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a b s t r a c t

A two-class classification problem is considered where the objects to be classified are bags of instances in
d-space. The classification rule is defined in terms of an open d-ball. A bag is labeled positive if it meets
the ball and labeled negative otherwise. Determining the center and radius of the ball is modeled as a
SVM-like margin optimization problem. Necessary optimality conditions are derived leading to a
polynomial algorithm in fixed dimension. A VNS type heuristic is developed and experimentally tested.
The methodology is extended to classification by several balls and to more than two classes.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

A Multiple Instance Problem (MI) is a supervised classification
problem where bags (finite sets) of instances in Rd are to be
labeled, +1 or −1 in the two-class case. As in usual single-instance
classification there exist not only different types of classification
rules but also different ways to generalize these to the MI case, see
e.g. [17–20,24,25] and the references therein.

To give a flavor of some application fields, we may first mention
the seminal contribution [10] where the bags were molecules and
the instances different low-energy conformations. Such a molecule
is observed to be positive if it may become active in producing a
drug, which happens only if at least one of its conformations
allows binding to a target site of a particular larger molecule.
Other applications are found in image classification or retrieval
where images are bags of blobs (subsets of its pixels obtained by
some segmentation process) and an image is positive if it contains
the representation of some given object (see e.g. [21]). In web
mining one may need to suggest web pages to a user based on a
request or on its browsing history; bags will then be web pages
containing many links to other websites (the instances) described
by their d most frequent terms and will be selected if at least one
instance is close to the user's wishes.

In such applications it may be assumed that some ideal
position exists representing the goal that determines that a bag
is positive due to closeness by at least one of its instances, and
negative otherwise. This idea naturally leads to the technique
ll rights reserved.
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studied in this paper: separation by an open d-ball (as recently
studied in e.g. [2]) adapted to MI using the so-called presence-
based MI rule (see [25]) to label a bag as +1 if it meets the d-ball,
and otherwise as −1. Training algorithms using mathematical
optimization in the vein of [5] are developed to determine the
ball to be used in this rule by a fitting process to a training set of
pre-classified bags. The advantage of our approach over most other
methods that are based on continuous optimization techniques,
resides in the fact that a finite set of candidate globally optimal
solutions is obtained that can be searched either by laborious full
enumeration or more practically by heuristics such as VNS.
2. Formulation of the problem

Consider a database Ω containing objects i¼ ðXi;YiÞ∈Ω, where
each Xi is a finite set of feature vectors, Xi ¼ fx1; x2;…; xKi

g,
with xk∈Rd, k¼ 1;…;Ki, and where Yi is the corresponding label
+1 or −1.

The spherical classification rule we are looking for is defined in
terms of an open ball with center x0∈Rd and radius r∈Rþ, to be
used as follows:

Given a bag X⊂Rd,

� label as þ 1 if ∃x∈X such that ∥x−x0∥2−r2o0;
� label as −1 otherwise; i:e:; if ∀x∈X; ∥x−x0∥2−r2≥0:

ð1Þ

The actual rule is chosen in some optimal way with respect to a
training sample I⊂Ω, subdivided into the groups Gþ1 ¼ fi∈I : Yi ¼ þ
1g and G−1 ¼ fi∈I : Yi ¼ −1g. Note that in the usual research envir-
onment the remaining part of the database is used for testing the
quality of the methodology, while when the methodology is
applied in practice the training set will equal the whole database
of available classified data. In this paper we apply the maximal
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margin approach that has been popularized in the successful
Support Vector Machine (SVM) techniques (see e.g. [5,8]). How-
ever, contrary to the use of kernels usual in SVM when seeking
nonlinear separation, we obtain spherical separation directly in
the original feature space as in [2].

We have to maximize the margin Δ, i.e., the smallest of all
slacks in (1), over all choices of an instance xj∈Xj for each bag
j∈Gþ1. Therefore the optimization problem we face may be stated
as follows:

max
ðxjÞj∈ ∏

j∈Gþ1

Xj

max
x0 ;r;Δ

Δ

s:t: ∥xj−x0∥2≤r2−Δ; ∀j∈Gþ1

∥x−x0∥2≥r2 þ Δ; ∀x∈ ⋃
i∈G−1

Xi: ð2Þ

Denoting r2þ1 ¼ r2−Δ, r2−1 ¼ r2 þ Δ, one has that Δ¼ ðr2−1−r2þ1Þ=2
and r2 ¼ ðr2þ1 þ r2−1Þ=2, and Problem (2) can be rewritten as

max
ðxjÞj∈ ∏

j∈Gþ1

Xj

max
x0 ;rþ1 ;r−1

r2−1−r
2
þ1

s:t: ∥xj−x0∥2≤r2þ1; ∀j∈Gþ1

∥x−x0∥2≥r2−1; ∀x∈ ⋃
i∈G−1

Xi: ð3Þ

Hence, an instance xj of each bag in Gþ1 and two concentric
balls Bðx0; rþ1Þ, Bðx0; r−1Þ are sought, where Bðx0; rþ1Þ contains all
selected xj, Bðx0; r−1Þ contains no instance of any bag of G−1 and
maximize the difference between the squared radii. We will
denote a finite solution of Problem (3) by ðx0; rþ1; r−1Þ.

