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Monetary Unit Sampling (MUS), also known as Dollar-Unit Sampling, is a popular sampling strategy in
Auditing, in which all units are to be randomly selected with probabilities proportional to the book value.
However, if units sizes have very large variability, no vector of probabilities exists fulfilling the require-
ment that all probabilities are proportional to the associated book values. In this note we propose a Math-
ematical Optimization approach to address this issue. An optimization program is posed, structural
properties of the optimal solution are analyzed, and an algorithm yielding the optimal solution in time
and space linear to the number of population units is given.

� 2011 Elsevier B.V. All rights reserved.
1. Monetary Unit Sampling

Consider a finite population U ¼ fu1; . . . ;uNg; from which a ran-
dom sample of size n is to be drawn. A popular sampling design in
Auditing is the so-called MUS design. In a MUS, n sample units are
selected without replacement in such a way that, for each unit ui,
the probability pi of ui being part of the sample is proportional to
its book value Xi > 0. See [6] for an introduction to statistical meth-
ods in Auditing and [5,8] for further statistical sampling tech-
niques. In other words, in a MUS design there exists a factor k > 0
such that the inclusion probability pi of sample unit ui has the form

pi

Xi
¼ k; i ¼ 1;2; . . . ;N: ð1Þ

As in any without-replacement design of total sample size n,
one has the relations

XN

i¼1

pi ¼ n; ð2Þ

0 6 pi 6 1; i ¼ 1;2; . . . ;N; ð3Þ

see [5]. By (1), (2) implies

pi ¼ n
XiPN
j¼1Xj

; i ¼ 1;2; . . . ;N; ð4Þ

which essentially provides a recipe for calculating the probabilities
pi.
ll rights reserved.

and FQM-329 of Junta de
MUS is the most popular statistical sampling method in Audit-
ing, [7], and it is easily applicable using, for instance, the different
procedures implemented in the package sampling of R, [9]: once
the vector of probabilities p is supplied, a random sample m is gen-
erated such that the inclusion probability of each ui, i.e., the prob-
ability that ui 2m is either exactly or approximately pi. See e.g. [8].

MUS has interesting theoretical statistical properties when
sample estimates are to be constructed [5]. Nevertheless, in Audit-
ing MUS is a fundamental tool to select samples to be audited, tak-
ing into account the basic principle that units with higher book
values deserve a higher probability of being selected.

In spite of its wide use, it is not always possible in practice to
implement such a sampling scheme. Indeed, since the probabilities
pi must satisfy (3), it follows that expression (4) is only applicable
if book value Xi of any unit ui satisfies the condition

Xi 6
1
n

XN

j¼1

Xj: ð5Þ

If condition (5) is not fulfilled for some units, i.e., if strictly
speaking MUS cannot be applied, a heuristic strategy is commonly
used to obtain a vector of probabilities satisfying approximately (1).
To do this, the population U is split into two groups, so that the r
units in the first group, namely, those for which, when applying for-
mula (4), a value strictly greater than 1 is obtained, are sampled
with probability 1, whereas a MUS of size n � r is defined on the
remaining N � r units. In this new population, a condition analo-
gous to (5) is derived; it may be the case that all units satisfy such
a condition, or, contrarily, a new division between large and smaller
units is needed, and the process is repeated until condition (5) is
satisfied for the remaining units. As a simple illustration, suppose
a MUS sample of size n = 4 is to be extracted from a population of
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Table 1
Example of the heuristic MUS.

i Xi n XiPN

j¼1
Xj

n2
XiPN

j¼3
Xj

n3
XiPN

j¼4
Xj

pi

(heuristic)
pi via solving
(6)

1 20,000 1.42 – – 1.00 1.00
2 17,000 1.21 – – 1.00 1.00
3 9,700 0.69 1.01 – 1.00 1.00
4 6,050 0.43 0.63 0.63 0.63 0.69
5 1,350 0.10 0.15 0.14 0.14 0.12
6 990 0.07 0.11 0.10 0.10 0.09
7 450 0.03 0.06 0.05 0.05 0.04
8 400 0.03 0.05 0.04 0.04 0.03
9 200 0.01 0.03 0.02 0.02 0.02

10 100 0.01 0.01 0.01 0.01 0.01
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N = 10 units with book values Xi given in the second column of Table
1. The inclusion probabilities, calculated by (4), are given in the
third column of Table 1.

