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Abstract 

In this paper we address the problem of ranking a set of alternatives with partial information about the weighting 
coefficients. We introduce a family of quasiorders that are easily interpretable and manageable, which includes 
among others, the natural quasiorder in R n and other well known preference structures in the literature. The 
enrichment of the preference structure with respect to the natural quasiorder is measured by means of an absolute 
measure we introduce. 
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1. Introduct ion  

Nearly all the real world decision problems 
involve more than one objective and can be for- 
mulated in a natural way using the multi-criteria 
approach: 

'Max' f ( x )  - ( f , ( x ) , . . . , f n ( X ) )  (1) 

where f i :X - -*  ~ is the evaluation of the i-th 
objective (i = 1 . . . .  , n) and X is the set of alter- 
natives to be ranked. 

In this formulation, and without additional in- 
formation about the objectives, one can obtain a 
partial order R I in X: Given two alternatives x, 
y ~ X, we say that x is as preferred as y follow- 
ing R ,  (xRzy)  iff 

* Corresponding author. 

f i ( x ) > f i ( y )  V i = l , . . . , n ,  

or equivalently, 

xR iy  iff ~_, Wi l l (X)>  ~_, wi f i (y  ) 
l <i <_n l <_i <_n 

V w > O ,  w ~  ~. 

AS the partial order Rz is typically too vague 
(and the set of nondominated alternatives is too 
large) a number of procedures has been proposed 
in order to enrich the preference structure above 
(Promethee [5], Electre [19], interactive methods 
[11], the utility approach [9], etc.). The interested 
reader is referred to the seminal paper of Roy 
[20] for a synthesis of the main approaches to this 
problem which have been studied. 

In the utility approach, one assumes the exis- 
tence of a function U: ~ ~ R, in such a way that 
an alternative x is considered as preferred to y iff 

U ( f i ( x )  . . . . .  fn (X) )  >-- U ( f l ( Y )  . . . . .  fn(Y))"  
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Furthermore,  under  mild regularity conditions 
[12], U is a linear function, i.e.: one assumes the 
existence of a vector w* = (w*, . . . ,w*)_> 0 such 
that the Decision Maker (D-M) preferences are 
given by the order  R: 

xRy iff ~,, w T k ( x  ) ~ ~_, w ~ k ( y  ). 
l ~ i ~ n  l ~ i ~ n  

However, one of the main drawbacks of this 
approach is that the D-M would have to estimate 
numerically the weight (the vector w*) that each 
criterion brings to the final score of an alternative 
and he is not always willing to do so [6]. This 
choice is a critical step, and, although some 
methodologies have been developed to attain this 
goal, such as the Entropy method [11], the Saaty 
method [21], the Solymosi and Dombi technique 
[23,15], etc., they require, in our opinion, too 
much specialized information from the D-M. 

Instead of providing the exact w*, the D-M 
might have some knowledge about w* and this 
information can be used to obtain a (partial) 
ranking in X which enriches the original prefer- 
ence structure R I. 

In this paper  we show that exact numerical 
weights are not always necessary. Instead of this 
exact estimation, the D-M gives only certain lin- 
ear relations which express partial information 
about the marginal substitution rates between the 
criteria. This approach is not new and some work 
in this field can be found in the literature; Kir- 
wood and Satin [13], Hazen [10], or Eiselt and 
Laporte  [8], derive conditions to determine ordi- 
nal rankings between alternatives using partial 
information about weighting constants. 

For instance, in the qualitative approach [17] 
the D-M is requested to estimate only the rank 
order  of the criteria. If the criteria are arranged 
in decreasing order  of preference, with w 1 > • • • 
> wn, then 

xny iff w ( f ( x ) - f ( y ) ) > O  Vw>_O, 

WI~_ . . .  ~_Wn 

or, equivalently (see [17]) 

xRy iff g f j ( x ) >  ~ ] f j ( y )  V i = l , . . . , n .  
j<_i j<i  

In a more general setting, the D-M is re- 
quested to estimate a linear operator  which mixes 
the weights, i.e. the D-M asserts that the vector 
w* belongs to a certain polyhedron. Thus, given a 
linear operator  A, we define the preference be- 
tween the alternatives by means of the binary 
relation R A as 

xRay  iff w ( f ( x ) - f ( y ) ) > _ O  V w > O ,  

Aw > O. (2) 

All these binary relations are quasi-orders (i.e. 
reflexive and transitive) [26] and can be used to 
partially rank the alternatives, although their use 
requires the solution of a linear problem to com- 
pare every pair of alternatives. 

