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A B S T R A C T

Optimising the aiming strategy is crucial for Solar Power Tower plants, in order to maximise the energy gen-
erated, whilst also preventing catastrophic damage to receiver components. In this work, a bi-objective opti-
misation model is developed to find optimal aiming strategies for a Solar Power Tower plant. The primary
objective to maximise the radiation captured by the receiver is offset by a secondary objective to minimise the
deviation from a desired target distribution, which is designed by solar plant operators to improve plant effi-
ciency. A numerical method is proposed to solve the optimisation problem, and an illustrative example is pre-
sented to show functionality of the model and the numerical method. Conclusions are drawn on the model
presented, extensions are considered and current work is discussed.

1. Introduction

The optimisation of Solar Power Tower (SPT) plant operations and
subsystems can lead to improved efficiency and successful im-
plementation of the technology, and is a key factor in future develop-
ment. In a SPT plant, a type of Concentrating Solar Power (CSP) tech-
nology, the incident solar radiation is focused onto a receiver mounted
atop a tower and the resultant heat used to drive a conventional gen-
erator. Efficiency in a SPT plant is highly dependent on construction
and the effective management of various subsystems.

Indeed, CSP plants include subsystems that are open to optimisation
in both construction and operation, and have featured prominently in
recent literature, for example Abu-hamdeh and Alnefaie (2016), Baños
et al. (2011), Carrizosa et al. (2015a), Carrizosa et al. (2015b),
Carrizosa et al. (2017), and Morais et al. (2010). A SPT plant utilises a
field of heliostats to concentrate the incident radiation onto the receiver
surface, where the focus point of each heliostat is independent from the
others. The position of focal points for all heliostats in the field, known
as the aiming strategy, has been shown in previous research to be an
important factor in plant operation, see Astolfi et al. (2016).

Such research has involved the use of various methods for the op-
timisation of aiming strategies, namely Linear Programming (Ashley
et al., 2017), Parallel Teaching–Learning Algorithms (Cruz et al., 2016)
and an Ant Colony optimisation (Belhomme et al., 2014).

However, maximising only radiation captured is not an adequate
criterion, since steep thermal gradients or focused spikes are capable of
causing permanent damage to receiver components or lowering effi-
ciency of thermal transfer (Relloso and García, 2015; Yu et al., 2014).
The optimisation problem can therefore consider penalty terms or
secondary objectives to minimise such phenomena. In other words, the
problem under consideration is a multi-objective optimisation problem,
see Przybylski and Gandibleux (2017), and Tawhid and Savsani (2018).

Binary integer programming was applied in Ashley et al. (2017) to
optimise the aiming strategy for a SPT plant at a fixed point in time, by
restricting the aiming points to a predefined set of possible options. If
the number of heliostats or aim points is high, the problem di-
mensionality may become too large, therefore the restriction of aiming
point location to a limited predefined set reduced the problem di-
mensionality to manageable levels. Whilst this method allowed rapid
analysis of optimal aiming strategies, it also limited the possible solu-
tion space to the selected grid of aiming points.

A more accurate approach is to allow the aiming point variables to
take any value and be continuously differentiable across the receiver
surface. This is equivalent to defining a separate aiming point for each
heliostat in the field, within the set created by the boundaries of the
receiver dimensions. This allows the simulation of SPT plant operations
to better reflect real-life conditions, where aiming points for heliostats
will not be limited to pre-set locations. This will be the viewpoint (and
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the main contribution) in this paper.
Whilst the first objective is the maximisation of total radiation

reaching the receiver surface, operational limitations of the SPT plant
must be taken into consideration. As previously noted, these include
inhomogeneous heating of the receiver surface, where large thermal
fluxes can cause non-optimal energy generation, or even permanent
damage to the receiver components. Hence, the objective in this work is
to maximise the radiation captured by the SPT plant receiver, whilst
taking into account the deviance from a desired radiation distribution
across the receiver using continuous optimisation models. The two
objectives will be combined into one single non-convex, non-linear
criterion via additive weighting. By varying the weights, an approx-
imation to the corresponding Pareto Front will be obtained. Some re-
lated heuristic methods can be found in Wagner and Wendelin (2016).

The structure of this paper is as follows: Section 2 details the pro-
blem formulation; Section 3 describes how to numerically formulate the
problem; Section 4 provides an illustrative example of the construction
of the Pareto frontier of the bi-objective problem, and Section 5 pre-
sents concluding remarks.

2. Model

The first component of the criterion in our aiming strategy optimi-
sation model is the radiation generated by the heliostats on the receiver
surface.