Note that if every d-ball meeting all positive bags also meets a
negative bag the original problemwill be unfeasible, in which case no
classification rule arises. However, problem (3) is always feasible, but
the latter case will have negative optimal value, corresponding to the
smallest possible overlap area between the two balls, and r2 ¼ ðr2þ1 þ
r2−1Þ=2 then still defines a classification rule (1).

Problem (3) might also be unbounded. It can be shown that this
arises if and only if MI-separation of the bags by a hyperplane is
possible; see [3] for a full proof and a testing procedure by MILP.
In what follows we assume that this is not the case.
3. Necessary conditions for optimality

An instance x from a bag of Gþ1 (G−1) is an active point for the
solution ðx0; rþ1; r−1Þ if ∥x−x0∥¼ rþ1 (r−1). Given a solution
ðx0; rþ1; r−1Þ, Aþ1 (A−1) denotes the set of active points of Gþ1 (G−1).

Theorem 1. For any optimal solution ðx0; rþ1; r−1Þ of Problem (3)
some instances a∈Aþ1 and b∈A−1 exist.
We then have rþ1 ¼ ∥a−x0∥¼maxj∈Gþ1

minx∈Xj
∥x−x0∥ and r−1 ¼ ∥b−

x0∥¼mink∈G−1
minx∈Xk

∥x−x0∥.

Proof. Suppose that Aþ1 is empty. By feasibility of ðx0; rþ1; r−1Þ
some xj from each Xj of Gþ1 satisfies ∥xj−x0∥2or2þ1. Define then
r′þ1 ¼maxx∈ð⋃j∈Gþ1

XjÞ∩Bðx0 ;rþ1Þ∥x−x0∥orþ1, yielding the better feasible
solution ðx0; r′þ1; r−1Þ.
In case A−1 ¼∅, ∥x−x0∥24r2−1 holds for any x belonging to any

bag of G−1. Therefore r′−1 ¼minx∈⋃i∈G−1Xi
∥x−x0∥4r−1, and ðx0; rþ1; r

−1′Þ improves the objective.
The final equalities follow directly from the feasibility of

ðx0; rþ1; r−1Þ and the definition of active points. □

Theorem 2. For any optimal solution ðx0; rþ1; r−1Þ we have
1.
 If rþ1or−1 there are at least two active points in G−1.

2.
 If rþ14r−1 there are at least two active points in Gþ1.
3.
 If rþ1 ¼ r−1 and no instance is common to some positive and some
negative bag, then there are at least two active points in Gþ1 and
two in G−1.

Proof. We work again by contradiction by improving on
ðx0; rþ1; r−1Þ when the conditions are not satisfied.
1.
 When rþ1or−1, suppose that there is only one active point a in
the set A−1 (see Theorem 1). Then the objective increases in
direction p¼ x0−a. Indeed, if we move x0 an amount ϵ40, small
enough (for not touching new active points) in the direction
u¼ p=∥p∥, one has x′0 ¼ x0 þ ϵu. We may take as feasible solution
ðx′0; r′þ1; r′−1Þ, where r′−1 ¼ r−1 þ ϵ, while r′þ1 may be taken as
the maximum distance from x′0 to the points of Aþ1.
For any b∈Aþ1 we have by triangle inequality on b, x0 and x0′
that rþ1′≤rþ1 þ ϵ and it follows that r′2−1−r

′2
þ1≥ðr−1 þ ϵÞ2

−ðrþ1 þ ϵÞ24r2−1−r
2
þ1.
2.
 When rþ14r−1, suppose now there is only one active point b in
the set Aþ1 and consider the direction q¼ b−x0. If we move x0
an amount ϵ40, small enough, in direction v¼ q=∥q∥, one has
that r′þ1 ¼ rþ1−ϵ, while r′−1 may be taken as the distance of
x′0 ¼ x0 þ ϵv to closest point a∈A−1. In a similar way as above we
obtain that ðx′0; r′þ1; r′−1Þ improves the objective.
3.
 In the case rþ1 ¼ r−1 both arguments above apply with a small
adaptation. First we observe that by the additional assumption the
active points a and b cannot coincide. Then in case x0, a and b
would be colinear, the equality rþ1 ¼ r−1 indicates that x0 would be
the midpoint between a and b, so the indicated move certainly
improves. Finally when x0, a and b are not colinear the needed
triangle inequality is strict and the result still follows. □

Remark 1. From here on we assume that the instances of Ω are in
general position: any set of n instances of Ω (1≤n≤dþ 1) is
affinely independent.

Note that Theorem 2 then fully applies.

Theorem 3. Any optimal solution ðx0; rþ1; r−1Þ has at least d+2 active
points.