However, if the extreme points w l , . . . , w  m of 
n the polytype {w : Aw > O, w > O, F~i= lwi - 1} are 

known, the relation R a is 

xRAy iff w k ( f ( x ) - - f ( y ) )  >O 
Vk = 1 , . . . , m ,  (3) 

which simplifies its use. 
The following example iUustrates the com- 

ments. 

Example 1.1. The staff manager of a consulting 
firm must rank four different executives of a bank 
according to the budget they estimate for next 
year based on three financial criteria. These cri- 
teria are: loans given to clients (C1), clients' sav- 
ings deposits (C 2) and redemptions achieved (C3). 

Each manager's budget must adhere to the 
financial policy of the bank. This policy is given in 
form of three constraints: 
1. The bank wishes that the credits are greater 

than the sum of the redemptions plus 1.5 times 
the savings. 

2. The redemptions must be less than 0.1 times 
the savings deposits. 

3. The redemptions must be non-negative. 
Consider the following matrix where the row i 

represents the action proposed by the manager i, 
i =  1 , . . . , 4 :  

C1 C2 C3 

a 1 11 12.2 0 

a 2 5 4 5 

a3 11 11 13 

a 4 11 12 2.3 
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Let  F denote the above matrix. The con- 
straints imposed by the bank can be written as 

W l > I . 5 w 2 + w  3, W 2 > 1 0 W  3, W3>__0.  

Thus, the linear operator  A and the extreme 
points matrix E, of the polytope {w : Aw > O, w > 
0, Ei~__ lW~ = 1} are respectively 

( 1 . - 1 . 5 - 1 )  1 5 2 7  
A =  0 1 - 1 0  and E =  2 10 5 27 

1 0 0 1 0 

and the qnasiorder given by the above constraints 
in the action's set is obtained from the matrix 
F × E b means of the natural quasiorder. Hence,  

-11 287 298 ] 
25 27 

5 2...~3 125 
5 27 

F × E =  11 11 22- ~ 

11 zs~ 298.3. 
25 27 

generates a relation which can be represented by 
the graph of Fig. 1. 

However, with a different set of constraints 
imposed by the bank given by the operator  A t , 
and whose matrix representation and extremes 
are 

1 - 2 . 5  - 2 . 5 )  
A1 = 0 1 - 1 3  , 

0 0 1 

1 5 35 
7 49 

E 1 0 2 13 
7 49 , 

0 0 +9 

it is easy to see that the quasiorder generated is 
actually an order whose graph is given in Fig. 2. 
Thus, it is possible in many cases to identify the 

Fig. 1. T h e  g raph  of R A. 

[K]-- [?N-- [ ]  

Fig. 2. T h e  g r a p h  of RAf 

preferred alternatives without knowing the nu- 
merical estimates of the criterion weights. 

However, the preference structure determina- 
tion in its general formulation (the determination 
of the set of non-dominated alternatives) is equiv- 
alent to the vertex polyhedron enumeration, 
which is not a polynomially solvable problem in 
the size of the inequality system defining the 
polyhedron [7,22]. 

The paper  is structured as follows: In Section 
2, we introduce a class of matrices (Q-operators) 
and study some properties of the quasiorders 
they induce. In Section 3, we characterize some 
Q-operators that are easily understandable and 
manageable. In Section 4, we extend the results 
obtained in previous sections to a broader  class. 
The paper  finishes with some conclusions and 
possible extensions. 

2. The class of Q-operators 

Every linear operator  A belonging to the set of 
real matrices of dimension k × n ,  defines a 
quasi-order R n on the set X of alternatives: 
Given a matrix A ~ R kxn we define the poly- 
topes C~ and CA: 

C ~ = ( w : A w > O , w > O ,  i=l~Wi=l} (4) 

and 

CA = w : A w > _ O ,  w i = l  , (5) 
i =  

and the quasiorder R a on X: 

xRaY iff  ~wifi(x)>__ ~wifi(y ) 
i = 1  i = 1  

Vw ~ C + . (6) 

In this section we introduce a class of qua- 
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siorders induced by linear operators  (Q-oper- 
ators) that have very interesting properties: the 
extreme points of the corresponding C~ can be 
very easily obtained. 

