a predefined number of computation steps, the
output information is analysed. This output information is encoded as the
multiplicity of objects a1 and a0. Environments with an object a1 represent
active genes (a0 represent inactive genes). Due to the nature of the system,
membrane genes cannot have objects a1 and a0 simultaneously. If no object
a1 or a0 is present within the membrane gene, then this membrane gene

Real-life

Phenomena

Logic networks

with weights

LN DP systems

model

Simulation results

LAPP algorit
hm

P systems

modeling

M
od

el

sim
ul

ati
on

Experimental validation

V
alidation

against LN

FIGURE 3
Methodology overview

cannot be evaluated yet. That is, it will take some additional computation
steps for the gene network to reach an evaluable state.

5 SIMULATION OF LOGIC NETWORKS IN MECOSIM

In this section, we specify the model from Section 4.1 in P–Lingua,
simulate and analyze LNs. This specification adheres to P–Lingua version
4 standard, available at [8]. Moreover, we also develop a custom interface
with MeCoSim [9, 10] to ease the introduction of specific data. MeCoSim is
a software interface with input and output tables and mappings from input
data into model parameters. Then, it uses P–Lingua to simulate the model.

We start from an LN, possibly obtained by applying LAPP to a
set of genetic profiles from real–life phenomena, and we instantiate its
corresponding LN DP system. To do so, we load the model specification
(available by contacting the authors) and fill in the input tables. Then,
we click on Simulation > Simulate! and visualize the results. The
whole process is depicted in Figure 3.

These results can be contrasted against real data, when available. These
data are composed of initial and final network states. This assay is known as
experimental validation [3], in contrast to formal validation.

As an example of application, Figure 4 depicts a case study on a toy, 3–
gene network extracted from [14]. In this example, all interactions have the
same weight (say 100), so they are omitted from the picture. The MeCoSim
interfaces (input data and results chart) are shown in Figure 5. For a more
detailed description of the whole process and a real–life case study, see [16].

6 CONCLUSIONS

In this work, we have presented a model for genetic networks based on
P systems. In contrast to ODEs, P systems do not require assumptions

Network structure
Network transitions

FIGURE 4
A toy example

Genes and interactions input tables

Results chart

FIGURE 5
MeCoSim interface (input data, results chart) for the toy example

on the modelled phenomena, and displays desirable features such as
modularity [13]. The type of gene networks we have modelled are known
as logic networks, in which one or more genes interact in order to influence
another one. This model consists of a family of P system – LN DP systems,
which are defined as an extension of PDP Systems, a membrane computing
framework successfully applied on ecological modelling [3]. Our work
proves the versatility of PDP systems by applying them to a completely
different scenario from its original target phenomena. In addition, we provide
a methodology to the simulation of LN DP systems on MeCoSim, illustrated
with a toy example on a GRN taken from the literature [14].

As an additional complementary work, we propose the application of this
model for large logic networks, such as Arabidopsis thaliana, a well–studied
plant in systems biology. In this line, a first work has been published in [16].
We intend to develop this further by applying more well–grounded simulation
methods, such as the Gillespie algorithm [5]. Another line for further work
is to consider the feature of randomness in gene networks. That is to say,
we take into account dynamics in which gene states are not deterministically
dictated by network interactions, but also subject to random modifications.
Such research could shed light into non–deterministic cell differentiation
processes, so as to compare these new dynamics with the ones displayed by
the deterministic model proposed here.

ACKNOWLEDGEMENTS

Luis Valencia–Cabrera, Manuel Garcı́a-Quismondo and Mario J. Pérez-
Jiménez are supported by project TIN2012-37434 from “Ministerio de
Ciencia e Innovación” of Spain, co-financed by FEDER funds and “Proyecto
de Excelencia con Investigador de Reconocida Valı́a P08-TIC-04200” from
Junta de Andalucı́a. Manuel Garcı́a-Quismondo is also supported by the
National FPU Grant Programme from the Spanish Ministry of Education.
Linqiang Pan is supported by National Natural Science Foundation of China
(61033003 and 91130034).