Proof. Let Aþ1 ¼ fa¼ xj1 ;…; xjs g and A−1 ¼ fb¼ xk1 ;…; xkt g. By
Theorem 1 s; t≥1. Consider the mediatrices of these two sets of
active points

medðAþ1Þ ¼ fx∈Rd : ∥x−a∥2 ¼ ∥x−xj2∥
2;…; ∥x−a∥2 ¼ ∥x−xjs∥

2g
medðA−1Þ ¼ fx∈Rd : ∥x−b∥2 ¼ ∥x−xk2∥

2;…; ∥x−b∥2 ¼ ∥x−xkt∥
2g

Then x0 is a point of their intersection, and each point of this
intersection within a small enough neighborhood of x0 will have
the same active points.
The intersection medðAþ1Þ∩medðA−1Þ is the solution set of the

system of equations

∥x−a∥2 ¼ ∥x−xji∥
2 ði¼ 2;…; sÞ

∥x−b∥2 ¼ ∥x−xkh∥
2 ðh¼ 2;…; tÞ

which is equivalent to the linear system

2ðxji−xaÞ⊤x¼ ∥xji∥
2−∥xa∥2 ði¼ 2;…; sÞ

2ðxkh−xbÞ⊤x¼ ∥xkh∥
2−∥xb∥2 ðh¼ 2;…; tÞ

which contains at most s−1þ t−1 linearly independent equations,
so dimðmedðAþ1Þ∩medðA−1ÞÞ≥d−ðs−1þ t−1Þ ¼ dþ 2−ðsþ tÞ.
In case there would be less than d+2 active points we would

have sþ t ≤dþ 1 so this intersection would have dimension ≥1
and thus contain some y≠x0 apart from x0, which evidently lies
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within it, and then also contains the whole line L¼ fx0þ
λðy−x0Þjλ∈Rg.
For the orthogonal projections a0 and b0 of the points a and b

respectively on L we have

r2−1−r
2
þ1 ¼ ∥x0−a∥2−∥x0−b∥2

¼ ∥x0−a0∥2 þ ∥a0−a∥2−∥x0−b0∥2−∥b0−b∥2

¼ 2ðb0−a0Þ⊤x0 þ C; ð4Þ

where C ¼ ∥a0∥2−∥b0∥2 þ ∥a0−a∥2−∥b0−b∥2 is a constant depending
only on a, b, a0 and b0.
In case a0≠b0 we can move x0 to x′0 ¼ x0 þ ϵðb0−a0Þ with ϵ40

small enough to keep the same active points and obtain as new
value of the objective function

r′2−1−r
′2
þ1 ¼ 2ðb0−a0Þ⊤ðx0 þ ϵðb0−a0ÞÞ þ C ¼ r2−1−r

2
þ1 þ 2ϵ∥b0−a0∥2

4r2−1−r
2
þ1:

so would yield strictly better objective value.
If by accident a0 ¼ b0, wemay always make another choice of a′∈A−1

and b′∈Aþ1 with different orthogonal projections. Indeed, if this was
not possible the d+1 active points would lie on the same hyperplane
normal to L, contrary to the general position assumption. □

Remark 2. Without the general position assumption, one still
obtains existence of an optimal solution with at least d+2 active
points (although the uniqueness is not guaranteed, since other
solutions with the same value of the objective function and only d
+1 active points can be found).

Proof. Indeed, if dimðmedðAþ1Þ∩medðA−1ÞÞ ¼ 1 and the d+1 active
points are cohyperplanar, their orthogonal projections on r will
coincide. In that case, since a0 ¼ b0, expression (4) remains as follows:

r2−1−r
2
þ1 ¼ ∥a0−a∥2−∥b0−b∥2

which does not depend on x0, therefore, we can move x0 along the
straight line until a new point becomes active and the value of the
objective function remains constant. Then, a solution ðx′0; r′þ1; r′−1Þ
with d+2 active points can be reached, although the solution is not
unique, because any solution with xn0 belonging to the interval ½x0; x′0�
would have the same value of the objective function (and only d+1
active points). □

Definition 1. A point x0 is said to be generated by the sets
Aþ⊂⋃j∈Gþ1

Xj and A−⊂⋃i∈G−1Xi when cardðAþ∪A−Þ ¼ dþ 2,
medðAþÞ∩medðA−Þ ¼ fx0g and all points of Aþ and A− are active at x0.

Theorem 3 asserts that any optimal solution is generated by its
active points.

Theorem 4. For any optimal solution ðx0; rþ1; r−1Þ generated by Aþ

and A−, all points of Aþ come from different bags.