Definition 2.1. A linear operator  A ~R.x. is 
said to be a Q-operator if de t (A)  ~ 0 and A -1 _> 0 
(componentwise). 

For  a Q-operator  A, the inverse operator  A - 1  
exists; we denote its elements by aii, and by /x 
the vector of sums of the columns of A-1 :  

The matrix above is easily shown to be a Q-oper-  
ator, thus Paelinck's theorem appears  as a direct 
consequence of our Theorem 2.1. Indeed, A -a 
can be readily obtained, and the extreme points 
of C~ are the columns of the following matrix: 

1 1 / n  1 ~ . . .  

1 1 / n  0 -~ . . .  

0 0 . . .  1 / n  

1 / n  

0 0 . . .  1 / n  

A - l =  (a i j )  and /xj= E aij" (7)  
l <_i <_n 

Theorem 2.1. I f  A E ~ X n  is a Q-operator, then 
C ]  is the convex hull o f  the columns o f  A -  1, each 
one normalized in order to add 1. 

Proof. As A - l > - 0 ,  it follows that /~i > 0, Vj = 
1 , . . . , n .  

Let  D be the diagonal matrix such that dii = 

1/Iz i ,  Vi ,  and let e e R ~ denote the vector of 
ones. Given w e E ' ,  one has 

w ~ C ~  i f f 3 z  such that  w = A - a D z ,  Dz>_O, 

A - a D z  >_ O, e A - 1 D z  = 1 

i.e. (recall that D >_ 0, A -1 _> 0, eA-1D = e)" 

w e C ~  i f f 3 z  such that  w = A - 1 D z ,  z > O ,  

e z = l .  

In other words, w ~ C~ iff w can be represented 
as a convex combination of the columns of A - a D ,  
as asserted. [] 

Remark 2.1. The well-known Paelinck theorem 
[17] proven, among others, in [17,2,6,13], reduces 
to the calculus of the extreme points of the poly- 
hedron {w e R ~ : w a > w 2 > • • • >_ w~ >_ O, ~i= aWi 
= 1}, which is of the form C~ for the following 
matrix A: 

(010  0 
1 ~ 1  . . .  0 

0 0 . . .  1 

Remark  2.2. In the centroid method of Solymosi 
and Dombi  [23,15], given the polyhedron C~,  one 
proposes as w* the average vector of the extreme 
points of C ] .  By the theorem above, this w* is 
easy to obtain when A is a Q-operator:  w * =  
( 1 / n ) A - a e .  

Remark  2.3. It  should be noted that these kinds 
of quasi-orders do not necessarily need n linear 
relations. If  the D-M is only able to supply k < n, 
these operators  can be t ransformed without in- 
corporating any additional information. This is 
possible by adding the natural  relations w i > 0 
and removing the redundant  ones. As an illustra- 
tion, consider a problem with three objectives, 
where the D-M states that w a > w 2 but is unable 
to provide more information about the weights. 
Then he will have the following operator  A and 
its inverse A-a:  

A =  1 , A - 1 =  1 0 , 
0 0 1 

and the quasi-order would be 

( f a ( x )  > f l ( Y ) ,  

XRAY iff ~ f a ( x )  + f 2 ( x )  > fx (Y)  + f 2 ( Y ) ,  

I f 3 ( x )  > f3 (Y)"  

Remark  2.4. Another  important  property of Q- 
operators  is the fact that they induce interval 
weights, which are easy to obtain, allowing a 
certain degree of sensitivity analysis in the nu- 
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merical estimation of weights. The exact interval 
of w i ~ C ~ ,  V i  = 1 . . . . .  n,  is given by 

WiG [Inj!n(olij//~j), m a x ( o t i j / I X j ) l ,  i =  1 , . . . , n ,  

where ai j  and /xy were defined in (7). 
Indeed, for i = 1 , . . . , n ,  let z i be the optimal 

value of the linear program max{w i : w ~ C~  }. This 
z~ is attained at an extreme point of C~ and, 
thus, by Theorem 2.1, z~ = m a x j ( a i J i x j ) .  Simi- 
larly, one concludes with the minimum. 

For instance, for the quasiorder R A described 
in Remark 2.1, it is easily seen that 

w l ~ [ 1 / n ,  11, w 2 ~ [ 0 , ½ 1 , . . . ,  w , ~ [ O ,  1 / n ] .  