REFERENCES

[1] Bowers, P.M., Cokus, S.J., Yeates, T.O. and Eisenberg, D. (2004) Use of logic relationships
to decipher protein network organization, Science, 5705 (306): 2246–2249.

[2] Bowers, P.M., O’Connor, B.D., Cokus, S.J., Sprinzak, E., Yeates, T.O. and Eisenberg, D.
(2005) Utilizing logical relationships in genomic data to decipher cellular processes, The
FEBS Journal, 272 (1): 5110–5118.

[3] Colomer, M.A., Pérez-Hurtado, I., Pérez-Jiménez, M.J. and Riscos-Núñez, A. (2012)
Comparing simulation algorithms for multienvironment probabilistic P systems over a
standard virtual ecosystem, Natural Computing, 11 (3): 369–379.

[4] Garcı́a-Quismondo, M., Gutiérrez-Escudero, R., Martı́nez-del-Amor, M.A., Orejuela-
Pinedo, E. Pérez-Hurtado, I. (2009) P-Lingua 2.0: A software framework for cell-like P
systems, International Journal of Computers, Communications and Control, IV: 234–
243.

[5] Gillespie, D.T. (1977) Exact stochastic simulation of coupled chemical reactions, The
Journal of Physical Chemistry, 81 (25): 2340–2361.

[6] Hinze, T., Hayat, S., Lenser, T., Matsumaru, N. and Dittrich, P. (2007) Hill Kinetics Meets
P Systems: A Case Study on Gene Regulatory Networks as Computing Agents in silico
and in vivo, In Eleftherakis, G., Kefalas, P., Păun, Gh., Rozenberg, G. and Salomaa, A.
eds. Workshop on Membrane Computing, Lecture Notes in Computer Science, 320–335.

[7] Kawai, R. (2012) Nonnegative compartment dynamical system modelling with stochastic
differential equations, Applied Mathematical Modelling, 36 (12): 6291–6300.

[8] P–Lingua webpage, Pérez–Hurtado, Ignacio, http://www.p-lingua.org/wiki/index.php/
Examples

[9] MeCoSim Web Page (2010) www.p-lingua.org/mecosim

[10] Pérez-Hurtado, I., Valencia-Cabrera, L., Pérez-Jiménez, M.J., Colomer, M.A. and Riscos-
Núñez, A. (2010) MeCoSim: A general purpose software tool for simulating biological
phenomena by means of P Systems, IEEE Fifth International Conference on Bio-inpired
Computing: Theories and Applications (BIC-TA 2010), vol I, 637–643.

[11] Păun, Gh. (2000) Computing with Membranes, Journal of Computer and System Sciences,
61: 108–143.

[12] Păun, Gh., Rozenberg, G. and Salomaa, A. eds. (2010) The Oxford Handbook of
Membrane Computing, Oxford University Press, Inc., New York, NY, USA.

[13] Romero-Campero, F.J. and Pérez-Jiménez, M.J. (2008) A Model of the Quorum Sensing
System in Vibrio fischeri Using P Systems, Artificial Life, 14 (1): 95–109.

[14] Schlitt, T. and Brazma, A. (2007) Current approaches to gene regulatory network
modelling, BMC Bioinformatics, 8 (Suppl 6): S9.

[15] Shmulevich, I. and Dougherty, E. R. (2010) Probabilistic Boolean Networks: The
Modeling and Control of Gene Regulatory Networks, Society for Industrial and Applied
Mathematics.

[16] Valencia-Cabrera, L., Garcı́a-Quismondo, M., Su, Y., Pérez-Jiménez, M.J., Yu, H. and Pan,
L. (2013) Analysing gene networks with PDP Systems. Arabidopsis thaliana, a case study,
Proceedings of 11th Brainstorming Week on Membrane Computing (BWMC13), Fénix
Editora, in press.

[17] Wang, S., Chen, Y., Wang, Q., Li, E., Su, Y. and Meng, D. (2010) Analysis for gene
networks based on logic relationships, Journal of Systems Science and Complexity, 23
(5): 999–1011.