Proof. By Theorem 2 we have d+2 active points for solution
ðx0; rþ1; r−1Þ. In case Aþ contains two active points of the same
bag we may drop one of these instances from this bag and obtain a
new problem with less possible choices for the representatives of
this bag. Therefore it should have an optimal value not larger than
the original one.
However, for this new problem the current solution has the

same objective value but only d+1 active points, and by Theorem 2
this cannot be optimal, hence a larger optimal value should exist,
which is a contradiction. □

It has also been shown in [3] that the two groups of active
points at any optimal solution have intersecting convex hulls. But
this property cannot easily be used in an algorithm, so we do not
develop it here.
4. A polynomial algorithm in fixed dimension

The results obtained in the previous section point toward the
following full enumeration algorithm that is polynomial in fixed
dimension d.

Algorithm 1. For all possible choices for the d+2 active points
partitioned into sets Aþ1 and A−1 and satisfying the conditions
obtained in Theorems 1–4, do
1.
 Compute the associated center and two radii.

2.
 Check the feasibility of the solution.

3.
 When feasible evaluate the solution and update the incumbent

if necessary.

The center x0 is built as the intersection of the mediatrices of
the two sets of active points, Aþ1 and A−1. Similarly as in the proof
of Theorem 3 this may be done by fixing some a0∈Aþ1 and b0∈A−1

and solving the system of d linear equations

2ða−a0Þ⊤x¼ ∥a∥2−∥a0∥2 ða∈Aþ1\fa0gÞ ð5Þ

2ðb−b0Þ⊤x¼ ∥b∥2−∥b0∥2 ðb∈A−1\fb0gÞ ð6Þ
and should have a unique solution according to (Theorem 3). By
Gauss elimination this has complexity Oðd3Þ.

The radii are then computed in constant time by rþ1 ¼ ∥x0−a0∥
and r−1 ¼ ∥x0−b0∥, which also yield the objective value r2−1−r

2
þ1

when feasible.
Checking feasibility of this solution means checking ∃x∈Xj :

∥x−x0∥2 ≤r2þ1 for all bags of Gþ1 and ∥x−x0∥2≥r2−1 for all x∈⋃k∈G−1
Xk, so

takes OðnÞwhere n is the total number of instances in the problem.
These steps must be repeated for the Oðndþ2Þ possible choices

of the active sets, leading to an overall complexity of
Oðmaxðd3;nÞndþ2Þ.
5. A VNS strategy

In high dimensions the complete enumeration algorithm is out
of question due to its complexity. But in fact we are not really
interested in obtaining an exact optimal solution of Problem (3)
but rather in obtaining competitive results for the classification
problem on the test data, and this may also be obtained with close
to optimal solutions.

Therefore we propose here a Variable Neighborhood Search
method (VNS), see e.g. [11] for a description. As shown there this
metaheuristic has been successfully applied to many combinator-
ial and mixed-integer nonlinear optimization problems in many
fields, among which also has classification (e.g. [4,22]).

In order to adapt VNS to our problem we now describe the
search space, an initial solution, the neighborhood structure and
the local search used for performing the algorithm. The algorithm
is usually repeated many times yielding new opportunities for
finding better solutions even with a fixed initial solution because
of built-in choice randomization.

5.1. Search space

The finite search space consists of all pairs of sets Aþ and A−

satisfying
�
 Theorems 1 and 3: both nonempty and having together d+2
points.
�
 Theorem 4: Aþ selects at most one point from each bag
of Gþ1.
�
 A− consists of instances of bags in G−1.
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5.2. Initial solution

In some experiments we used a random initial solution.
However, a more sophisticated procedure to construct an initial
solution is the following.
�
 Compute the centroid Ci of each bag i in Gþ1, and then the
centroid C of all Ci.
�
 Choose for each bag in j∈Gþ1 the instance xj closest to C.
�
 Select d+2 active points as follows:
○ for s¼minðcardðGþ1Þ; dÞ choose the s points xj (j∈Gþ1)

farthest from C,
○ choose the d−sþ 2 instances from ⋃k∈G−1

Xk closest to C.
5.3. Neighborhood structure

The kth neighborhood N kðAþ;A−Þ consists of all possible pairs
obtained by modifying k elements of the configuration ðAþ;A−Þ and
belonging to the search space.

5.4. Local search

Given ðAþ;A−Þ the following local search steps are used to
improve upon it.
1.
 The center x0 is computed as the solution of the linear systems
(5) and (6).
In case the solution of the system is not unique the current
solution is not a valid one, since according to the proof of
Theorem 3 there must then exist more active points. We
therefore (possibly repeatedly) add a new (random) active
point (and consequently, a new equation is added to the linear
system) until a unique solution is obtained.
2.
 The corresponding radii are then calculated according to
Theorem 1 by

rþ1 ¼max
j∈Gþ1

min
x∈Xj

∥x−x0∥

r−1 ¼ min
k∈G−1

min
x∈Xk

∥x−x0∥

and the corresponding (new) sets of active points

Aþ1 ¼ x∈ ⋃
j∈Gþ1

Xj

���∥x−x0∥¼ rþ1

)(

A−1 ¼ x∈ ⋃
k∈G−1

Xk

���∥x−x0∥¼ r−1

)(

are obtained.
This construction guarantees at least one active point in
each group.
3.
 If ðAþ1;A−1Þ belongs to the search space, i.e., satisfies all
conditions of Section 5.1, the local search stops.
4.
 Otherwise we select d+2 active points as in the construction
heuristic in Section 5.2, but based on x0 instead of C:
– For each bag in Gþ1, take as its representative the instance of
the bag that is closest to x0 .