Since units u1, u2 have a value greater than 1, we set p1 = p2 = 1,
and we repeat the process with the remaining population and a
sample size n2 = 4 � 2 = 2. This way, the fourth column of the table
is obtained. Now we set p3 = 1, and we repeat the process with the
remaining population and sample size n3 = 2 � 1 = 1. All probabili-
ties obtained are smaller than 1, as shown in the fifth column. The
process is then stopped, yielding the probabilities in the sixth col-
umn of the table. This vector of probabilities is obtained if one uses,
for instance, the function inclusionprobabilities in the pack-
age sampling of R, [9].

MUS aims to assure that, if one unit ui has a book value Xi which
is k times the value Xj of unit uj, then the inclusion probability pi of
unit ui should be k times the inclusion probability pj of unit uj. This
is fulfilled only approximately if the iterative process illustrated
above is followed. Hence, such a process can be seen as a heuristic
approach to find a vector p, satisfying the hard constraints (2) and
(3) and hopefully with a small violation in fulfilling (1). The vector
of probabilities obtained with such a heuristic procedure have
three important properties:

1. They are always strictly positive.
2. They are monotonic in the book values (if Xi > Xj then pi P pj).
3. They yield a true MUS design, i.e., all probabilities satisfy (1),

whenever possible.

Our target is to obtain a vector p of probabilities satisfying the
hard constraints (2), (3) and being as close as possible to fulfill-
ment of (1). Since (1) means that one wants the ratios pi

Xi
constant,

one possible way of measuring closeness to fulfillment of (1) is via
the variance v(p) of such ratios,

vðpÞ ¼ 1
N

XN

i¼1

pi

Xi
� 1

N

XN

j¼1

pj

Xj

 !2

:

We propose here to minimize v(p) on the feasible region de-
fined by (2) and (3). Minimizing v is equivalent to solving the con-
vex quadratic linearly-constrained optimization problem

min
1
N

XN

i¼1

pi

Xi
� k

� �2

XN

i¼1

pi ¼ n i ¼ 1;2; . . . ;N

0 6 pi 6 1 i ¼ 1;2; . . . ;N

k 2 R;

ð6Þ
since, for each p fixed, the optimal value of k is given by
k ¼ 1

N

PN
i¼1

pi
Xi
; and thus v(p) coincides with the objective of (6).

The vector p obtained by solving (6) does not necessarily coin-
cide with the solution provided by the heuristic above (e.g. com-
pare the last two columns of Table 1), but, as shown below, such
p enjoys the same good properties as the heuristic approach
(strictly positive probabilities, monotonic in the book values),
guaranteeing also a best-possible fit to (1).
Proposition 1. Let (p⁄, k⁄) be optimal to (6). One has:

1. k� ¼ 1
N

PN
i¼1

p�
i

Xi
> 0:

2. If i is such that
p�

i
Xi
< k�; then p�i ¼ 1:

3. 0 < p�i 6 1for all i = 1,2, . . . ,N.

4. If i, j are such that Xi > Xj, then p�i P p�j :

Proof. Part 1 is obtained by equating to zero the derivative of the
objective with respect to k for p fixed at p⁄. Part 2 is shown by con-
tradiction: suppose i exists such that p�i < 1 and p�

Xi
< k�: By part 1,

there exists j with
p�

j

Xj
> k�: Let us define for small positive t the fea-

sible solution (p(t),k(t)),

prðtÞ ¼

p�r ; if r – i; j;

p�iþt ; if r ¼ i;

p�j�t ; if r ¼ j;

8>><
>>:

kðtÞ ¼ k� þ t
N

1
Xi
� 1

Xj

� �
:

ð7Þ

It is easily seen that the derivative u0(0) of the objective for

(p(t),k(t)) at t = 0 equals 2
N

p�
i

Xi
� k�

� �
1
Xi
�

p�
j

Xj
� k�

� �
1
Xj

� �
: Since, by

assumption, p�
i

Xi
� k� < 0 <

p�
j

Xj
� k�; it follows that u0(0) < 0, implying

that (p⁄,k⁄) cannot be optimal to (6). Hence, 2 follows.
To show Part 3, suppose by contradiction that some p�i ¼ 0: This

would imply p�i
Xi
< k�; and thus, by Part 2, p�i ¼ 1; which is a

contradiction.
Part 4 is also shown by contradiction. Suppose i, j exist such that

Xi > Xj and p�i < p�j : In particular, p�i < 1; and thus, by Part 2,
p�i
Xi

P k�; and thus

p�j
Xj
� k�

� �
>

p�i
Xi
� k�

� �
P 0:

For positive small t, construct the feasible (p(t),k(t)) as in (7).
The derivative of the objective on (p(t),k(t)) at t = 0 equals
2
N

p�
i

Xi
� k�

� �
1
Xi
�

p�
j

Xj
� k�

� �
1
Xj

� �
; which is negative, implying that

(p⁄,k⁄) cannot be optimal. h

Proposition 1 shows that the vector p⁄ of probabilities obtained
by solving (6) has the desired properties of being positive and
monotonic in the book values Xi. Moreover, it turns out that the
convex quadratic problem with linear constraints (6) can be solved
with a rather simple and quick ad hoc procedure, since one almost
gets a closed formula from the Karush–Kuhn–Tucker (KKT) opti-
mality conditions. Indeed, let us assume without loss of generality
that units are sorted in nonincreasing values of X, and otherwise
perform this O(N log(N)) operation as pre-processing.

KKT conditions can be expressed as
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Fig. 1. Correlation between the heuristic and exact solutions.
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pi

Xi
� k

� �
1
Xi
þ ai � bi � # ¼ 0 8i ¼ 1;2; . . . ;N;

1
N

XN

i¼1

pi

Xi
� k ¼ 0;

XN

i¼1

pi ¼ n;

pi 6 1 8i ¼ 1;2; . . . ;N;

pi P 0 8i ¼ 1;2; . . . ;N;

aið1� piÞ ¼ 0 8i ¼ 1;2; . . . ;N;

bipi ¼ 0 8i ¼ 1;2; . . . ;N;

ai; bi P 0 8i ¼ 1;2; . . . ;N:

k; # 2 R

ð8Þ

By Proposition 1, there exists s 2 {0,1, . . . ,N � 1} such that

p�1 ¼ � � � ¼ p�s ¼ 1 > p�sþ1 P � � �P p�N > 0: ð9Þ

Hence bi = 0 for all i, and ai = 0 for all i = s + 1, . . . ,N. Moreover, for

any i with p�
i

Xi
P k�; one has

# ¼ p�i
Xi
� k

� �
1
Xi
þ ai P 0: ð10Þ

With this, (8) yields

kðsÞ ¼
ðn� sÞ

PN
i¼sþ1Xi

� �
þ

Ps
i¼1

1
Xi

� � PN
i¼sþ1X2

i

� �
s
PN

i¼sþ1X2
i þ

PN
i¼sþ1Xi

� �2 ;

#ðsÞ ¼
skðsÞ �

Ps
i¼1

1
XiPN

i¼sþ1Xi

;

piðsÞ ¼ 1 8i ¼ 1;2; . . . s;

piðsÞ ¼ kðsÞXi þ #ðsÞX2
i 8i ¼ sþ 1; . . . ;N:

ð11Þ

Let us rewrite the inequalities in (8). The condition (3) can be
rewritten as

kðsÞXi þ #ðsÞX2
i 6 1 8i > s;

which by (10) is equivalent to

kðsÞXsþ1 þ #ðsÞX2
sþ1 6 1: ð12Þ

Condition pi P 0 is satisfied since k(s), #(s) P 0. Complementarity
slackness conditions hold by construction. The condition ai P 0
reads

kðsÞXi þ #ðsÞX2
i P 1 8i ¼ 1;2; . . . ; s;

which by the non-negativity of k(s) and #(s) is equivalent to the sin-
gle condition

kðsÞXs þ #ðsÞX2
s P 1:

Hence, together with (11), one must check

kðsÞXs þ #ðsÞX2
s P 1 P kðsÞXsþ1 þ #ðsÞX2

sþ1: ð13Þ

The following strategy can then be used to solve (6): We start by
setting s = 0, and calculating k(s), #(s) from (11). If (13) is also ful-
filled, we construct (p(s),k(s)) from (11), which, by construction,
satisfies the KKT conditions (8), and thus an optimal solution of
(6) has been found. Otherwise, we increase s in one unit, update
by (11) k(s), #(s) and check again (13). The process is repeated until
a feasible solution is found (and this always happens, since KKT
conditions are necessary and sufficient here). When s⁄ is found such
that (13) is satisfied, the full vector p(s⁄) is calculated and given as
optimal solution to (6).

This argument shows the following.
Proposition 2. Assuming the units sorted in nonincreasing order of
Xi, an optimal solution (p⁄, k⁄) to (6) is obtained in O(N) time requiring
O(N) space.
2. Discussion

When sample units have a very large range of book values X, a
vector of probabilities proportional to the book values may not ex-
ist. In this note we have studied the problem of finding the vector
of probabilities p minimizing the variance of the ratios pi

Xi
: This cri-

terion leads to a quadratic optimization problem with a simple
form, for which a linear-time algorithm is devised. One interesting
question is whether the optimal solution of this quadratic problem
strongly differs from the vector of probabilities given by the heu-
ristic approach followed by practitioners. Our empirical findings
indicate that the heuristic solution is very close to the minimum-
variance one. As illustration, we have simulated N book values
from a heavy-tailed distribution with density fXðxÞ ¼ 1

x2 ðx > 1Þ, for
three different scenarios for N, namely N = 200, 300, 500. For each
such N, a small grid of values for the fraction f of units sampled
from the population are chosen, and, for the sample size n = f N,
the vectors of probabilities p⁄ and p obtained respectively by solv-
ing (6) with our exact algorithm and applying the heuristic have
been obtained. In Fig. 1, for N = 200, 300, 500, the correlation cor(f)
between p⁄ and p is plotted as a function of the fraction f of units
sampled from the population. It is seen that the correlation is al-
ways extremely high. In other words, the heuristic solution sys-
tematically yields an almost-optimal solution if the variance of
the ratios pi/Xi is to be minimized.

Problem (6) is not the only way to obtain (approximate) MUS
designs. Indeed, the problem addressed in this note is related to
the multicriteria decision-making problem in which a set of weights
pi are sought such that their ratio pi

pj
are close to given scalars aij, e.g.

[1,4] and the references therein. For instance, one could have
replaced the objective function of (6) by a function of the differences

between the ratios Xi
Xj

and pi
pj

, yielding the objective mini;j
P

i;j
Xi
Xj
� pi

pj

� �2
.

However, the resulting optimization problem is multimodal, to be
addressed by time-consuming Global-Optimization techniques, as
those described in [4], which become unfeasible for realworld
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problems in Auditing. Alternative (tractable) models exist. For in-
stance, instead of minimizing the variance of the ratios pi/Xi, one
could minimize the p-th moment, yielding convex optimization
problems. Models incorporating alternative objective functions,
accommodating imprecise information on the book values Xi, or
prior constraints on the probabilities pi as e.g. in [2] deserve further
study. Designing low-complexity algorithms for such new models is,
in our opinion, a promising research line.

A different avenue of research would consist of addressing
multiobjective issues, as in [3], by taking into account not only vio-
lations in (1), but also alternative criteria, such as the expected
coverage

PN
i¼1piXi of the sample generated. In this case, the result-

ing problem is convex, and a discrete approximation to the effi-
cient set can be obtained by iteratively solving a variant of
problem (6).

This paper has addressed the problem of randomly selecting
sample units so that an imposed proportionality principle suffers
least-possible deviations. However, this sampling process may
also be the first stage for estimating population parameters, and
then the main target should be to improve the quality of estima-
tion (by reducing the variance of the resulting estimates).
Whether the optimization problem analyzed in this paper or
similar ones can help to achieve this goal certainly deserves fur-
ther attention.
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