As a final consequence, observe that one can 
also obtain the maximum and minimum value 
associated with each alternative x E X when the 
weight w varies in C~, which is the basis of some 
decision-making methods (see, e.g. [3]). Indeed, 
as finding the maximum (respect. the minimum) 
value of w f ( x )  when w varies in C~ reduces to 
solving the linear program m a x { w f ( x ) : w  ~ C~}  
(respectively m i n { w f ( x )  : w ~ C~}), Theorem 2.1 
implies that 

m i n  ~ ai---k f i ( x )  <_wf(x) < max ~ °tik f i ( x  ) 
k i=1 tZk k i = 1  ~ k  

V w ~ C ~ ,  x ~ X .  

The family of operators proposed in the previ- 
ous theorem is maximal in the sense that the 
unique set of weights in ~n with n extreme points 
whereby all the weights generated are non-nega- 
tive are those with A -  ~ _> 0. This is stated in the 
following theorem: 

First, we show that D A = D~.  Indeed, it is 
evident that D~ c D A. Now, let w ~ D A, and we 
will show that w ~ D~.  Obviously, if w = 0, then 
w ~ D~,  so we can assume that w v~ 0; in other 
words, we only have to consider the cases (ew ~ O) 

and (ew < O, w 4= 0). 
Case 1. e w > O .  Let w l = ( 1 / ( e w ) ) w ~ C  A =  

C~. Hence, w 1 > 0, thus w >_ 0, which (recall that 
w E D A) implies that w ~ D~.  

Case 2. ew < O, w 4= O. As by assumption C A v~ 
¢, there exists w ° ~  C A = C J .  Define w 1 as fol- 
lows: 

1 - -  e w  
w 1 - -  - - w  d- w ° .  

1 - ew 1 - ew 

S u c h  w 1 verifies that w 1 ~ D A and ew I = 0. Fur- 
thermore, at least one component of w 1 is nega- 
tive. Indeed, if w 1 > 0, then, as ew 1 = O, it would 
follow that w I = 0, thus ( e w ) w  ° = w; as w 4= 0, 
ew < O, one would obtain ew < 0, thus 0 < A w  = 
( e w ) A w ° ;  as 0 < A w  ° and ew <0 ,  this would 
imply that A w  ° =  O, i.e.: (recall that A -x exists) 
w ° = 0, which is a contradiction. 

Hence, w a has at least a negative component, 
thus there exists some A, 0 < h < 1 such that the 
vector w 2 = hw* + (1 - h)w ° verifies that A w  2 > 
O, ew 2 > 0, w 2 has at least a negative component. 
By case 1, w e ~ D ~ ,  which is a contradiction. 
Hence, D A = D ~ ,  as we claimed. 

With this, we are in position to show that 
A - l >  0. Indeed, let v be a column of A - l ;  as 
AA -1 gives the identity matrix, it follows that 
A v  >_ O, i.e., v ~ D A, thus v > 0. Then, we have 
shown that all the columns v of A - 1  verify that 
v >_ 0, thus A - 1  >_ 0, as asserted. [] 

Theorem 2.2. L e t  A ~ ~n×n be a linear operator 

such that  det(A) ~ 0 and C A -4= ~J. Then C + = C A 
i f f  A - l  >O. 

Proof. It is evident that, if A - l >  0 then C~ = 
C A. We now show the converse. Let A be an 
n × n matrix with det(A) ~ 0 such that C~ = C A. 
Define the sets D n and D~ :  

D 4 = { w E ~ n : A w  >>. O}, 

D ~ = { w ~ n : A w  >O,  w > O } .  

The process of supplying information to the 
initial multi-criteria problem transforms the pref- 
erence scheme. Thus in the beginning, i.e. when 
no information is available, one alternative x ~ X 
is preferred to another y ~ X  iff f ( x ) > _ f ( y )  
(component-wise), That is, with no information, 
the preference scheme coincides with the Pareto 
quasi-order. So, it seems natural that in the pro- 
cess of supplying information, the more precise 
information the D - M  gives, the more accurate 
quasi-order will be generated. It is evident that 
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every quasi-order R A with A -  1 >_ 0, improves the 
no-information-relation because it reduces the 
set of weights. But given two relations R A and 
R B it is not clear how to determine which of them 
is the most accurate. 

However,  this is very important  because it al- 
lows us to know the degree of knowledge shown 
by the D-M about his own problem. The more  
accurate the quasi-order, the bet ter  the knowl- 
edge of the problem. Moreover,  it seems natural  
that the accuracy of a relation is inversely propor-  
tional to the magnitude of its set of weights as is 
proposed by Rios [18], so we define the accuracy 
of R A in the following way. 