– Select as Aþ1 the s¼minðcardðGþ1Þ; dÞ representatives of
bags in Gþ1 that are farthest from x0,

– Select as A−1 the d−sþ 2 instances in ⋃k∈G−1
Xk closest to x0.
and restart from step 1.

Remark 3. Observe that during the process the value of rþ1

cannot increase and r−1 cannot decrease, while when both remain
equal the process stops. Therefore the objective value will always
strictly increase, meaning that no cycling may occur. By finiteness
of the search space this guarantees convergence. But the process
might be quite long, so in practice a maximum number of
iterations is fixed.

5.5. Main step of the algorithm

Given ðAþ;A−Þ in the search space with corresponding solution
x0, we choose at random a feasible pair ðAþ′;A−′Þ∈N kðAþ;A−Þ, for
k¼1, on which we apply the local search procedure to end up with
the new pair ðAþ″;A−″Þ and solution x″0.

Now, we evaluate the objective function at x″0. If it is better
than x0, we set ðAþ;A−Þ≔ðAþ″;A−″Þ and restart the whole process.
Otherwise we choose another random ðAþ′;A−′Þ from the same
neighborhood and we repeat the process until having selected a
maximum number of h solutions in each neighborhood.

After h iterations in a neighborhood, if the solution has not
improved, we set k≔kþ 1 and we continue the search in
N kðAþ;A−Þ, until k¼ kmax, where kmax is fixed to d+2 in our
problem, at which point the neighborhood equals the whole
search space. This whole process is repeated a fixed number of
times.

Remark 4. The stopping rule may also be chosen by a maximum
on the total number of iterations that depends on the problem
size, instead of the dimension.

6. VNS algorithm for extended problems

In this section we discuss two extensions of the classification
method and problem. First we consider the use of several
separating balls instead of just a single one. Second we consider
how to tackle problems of classifying bags into more than two
classes.

6.1. The p-balls VNS algorithm

In most real databases, the value of the objective function for
the solution of Problem (3) is negative, because one cannot
construct the two separating concentric balls satisfying the con-
straints in Problem (3) and satisfying simultaneously that rþ1 ≤r−1.
In that case, one obtains a high misclassification rate for the
training sample, when trying to separate the two groups, and may
consequently expect bad results for classification in the test
sample.

By allowing more than one separating ball one may
try to improve these results using the following adaptation
of the initial classification rule (1) to p balls, each ball l¼1,…,p
with center x0;l∈Rd and radius rl∈Rþ. The MI assumption then
becomes

Given a bag X⊂Rd

� classify in Gþ1; if ∃x∈X; ∃l∈f1;…; pg such that ∥x−x0;l∥2or2l
� classify in G−1; otherwise; i:e:; if ∀x∈X; ∀l∈f1;…;pg; ∥x−x0;l∥2≥r2l :

ð7Þ
The heuristic is based on the following k-means clustering

algorithm (see e.g. [12]), with k¼p, to build clusters with the bags
in Gþ1:
1.
 Compute the centroid Ci of each bag i in Gþ1.

2.
 Initial assignment: the set of bags is partitioned at random in p

clusters (of roughly the same size).

3.
 Compute the centroid ~Cl of each cluster l, l¼1,…,p, as the mean

of the centroids Ci of the bags assigned to that cluster.
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4.
 Compute the distances between the centroid Ci of the ith bag,
i∈Gþ1, and the centroid ~Cl of the lth cluster, l¼1,…,p.
5.
 Assign each bag i to the cluster l whose centroid ~Cl is closest
to Ci.
6.
 Repeat steps 3–5 while there are some changes in the assign-
ment or while a fixed number of iterations is not reached.

Once the clusters have been constructed, we apply the VNS
algorithm described in Section 5 within each cluster l, l¼1,…,p, i.e.,
using the set Gþ1;l of bags of the cluster l and G−1;l ¼ G−1, to
compute each of the p balls.
6.2. Multi-class case

So far, we have only dealt with the classification problem for
two classes. However, in many real situations, more than two
classes appear in a classification problem. Different strategies can
be found in the literature, most of them proposing to transform
the multi-class problem in a series of two-class problems (see e.g.,
[13,15,23]), as we also do here.

We will use the one-versus-one algorithm (1-v-1) for our
experiments. In this algorithm, one has to construct a classifier
for every possible pair of groups i and j. Since our classification
rule is not symmetric, we will need to build for every pair (i,j) of
classes the ball Bðxi;j0 ; ri;jÞ separating class i as Gþ1 from class j as
G−1, as well as the ball Bðxj;i0 ; rj;iÞ the other way round. In total we
thus need to construct NðN−1Þ two-class classifiers.