As in Ashley et al. (2017), the radiation passing through the system
is modelled using a Gaussian distribution on the receiver, a non-empty
bounded open convex set ⊂Ω 2 . We will denote by |Ω| (resp. Ω̄) the
measure (resp. the closure) of Ω. In this paper, any heliostat ∈h H will
be required to aim at point ∈p Ω̄h . The value of this distribution
evaluated at a cartesian point ∈u v( , ) Ω is denoted by F h p( , )u v, , where
the total radiation at any point u v( , ) is the sum of contributions from all
heliostats.

In this work, the receiver is assumed to be a circular flat plate. This
simplification is utilised for convenience in the calculations, however it
should be noted that the optimisation model and numerical methods
developed in this paper are directly extendible to general realistic re-
ceiver designs.

The total radiation captured over the whole receiver surface asso-
ciated to heliostat h aiming at point ∈p Ω̄h can be written as

∫=f h p F h p d( , ) ( , ) Ωh u v h, . Therefore the total radiation corresponding
to all heliostats in H can be expressed in the form:

∑
∈

f h p( , ).
h H

h
(1)

The second criterion in this problem considers the difference be-
tween the radiation reaching the receiver and a desired target dis-
tribution Eu v

tar
, . This distribution will in practise be decided by the SPT

plant operators, depending on weather conditions and the thermal
status of the receiver. This second objective can be expressed as the
integral of the square of the calculated radiation F h p( , )u v h, minus the

target distribution Eu v
tar
, :
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Other criteria, such as the overall radiation excess with respect to a
target distribution, may be considered instead. The reason to choose (2)
in this paper is that, as seen below, it leads to a continuously differ-
entiable objective function, which allows us to consider gradient based
algorithms for the problem resolution.

Combining (1) and (2), we arrive at a suitable objective function,
where we consider a parameter ∈A (0, 1) that controls the relative
importance between maximising energy and minimising deviation from
the target distribution:

∫∑ ∑− − ⎡
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(3)

which is to be maximised.
Optimising the objective function in (3) over a range of values of A

produces an approximation to the Pareto front of the bi-objective pro-
blem of simultaneous optimisation of energy generated and deviation
with respect to the target distribution.

The next section of this work devises a numerical method for the
solution of the continuous optimisation model proposed in this Section.

3. Numerical methods

The continuous optimisation model proposed in Section 2 involves
calculating integrals over the receiver surface Ω. For numerical pur-
poses, these integrals must be replaced by summations over a finite set
of equally spaced test points ∈u v( , ) Ωi i with = …i I1, , . The size of I
directly affects the precision to which the problem in Eq. (3) is ap-
proximated and, also, affects the numerical complexity of the problem
solution. The deviation from the desired flux distribution Eu v

tar
, is then

calculated and furnished only for the test points u v( , )i i . It is important
to note that we ‘discretise’ the receiver Ω only at the numerical in-
tegration level (remember that ph can take any value in Ω).

The resulting objective function is the following:
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(4)

where = pP ( )h ∈h H, |Ω| denotes the measure of Ω and I| | is the car-
dinality of I.

The coefficient
I

|Ω| stems from the numerical approximation of the
integral in (3).

Thus, we want to solve a non-linear non-convex optimisation pro-
blem with continuous variables of large dimension (twice the number of
heliostats in the field), subject to the convex constraints ∈p Ω̄h .

Function g in Eq. (4) can then be maximised using a gradient ascent

Nomenclature

u v( , ) coordinates on receiver surface
u v( , )i i test point i on receiver surface

∊ Armijo’s Rule parameter
γ step size
γ0 initial step size
γk step size k
Ω receiver surface
P set of aim points
A weighting parameter
c convergence limit

Etar target distribution
Eu v

tar
, target distribution at point u v( , )

f h p( , ) total radiation on receiver for heliostat h aiming at p
F h p( , )u v, Gaussian distribution of heliostat h aiming at p
g objective function
H total number of heliostats in field
h heliostat h
I number of test points
i receiver test point
p aiming point p
ph aiming point for heliostat h
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algorithm with projection, see Le Floch et al. (2015, 2011). We start
with an initial solution P0 and then, at each iteration of the algorithm,
update the components of P in the direction of steepest ascent of the
objective function g by step size γ . The final step in each iteration of the
algorithm utilises a projection method to correct any values of P to
ensure heliostats aim at Ω.

The selection of the stepsize γ taken at each update to the gradient
ascent algorithm is an important factor in the convergence and much
research has focused on this choice, for example Liu and Liu (2018). If
the stepsize is too large, the algorithm may diverge, and if it is too
small, it will take too long to converge. A method to find the optimal
stepsize at each iteration can be found using Armijo’s Rule (McCormick,
1977), where a constant value ∊ ∈ (0, 1) is used to iteratively reduce the
stepsize until an improvement on the objective function is no longer
given.