Definition 2.2. Given a Q-operator  A, the accu- 
racy of R A ,  AC(RA), is defined as IXn_l(C~) / 
/xn_l(C~), where /x,_ 1 represents the Lebesgue 
measure  in Nn-~. 

The limit values for the accuracy are given in 
the following proposition• 

Proposition 2.1. I f  A is a Q-operator, then 1 < 
AC(RA) < + oo. 

Proof. First of all, ix~_l(C~)<lx,_~(Cf-) ,  VA E 
N~xn. Second, as A -1 > 0, C~ is a simplex in the 
hyperplane El<_i<,wi = 1 and / X , _ x ( C ~ ) > 0 .  
Then 1 _< AC(R A) < +m. [] 

The value 1 corresponds to the first no-infor- 
mation case and, hence, we can see the accuracy 
as a reduction measure  of the set of weights. 
More precisely every operator  that generates an 
order on R n has an accuracy + ~ .  An order 
relation of this kind could be seen as the limit 
case of a convergent sequence of quasi-orders 
with increasing and more  precise information. 

Finally we shall give the expression of the 
accuracy: 

Theorem 2.3. Let A be a Q-operator. Then, 
AC(R A) = [det(A)lFIl<j_<~/xj, where tz k was de- 
fined in (7). 

Proof. First, recall that the volume of the simplex 
generated by the points xX, . . . ,  x n in ~ - 1  is [1] 

1 1 . . .  1 
1 x~ x 2 . . .  x~' 

( n -  1)~ det ". 

X 1 X 2 X n n--1 n--1 • " " n--1 

Let e i ~ ~" be the vector whose i-th component  
is one and zero the rest. Consider the system of 
reference ~ in the hyperplane H = {w:ew = 1} 
that has e 1 as origin and the vectors e i - e  1, 
i = 2 . . . . .  n, as generators.  Then, any point w = 
(wa,. • . ,  w n) ~ H has coordinates ( w 2 , . . . ,  w n) in 
~9~. 

By Theorem 2.1, C J  is generated by the vec- 
tors 

Olli// ]Z i I 

azz/tZi. ],  i =  l , . . . , n .  

I 
Olni /~ i  ] 

Hence,  

AC(RA)  

0/21/],-£1 0/22///£ 2 . . .  012n/1.£ n 
= det . . 

O/nl//l-L 1 ang///L~ 2 . . .  Olnn//l~n 

Thus (recall that /-~i = E]=lai j ,  Vi), 

AC(RA)  

[ a11//]£ 1 O/12///'£2 . . .  Olln//~n --1. 

= det " -. 

O/nl//~L~ 1 Oln2/~  2 . . .  a n n / ] £ n  

In other words, 

1 

AC(RA)  = [ d e t ( A - 1 ) [ F I ] = l ( 1 / / x j )  

n 
= [de t (A)  I 1-I/xj, 

j= l  

as asserted. [] 

Example 2.1. For  the quasiorder R A described in 
Remark  2.1, one has that d e t ( A ) =  1 and /xj = j ,  
Vj', thus AC(R  A) = n! 
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For  the quasiorders R A and RA~ introduced in 
Example 1.1, the improvement in the order rela- 
tion from R A to RA1 can be measured by means 
of the accuracy: AC(R A) = 67.5 and A C ( R q ) =  
171.5. 

3. Some families of Q-operators 

The widest class of operators we can deal with 
is characterized in Theorem 2.2. However, the 
condition shown in the previous paragraph is 
difficult to check beforehand. So in order to 
enable the D-M to apply these relations, we 
propose two sub-classes belonging to the original 
one with three important properties: 
1. to know beforehand that they belong to the 

broad class; 
2. to be easy for the D-M to understand and 

accept; 
3. to be sure that the set of weights it generates 

is not empty. 
A procedure to obtain a class of these operators 
consists in offering the D-M the comparison of 
each criterion fi(-) with at most a coalition of the 
remaining criteria. 

Usually, the exact determination of the weights 
is made by the trade-off between a criterion and 
the remainders. But this methodology cannot be 
used if the D-M does not give its preferences so 
precisely. 

Alternatively, our approach proposes to re- 
place this equivalence by inequalities which are 
quite acceptable for the D-M. In this process, the 
more precise information the D-M supplies, the 
more accurate the quasi-order it generates, and 
hence it is closer to the cardinal utility. 