The classification rule for a bag X is then obtained by the
following voting process:
1.
 For every pair of classes (i,j), we compute

intensityði; jÞ ¼
min
x∈X

dðx; xi;j0 Þ2

ðri;jÞ2
; ð8Þ
2.
 Class i receives a vote for each j for which
intensityði; jÞo intensityðj; iÞ.
3.
 Max Wins rule: In case the maximum votes are reached for two
groups i and j, we assign the bag X to group i if
intensityði; jÞo intensityðj; iÞ (else, to group j).

7. Computational experiments

The classification problem and the VNS algorithm proposed for
building the classifier have been implemented in Matlab 6.5 on a
computer with Pentium IV CPU 3.06 GHz. The two-class method
was tested on several artificial sets of data while the multi-class
method was tested on a real database, as described below.

We always evaluated the classification method through 10-fold
cross validation, that is, the bags of the database are partitioned in
10 sets and, in turn, 9 of these sets are used for training the model
and the last one is used to test the problem. Thus, the process is
repeated ten times (see [14,16] for a description of the method).

With the training sample we applied the VNS algorithm to
build the center x0 and the radius r which define the classifier, and
we have measured the classification accuracy, i.e., the percentage
of well-classified bags, first for the training sample itself and later
for the test sample. The parameter kmax in the VNS algorithm has
been fixed to d+2, while the parameter the number h of different
solutions taken in each neighborhood and the maximum number
of iterations in the local search step (see Section 5.4) have both
been set to 5.
7.1. Full enumeration vs VNS algorithm

In this first experiment, we compare the results obtained with
the VNS algorithm with those obtained with the full enumeration
Algorithm 1 in the optimization problem (3).

Since full enumeration is not an efficient way of obtaining
solutions in high dimension, two sets Gþ1 and G−1 have been built
in dimension d¼2 with 50 instances in each. Polar coordinates
have been used for generating the instances. Thus, for an instance
ðρ cos θ; ρ sin θÞ of G−1, θ comes from a uniform distribution
Uð−π; πÞ, and ρ is chosen from a uniform distribution Uðr1; r2Þ,
where 0or1or2 (r1 was fixed to 1 and r2 to 2 for the experiment).
The instances in Gþ1 were generated in the same way, except for
one instance in each bag that was included in Bð0; r1Þ (ρ was
uniformly distributed Uð0; r1Þ). In this way the spherical separ-
ability of the bags and a positive optimal value is guaranteed.

The experiment was repeated with 50 instances in each group
and variable number of bags (1, 2, 5, 10 and 50) in the group Gþ1,
all bags with the same number of instances. Observe that the
problem remains the same by changing the number of bags in G−1.

In Table 1, we show the values of the objective function
obtained for Problem (3) by using a complete enumeration and
the VNS algorithm, for 1000 iterations, with the two possible
initial solutions described in Section 5.2 (random and heuristic
centroid-based initial solutions).

One can observe that the VNS algorithm obtains quite similar
results to those obtained via a full enumeration, excepting the case
of only one and two bags in Gþ1 where it even obtained a better
value! However, in these cases it turned out that the problem was
MI-separable by hyperplane, so the actual optimal solutions were
unbounded, which is not detected by the complete enumeration
that checks only candidates for spherical separation.

7.2. Spherically separable sets of instances

In this experiment we built another artificial database where
the instances of Gþ1 and G−1 are spherically separable. For each
group, 2000 instances have been generated: the instances of Gþ1

from a uniform distribution Uð−10;10Þ and the instances of G−1

from a uniform distribution Uð−20;20Þ but taking into account that
at least one coordinate does not belong to the interval [−10,10].
The instances of each class were then grouped into 100 bags, 20
instances per bag.

This was repeated for dimensions d¼2,3,10,20,30,50,100.
In all the cases the VNS method obtained an accuracy of 100%

in each group for the training and the test sample in every
dimension.

7.3. Spherically separable sets of bags

Another separable artificial database for the classification
problem was constructed as follows. For each class (Gþ1 and
G−1), we generated a total of 2000 instances in 100 bags of 20
instances each. The instances of G−1 were generated as before with
distribution Uð−20;20Þ, with at least one coordinate not belonging
to the interval [−10,10]. But now one instance of each bag of Gþ1

was generated uniformly Uð−10;10Þ, while all remaining instances
came from Uð−20;20Þ.

The average accuracy for the 10 runs for different dimensions
and for the test and training samples are given in Table 2. The
number of iterations for the VNS algorithm, here without local
search, was fixed to 2000.

One may observe that the accuracy remains quite satisfactory.
Moreover, for the highest dimension (d¼100), the accuracy is
100% in both cases (test and training sample). This is probably due
to the fact that the higher the dimension, the more solutions are



Table 1
Value of the objective function for complete enumeration and for VNS.