This is tested at the k-th iteration of the algorithm against the
−k( 1)-th iteration as follows:

> −g gP P( ) ( )k k 1 (5)

Traditionally, the value of γ is fixed for all elements of the system.
However, in this work the algorithm is adapted to allow different γ for
each heliostat h:

= ∊−γ γ · .k h k h, 1, (6)

This permits heliostats to take the greatest stepsize independently of
each other, thereby potentially increasing the speed of the algorithm.
However, it is also important to note that this procedure may in fact
increase running times, so careful selection of ∊ is required.

Therefore, the gradient ascent algorithm reads:

̃ ̃= + ∇ =+ + +γ g PP P P P P( ), ( ),k k k h k k k1 , 1 1 (7)

where for each PP P, ( ) denotes the component-wise projection of P
onto Ω.

The considered objective function and its gradient are complex. It is
therefore important to customise related effective numerical techniques
leading to reasonable computational effort.

The function being modelled in this paper is highly multi-modal
and, consequently, convergence to the global optimum is significantly
dependent on the starting P0 given to the algorithm. We therefore apply
a multistart procedure where the algorithm is run multiple times, uti-
lising a different random allocation of starting heliostat aiming points.
Applying this method for each value of A, it is possible to approximate
the Pareto front of the model.

It will be accepted that the aforementioned algorithm converges to a
local optimum when the Euclidean norm of the gradient of the energy
function is below a selected precision value c. The selection of this value
determines how close to the local optimum the algorithm must finish,
whilst also heavily influencing the computation time required.

Summarising, the convergence test used in the algorithm can be
written in the form

∇ ⩽g cP‖ ( )‖ ,
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Note that this approach can serve to consider many prescribed flux
distributions Fu v, (not necessarily Gaussian).

In the following section we apply the numerical discretisation of the
continuous optimisation model developed in this paper to a real SPT
plant and we present an illustrative example.

4. Illustrative example

The developed optimisation procedure is illustrated using the PS10
SPT plant in Sanlúcar la Mayor, Seville (Abengoa PS10 SPT Plant). This
SPT plant has a field of 624 heliostats in a South facing field, arranged
as shown in Fig. 1.

Fig. 1. Heliostat locations.

Fig. 2. Multistart analysis.

Fig. 3. Gradient convergence.
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The receiver Ω is modelled as a disk and the grid points u v( , )i i have
been fixed equally spaced and of equal number in both dimensions.
However, the following arguments and techniques are equally valid for
any other 2D domain. Essentially, only the integrals in (2) and (3) will
be affected by the geometrical properties of Ω.

The algorithm developed in Section 3 is implemented in Python on a
standard specification desktop computer, for a chosen time point of
midday.

The Armijo’s Rule parameter ∊ is set to a value of 0.8, as the sug-
gested value in McCormick (1977), and the initial value for γ is set to
0.01. A lower limit of γ equal to −10 8 is set, in order to prevent un-
necessary computations occurring in the algorithm.

As mentioned above, since the problem is highly multi-modal, a
multistart procedure has been implemented, where the best solution
across 30 runs is selected for each variation of the parameter A.

Fig. 2 shows the peak of the objective function for one value of A
across 100 multistart runs, where the multi-modality of the problem
can be clearly seen. The variance in solutions found over the 100
multistart runs is also affected by the stop criterion and step size used in
each application of the algorithm, meaning that whilst only a few so-
lutions may be found, the level of convergence may not be the same.
This can be seen in Fig. 2 by the number of peaks and troughs at similar,
but slightly different, values. These possibly represent the same solu-
tion, reached at different levels of convergence. Therefore, when uti-
lising an adequate selection of step size and convergence test, it is found
that a multistart operation with 30 runs suffices in practise to find a
solution. The convergence of the objective function to the solution, and
the gradient to zero, can be seen in Figs. 3 and 4 for one particular
simulation.

The parameter A in the objective function in Eq. (4) has been tested
between 0 and 1 in steps of 0.01. A value of 0 indicates that the absence
of deviation from the target distribution objective is the most important
contribution. Contrarily, a value of 1 indicates that the total radiation
objective is the most relevant. The target distribution has been assumed
constant across the receiver surface. It is important to note that the
chosen target distribution must be tailored to the SPT plants current
conditions, and a constant distribution has been implemented here as
an example.

The values of both objectives for each value of A are shown in Fig. 5,
where the Pareto Front has also been marked. The set of Pareto equili-
bria identifies those solutions which cannot be improved in terms of
both objectives, and therefore give the best optima in terms of mini-
mising target distribution deviation and maximising total radiation
capture.

The results shown in Fig. 5 indicate that the choice of A can produce
highly differing results in the objective function, and this can generate
quite different aiming strategies trading off energy maximisation and
minimisation of deviation from the target radiation distribution. This is

Fig. 4. Objective function convergence.