Therefore,  the information required from the 
D-M about the criterion f i ( . )  which he is willing 
to give, will have the following form: 

Wi ~--- E aijwj, aij ~ O, E aij ~ 1, 
j4=i j~ i  

where aij represents the minimum marginal sub- 
stitution rate of f i  for fj. We should notice that 
when no information is available, this kind of 
relation will be wi > 0. But, even by supplying 
small values of ais one improves the accuracy of 
the quasi-order given by the D-M and avoids the 

problem of the exact estimation of the weights 
(cardinal utility). 

Example 3.1. We shall deal with the following 
example in which the D-M has three objectives, a 
set X of feasible alternatives, and he is able to 
give the required information in t h e  form of 
inequalities. 

W 1 ~ 0 . 5 W 2 ,  

W 2 ~ 0 . 5 W  1 q- 0 . 5 W 3 ,  

w 3 > 0.5w 2 . 

Then the operator  is defined by the matrix A ,  
whose extreme points are given by the columns of 
the second matrix and the interval weights are 

1 - 0 . 5  0 

A = - 0 . 5  1 - 0 . 5  

0 - 0 . 5  1 

1 1 1 
2 4 ~ W1 ~ [61 ' 1] 

1 1 1 E = 3 2 X W2 ~ [31-' 1 ] .  

: : : w.~[L½] 
6 4 g 

Hence its accuracy AC(R A) = 18. 

This example suggests the possibility that these 
kinds of operators have the property of inverse 
positive. In order to clarify the terms used in the 
following results we introduce two classical con- 
cepts [16]. 

Definition 3.1. A linear operator  A ~ R nxn is 
diagonally dominant if 

~_, lai j l  < lai i l ,  i =  l , . . . , n ,  
]~i 

and strictly diagonally dominant if strict inequali- 
ties hold for all i = 1 . . . . .  n. 

The result suggested by the example above is 
stated in the following theorem. 

Theorem 3.1. Let  A ~ ~nXn be a diagonally domi-  
nant  linear operator such that aij <_ 0, i v~ j ,  aii > 0, 
V i = 1 . . . . .  n, and  det(A)  v~ 0. Then A - :  > O. 
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Proof. For simplicity and without loss of general- 
ity, we consider aii = 1, V i .  As A is diagonally 
dominant, the inequalities aii >~ --Y'.j~iaij, Vi  = 
1 . . . .  ,n ,  hold. Then every cofac to r  A i j  of the 
matrix A is nonnegative [4]. 

Let A -1 be the inverse of A ,  whose elements 
are a u = A i i / d e t ( A ) .  Then the sign of aij., Vi, j, 
coincides with the sign of det(A) and 

d e t ( A )  

1 a12 . . .  a ln  

0 1 -- a12a21 . . .  a2n -- a lna21 
= det 

0 an2 -- a l 2 a n l  . . .  1 -- a l n a n l  

1 a12 " ' "  a ln  ~ 
= det O A 1 J = d e e ( A 1 ) .  

Besides, the matrix A~ is diagonally dominant 
because for all i = 2 . . . .  , n their elements verify 
1 - aliail > 0 and 

1 +  ~ aij+ail ( -  ~ a u ) > l +  Zaij>_O. 
j ¢ i , j ~ a  j4=l / j # i  

Thus, we can repeat  this reasoning n times and 
we obtain that det (A)  > 0. [] 

Corollary 3.1. Le t  A ~ ~ x ~  be a strictly diago- 
nally dominant  linear operator such that aii ~ 0, 
i =~ j, aii > O, Vi  = 1 . . . . .  n. Then A -  1 ~ O. 

he can compare the importance of several criteria 
between them. So the expression obtained for the 
criterion f~ ranked in i-th position is 

wi>- ~ , a u w  j, ai~>-O, 
j > i  

where  air represents the minimum marginal sub- 
stitution rate of f i  for fp 

In this sub-class the three properties enumer- 
ated at the beginning of Section 3 also hold and 
they belong to the class characterized by Theo- 
rem 2.2. 

Theorem 3.2. Le t  A ~ W '×n be a diagonal positive 
triangular linear operator such that a u < O, V j  > 1. 
Then A -  1 > O. 