Number of bags 1 2 5 10 50

Complete enumeration 1.9315 3.8101 0.3592 0.3036 0.0464
VNS (random initial solution) 1053.4 1664.6 0.3592 0.3036 0.0464
VNS (heuristic initial solution) 1053.4 1664.6 0.3592 0.3036 0.0464

Table 2
Accuracy (in %) for uniform artificial database.

Sample Dim d¼2 d¼3 d¼10 d¼20 d¼30 d¼50 d¼100

Test Gþ1 100 92 93 97 97 97 100
G−1 100 90 87.69 93 97 99 100
Total 100 91 90.35 95 97 98 100

Train Gþ1 100 92.22 96.44 99.78 99.89 100 100
G−1 100 95.57 78.86 98.56 100 100 100
Total 100 93.9 87.65 99.17 99.95 100 100

Table 3
Accuracy (in %) for Gaussian artificial database.

Sample Dim d¼2 d¼3 d¼5 d¼10 d¼20 d¼30 d¼50 d¼100

Test Gþ1 96 88 97 100 100 100 100 100
G−1 87 89 96 100 99 100 100 100
Total 91.5 88.5 96.5 100 99.5 100 100 100

Train Gþ1 100 99.89 99.67 100 100 100 100 100
G−1 87.56 89.33 97.45 100 100 100 100 100
Total 93.78 94.61 98.56 100 100 100 100 100
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considered in the VNS algorithm, since the kmax, that is, the
maximum neighborhood radius taken into account, is fixed in
our implementation to d+2. Hence, the number of solutions
studied depends on the dimension of the problem.

7.4. Dataset based on a Gaussian distribution

For this database, 100 bags with 20 instances each, have been
generated for each class Gþ1 and G−1, by using a Gaussian
distribution.

Each coordinate of the mean vector of each bag in Gþ1 comes
from a uniform distribution Uð−1;1Þ, while the coordinates of the
mean vector of the bags in G−1 come from Uð−5;5Þ. The instances
of each bag are generated from a multivariate normal distribution
with the corresponding mean vector and the identity as the
covariance matrix.

Table 3 shows the average accuracy for the 10 runs of the cross-
validation process in the test and training samples, for different
dimensions (with 5000 iterations in the VNS algorithm which
builds the classifier and without local search).

One can observe that the accuracy for the highest dimensions is
better, in both samples (training and test), because for a high
dimension, the databases built herein become more easily
separable.

7.5. Real database for image categorization

Finally, we have applied our algorithm to a real database for
image categorization. Image categorization consists in labeling
images into a set of predefined categories.

The image database is a set of 2000 images in JPEG format
taken from 20 CD-ROMs published by the COREL Corporation, each
CD-ROM containing 100 images representing a similar concept.
This dataset was previously used for Multi-instance Learning in
[6,7], and it is available at the webpage http://www.cs.olemiss.
edu/�ychen/ddsvm.html.

A segmentation process was applied to these images to extract
some properties about luminance, color and texture of the pictures
and they were encoded into feature vectors. These feature vectors
were grouped into clusters, representing the regions of the
segmented image. In this way each image has several regions,
where each region is characterized by a feature vector in dimen-
sion d¼9, representing the color, texture and shape properties of
that region (see [6,7] for a more detailed description).

From the Multiple Instance Learning framework, the different
concepts (CD-ROMs) are the classes to which the images are
assigned, the images are the bags of the database, and the regions
are the instances of each bag. In this dataset, there are 20 classes,
100 bags in each class and the average number of instances per
bag for the different classes is displayed in Table 4 (along with the
name of the classes). The dimension of the problem is d¼9.
We have performed several experiments with only the first 10
groups (1000-Image database) and with the complete database
(2000-Image database).

Since the database has more than two classes, the 1-v-1
algorithm, explained in Section 6.2, is the selected tool to solve
the multi-class problem, and for every pair of classes (i,j) the
p-balls VNS algorithm, described in Section 6.1, is used to build the
classifier.

First, we have considered the problem with only the first ten
classes. For selecting the training and test samples, we have used
5-fold cross validation on the database. Different values for p (in
the optimization algorithm to construct the separating balls) have
been considered (from p¼1 to p¼20), although we only show the
best results, which were obtained for p¼15. The number of
iterations to obtain each ball is set equal to 50, and the solution

http://www.cs.olemiss.edu/~ychen/ddsvm.html
http://www.cs.olemiss.edu/~ychen/ddsvm.html
http://www.cs.olemiss.edu/~ychen/ddsvm.html
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based on the centroid (see Section 5.2) was taken as the initial
solution.

Table 5 displays the confusion matrix for the test samples in the
database with the first 10 classes. Each element (i,j) of this matrix
represents the percentage of elements of the class i which has
been assigned to the class j. The elements of the diagonal (in bold)
Table 6
Accuracy for the 1000-Image database.