Fig. 5. Objective values with Pareto Front.

(a) Optimised aiming strategy (b) Optimised flux distribution
with maximum flux 2.8e6

Fig. 6. Optimised result with =A 0.9.
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illustrated in Figs. 6a and 7b.
Fig. 6a shows the resultant aiming strategy when the value of A is

set to 0.9, causing the captured radiation to be significantly more im-
portant than adhering to the target distribution. The aiming strategy
will capture more radiation, as shown in Fig. 6b, but will fail to yield a
homogeneous flux distribution, due to the centrally focused heliostats.

Fig. 7a shows the resultant aiming strategy when A is set to 0.3,
which creates a much more homogeneous flux distribution, as shown in
Fig. 7b. These Figures demonstrate the importance of the value of
making a judicious choice of A, since improvement in both objectives is
highly dependent on its choice.

The results illustrated in this section are for one particular time
point, and two examples of the weighting variable A. Each run of this
simulation takes less than 10 s, which is then multiplied by the number
of multistarts performed. With advance knowledge of local weather
conditions and predictable solar radiation input, the optimal aiming
strategy can be calculated across a day. However, to account for rapid
changes in weather, it may be useful to re-calculate the optimal aiming
strategy in short time scales. Therefore, the rapid computation of this
algorithm is advantageous, and also lends itself to applications in SPT
plants with larger heliostat field sizes.

The next section draws conclusions from the method and numerical
illustration developed in this paper, and also discusses possible exten-
sions and current research.

5. Further comments, extensions and conclusions

In this work, a bi-objective optimisation model has been im-
plemented to find the optimal aiming strategy for a SPT plant of any
size or shape, and a numerical illustration for a real SPT plant is pre-
sented.

For the PS10 SPT plant with a field of 624 heliostats, the optimal
aiming strategy has been found using the objective function given in
(4), that must be viewed as a numerical approximation to (3). In this
illustrative example, we have solved the optimisation problem with a
multistart procedure for multiple values of the parameter A in (0, 1).

Utilising the optimisation model and numerical method developed
in this work, it is possible for the operators of a SPT plant to identify the
optimal aiming strategy, considering current weather and plant re-
quirements. Depending on the choice of the weighting parameter A in
the objective function, it is possible to seek a desired balance between
maximising overall radiation captured and minimising deviation from a
desired distribution across the receiver.

The method developed in this work significantly improves upon the

method presented by the authors in Ashley et al. (2017), as here the
problem space is not constrained by pre-set aiming points, and allows
for realistic representation of SPT plant operations, where it is possible
to monitor relative performance of each objective.

The numerical method developed for this work made use of Armijo’s
rule to iterate the step-size in the algorithm, with independent step-
sizes for all components in the set space. This modification can cause
longer run times for the simulation. However, a careful application of
the algorithm in this case allows it to improve performance and con-
verge to the optimal solution. This performance increase over other
methods is of critical importance when simulations in a SPT plant will
be re-run during the course of a day for changing local weather con-
ditions and solar input.

For the PS10 SPT plant, the optimal aiming strategy can be easily
found using the method outlined in this work. For larger SPT plants
with more heliostats in the field, the same arguments and techniques
can be applied. However, if the number of heliostats is large, and the
associated computational cost becomes untenable, an amendment can
be made to reduce the problem dimensionality. A possible modification
could be the use of a clustering algorithm, such as in Ashley et al.
(2017) and Carrizosa et al. (2013). In that research, the heliostats in the
field are clustered using an optimisation procedure which takes into
account potential radiation generation as well as physical location and,
then, the same aiming strategy is chosen for all heliostats within the
same cluster.

The performance of aiming strategies found utilising the method
presented in this article should be compared against similar methods by
other authors, for instance Collado and Guallar (2019). There, the au-
thors consider a two parameter method for reduction of peak flux levels
on the receiver, and compare against the method given in Vant-Hull
(2002), which utilised a single parameter method to divide flux peaks
into two and reduced maximum load.

Another extension to this work that could assist in reducing com-
putational cost is the application of stochastic techniques Fonseca et al.
(2017), Schmidt et al. (2013), and Wang (2017) where, at each step, the
gradient is calculated for just a random sample of heliostats and then
used to update the general population. Such methods reduce the cal-
culation time required for each iteration of the algorithm at the cost of
utilising several (or many) potentially erroneous components of the
gradients.

The method presented in this paper is static in time, and therefore
does not consider how the optimal aiming strategy would change as the
incident radiation on the heliostat field varies across a day. The authors
are developing an optimisation model for the dynamic case of this

(a) Optimised aiming strategy (b) Optimised flux distribution
with maximum flux 2e6

Fig. 7. Optimised result with =A 0.3.
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problem, where the bi-objective function is adapted to account for
additional time evolution constraints.
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