Proof. In this situation d e t ( A ) =  ~ [ l < i < n a i i  > 0 
and the cofactors are 

A i j =  ]'-I a k k > 0  Vi  < j ,  
k ~ i , k ~ j  

A i i  = Y I  akk  > O, i = l , . . . , n ,  
k ~ i  

A q = 0  V i > j .  

Hence, reasons analogous to the ones we used in 
Theorem 3.1 prove this theorem. [] 

4. Non-homogeneous Q-operators 

This class of operators is closely related to a 
well known family of linear operators called M- 
operators [16,25], but the first one exhibits in its 
favor the easy interpretability and manipulation 
because the M-operators require properties of 
irreducibility or strict diagonal dominance, not 
needed in the proposed class. 

It must also be noted that the well known 
ordinal relation mentioned in Remark 2.1 is an 
example of such an operator. 

Another  important sub-class of operators be- 
longing to the class characterized by Theorem 2.2 
are the triangular and nonpositive off-diagonal 
elements. This type of operator  corresponds to 
the situation in which the D-M is able to do a 
certain rank order in the criteria and in addition, 

On many occasions, the D-M is willing to 
obtain at least certain levels in his weights [14], so 
the quasi-order is given by a linear operator  A 
and a level vector A _> 0. In this case, the set of 
feasible weights is given by the polytope 

( w  ~ ~ :w >__ O, A w  >_,t, C~,~) = 

w i = 1 / . (8) E 
i = l , . . . , n  I 

Hence the pair (A, A) induces the relation R(A,a ) 
given by 

XR(A,;~)y iff w ( f ( x ) - - f ( y ) )  >O 

Vw e C(5,, ). (9) 
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An interesting type of these relations are those 
defined by a matrix A with non-negative inverse 
(componentwise) and eA-1A < 1. In what follows 
we say these relations are induced by a non-ho- 
mogeneous Q-operator (A, A). To this kind of re- 
lations we can extend all the previous results with 
minimum effort as can be seen from the following 
theorem. 

Theorem 4.1. Let (A, A) be a non-homogeneous 
Q-operator. Then 

w - A - 1 A  
w ~ C ~ , A )  iff l _ e A _ l h  ~ C J .  

Proof. w~CfA ,h  ) iff 3 t > O I A w = h  +t ,  w > 0 ,  
ew = 1; i.e. (recall that A - 1  >__ 0): 

w ~ C ~ , ~ )  iff 3 t > O I w - A - ~ h = A - l t ,  

ew = 1. 
As  e(w - A - 1 A )  = 1 - eA-1h > 0, it follows that 

1 
w ~ C ~ , x )  iff : l t > O l  l _ e A _ l h  ( W - A - 1 h )  

t 
= A  -1 iff 3 t > _ _ 0 [ W  = A - i f ,  

1 - eA-1h 

e~ = 1, 

w - A - 1 A  
w h e r e f f -  1 - e A - 1 A  iff f f ~ C ~ .  

Which concludes the proof. [] 

Corollary 4.1. I f  (A ,  A) is a non-homogeneous 
Q-operator, then the set C(~,x) is the convex hull of  
the columns o f  the following matrix: 

/x11(1 - Eke_ltZkAk) 
A2 

A _ I [  1 - 

mogeneous case, we wish to pay some attention 
to the following problem. We know (recall Re- 
mark 2.3) that there exist many quasi-orders that 
produce the same intervals for their weights; but, 
are there any of them which must be empha- 
sized? 

The answer is affirmative and among these 
operators one is particularly interesting; it is 
known in the literature as E-cone [24] which is 
one of our non-homogeneous Q-operators. This 
kind of operator  (the E-cone) is based on rela- 
tions of the form w i>_k i, i = 1 , . . . , n  (one per 
objective)• Their  two main properties are that the 
set of weights it defines includes the interval 
weights considered beforehand and also is mini- 
mal (in the inclusion sense among the operators 
of this kind). We state and prove this in the 
following theorem• 

Let  k = (k 1 . . . .  , k n) >_ 0. Consider the set 

C+(l,k)---- ( ~n Wi__ Wi= } w ~ : >k i ;  ~ 1 
l <_i <_n 

and for each a , /3  ~ ~n such that 0 _< ag _< fig _< 1, 
Vi, and F,~=la i < 1 < E~=I/3g, the set (see [2]) 

X ( a , 1 3 ) = ( w ~ n : O t N W N / 3 ;  ~ w i = l } .  
l <_i <_n 

Theorem 4.2. The vector k = ( k l , . . . ,  k n) with k i 
= max(a i, 1 - Ej~//3j), i = 1 . . . . .  n, determines 
the minimum set CfLk) containing the set X(~,t~). 