Class 0 1 2 3 4

Test 67 58 75 67 100

Train 83.75 78.5 90.5 96.5 100

Table 7
Accuracy for the 2000-Image database.

Class 0 1 2 3 4

Test 52 58 69 67 97
Train 84.25 83.5 91 93.25 100

Class 10 11 12 13 14

Test 44 63 64 57 57
Train 86 82.5 96 92.25 92

Table 5
Confusion matrix for the 1000-Image database.

Assigned class

Real class 0 1 2 3 4

0 67 3 4 0
1 2 58 7 3
2 4 3 75 2
3 1 3 10 67
4 0 0 0 0 1
5 10 4 2 0
6 2 0 0 0
7 3 1 0 0
8 0 18 3 0
9 5 4 1 2

Table 4
Description of the image database.

Class Class name Instances per bag (average)

0 African people and villages 4.84
1 Beach 3.54
2 Historical building 3.1
3 Buses 7.59
4 Dinosaurs 2.00
5 Elephants 3.02
6 Flowers 4.46
7 Horses 3.89
8 Mountain and glaciers 3.38
9 Food 7.24

10 Dogs 3.80
11 Lizards 2.80
12 Fashion models 5.19
13 Sunset scenes 3.52
14 Cars 4.93
15 Waterfalls 2.56
16 Antique furniture 2.30
17 Battle ships 4.32
18 Skiing 3.34
19 Desserts 3.65
represent the percentage of elements correctly labeled for each
class. One may observe that the class 4 (dinosaurs) is easily
separable from the other classes, since all its elements have been
correctly classified. However, it turns out to be much harder to
distinguish between classes 0 and 5 (African people or villages and
elephants), or more particularly between the two kinds of land-
scapes: images of beaches and images of mountains or glaciers
(classes 1 and 8), where we obtain 17% of beaches misclassified as
mountains or glaciers, and 18% in the other direction. Likewise,
14% of horses (class 7) are labeled as elephants (class 5).
5 6 7 8 9

71 94 81 69 71

86.25 99.5 96.25 75.5 97.75

5 6 7 8 9

55 88 78 42 67
83.25 98.75 92 68.75 95.25

15 16 17 18 19

76 81 60 49 28
92.5 99.25 95.5 84 74.75

5 6 7 8 9

2 11 1 3 3 6
1 8 1 0 17 3
1 7 1 0 5 2
9 2 0 1 1 6

00 0 0 0 0 0
0 71 0 5 8 0
0 1 94 2 0 1
0 14 0 81 1 0
0 10 0 0 69 0
5 4 0 3 5 71

Table 8
Accuracy for the two databases.

Sample 1000-Image database 2000-Image database

Test 75.3 62.6
Train 90.45 89.24

Table 9
Accuracy for different algorithms for the image database.

Algorithms 1000-Image database 2000-Image database

MILES 82.6 68.7
DD-SVM 81.5 67.5
MI-SVM 74.7 54.6
k-means-SVM 69.8 52.3
p-balls VNS algorithm 75.3 62.6
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Table 6 shows the accuracy for every class, that is, the
percentage of elements of every class that have been correctly
labeled into that class, both within the training and the test
samples. One can observe that the performance of the algorithm
is quite good in most of the classes in the training sample, and, in
general, a class which is easily separable from the rest in the
training sample, continues being easily discriminated in the test
sample. This is the case of class 4, with 100% of accuracy in both
the training and the test samples. However, we can also find some
classes, like class 3 (buses) with a much better accuracy in the
training (96.5%) than in the test sample (only 67%).

Table 7 presents the classification accuracy for every class in
the complete dataset (2000-Image database). The performance of
our algorithm is good in the training sample in most of the classes
(except for class 8), showing the power of our methodology to
separate the bags of the different concepts. In the test sample, the
accuracy is lower than for the 1000-Image database, although
good results are obtained for separating classes such as number
4 and 6 (dinosaurs and flowers).

In Table 8, the accuracy for the test and training samples in the
two databases are shown. One can observe that we obtain very
good results for the training sample (even with the complete
dataset), around 90%, and the results for the test sample are quite
competitive.

Finally, in table 9 we compare the results we have obtained
with the results obtained via other methods that have been used
on this database: MILES algorithm [6], DD-SVM [7], MI-SVM [1]
and k-means-SVM [9]. These other algorithms have also been
tested on five test sets extracted at random from the database, but
the technique is not cross validation (see [6]). Although our
algorithm was not able to improve the best results obtained so
far, our results are overall comparable with the solutions obtained
for this database, and in fact improve on the performance of other
algorithms based on SVMs (like MI-SVM and k-means-SVM) in this
multi-class problem in both datasets.

Observe, however, that the p-balls VNS algorithm as presented
here may be considered as rather simplistic, since it is based on a-
priori clustering and the VNS method is applied on the fixed
groups only. It should be possible to incorporate a dynamically
changing clustering in an all-over VNS strategy that promises to
give even better results. Such a method and its testing remains to
be done.
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