A 1 

1 - / x K l ( 1  - Ek,2/ZkAk) 

An 

where IX j, j = 1 . . . . .  n, were defined in (7). 

. . .  A 1 

' ' •  /~2 

. . .  1 - - / X 2 1 ( 1 - - E k . n ~ k ; t k )  

Although all the properties holding in the ho- 
mogeneous case can be extended to the non-ho- 

Proof. For all ( k l , . . . ,  k n) >_ O, El <_i<_nki __< 1, one 
can obtain, using Corollary 4,1, that C(~,k ) is the 
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convex hull of  the columns of  the following ma-  
trix: 

1 -- E i ~ l k i  k s . . .  k 1 

k 2 1 - ~7,i4=2k i . . .  k 2 

kn  k n . . .  1 - Z i , n k i  

The  lower limit for wi, i = 1 . . . . .  n,  is given by 
k i = min(ki ,  1 - Z y . i k j )  , because  Es<_i<_nki < 1. 

To obtain the value of  k i ,  we solve the l inear 
p rog ram 

min{wi :  ~]  w j = l ; a j < w j ~ f l j ,  j = l  . . . .  , n }  
1 < < _ j < ~ n  

which by assumpt ion verifies 0 < oz i < w i < fi] < 1, 
Vj.  Thus,  it follows that  

k i = m a x ( a i ,  1 -  E f t ] ) ,  i = 1  . . . . .  n.  
j 4 = i  " 

Besides, it is easy to see that  if in one  j, k~. < k] is 
taken,  the  set + + Ciz, k ) c C(1,(k, ..... k5 ..... kn))" In  adds- 
tion, if in one  j ,  k i k], at least one  interval is 
not  included in C(+t,(k, ..... k} ..... k,)): 

1. I f  %- = max(ai ,  1 - Zk , j f ik) ,  then k~. > aj  = k 1 
and [a/ ,  fli] is not  included. 

2. Otherwise,  consider  if, whose componen t s  are: 
wl =i l l ,  V I C j ,  and ffS = 1 - E t~]~ t -  Then  ~ 
C~,k)  ~ X(,~,t3), bu t  • f~ C ~ , k  k' k ,,. 

, k  ~ '  " " " ' j '  " " " " n ) )  

Hence ,  some of  the intervals [az, fit], l C j, are 
not  included. 

Thus,  we conclude the theorem.  [] 

As  a direct  consequence  of  this theorem we 
can obtain  a sufficient condit ion on X(~,m in 
o rder  for  it to  be a set o f  the fo rm C~,k). 

Corol lary  4.2. I f  mini= s ..... n(/3j ) > max]=l  . . . . . .  (1 
- ~,t:~yak),  then the set X defines a set C~+l,k). 

Proof.  Because  of  mini= 1 ..... n(fl j)  > 1 - Z k ~ j a k ,  
Vj = 1 , . . . , n ,  t he  p o i n t s  o f  t he  f o r m  
(0/1, a 2 , . . .  , Ogj_l, 1 -  E k . j a k ,  a:+ s . . . .  , a n) are 
the unique  extreme points  o f  the set X- Then,  the 
set 

C(~,(a~ ..... a,,)) 

is the one  sought.  [] 

5. Conclusions and extensions 

In  this paper  we address the multicri teria deci- 
sion problem unde r  the l inear utility approach  
with partial informat ion about  the weighting co- 
efficients. 

We  in t roduce a family of  polytopes of  weights, 
genera ted  by homogeneous  l inear relations whose 
induced quasi-orders are easily manageable .  

We  study some part icular  cases that  D - M  might  
unders tand  and accept.  

Finally, we b roaden  these relations to the 
non -homogeneous  case, showing that  all the pre- 
vious propert ies  can be extended. 

Some extensions of  this work  can be consid- 
ered. Concretely,  it is possible to extend these 
results for more  relations than the number  of  
criteria. This extension follows under  certain con- 
ditions of  the general ized inverse of  the matrix 
A.  In  addition, the results obta ined in this work 
can be  used as a basis for the development  of  an 
interactive p rocedure  based on Q-operators .  

However ,  these extensions are not  trivial, and 
will be discussed in depth  in a for thcoming paper.  
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