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Abstract It is well known that some local search heuristics for K -clustering problems, such
as k-means heuristic for minimum sum-of-squares clustering occasionally stop at a solution
with a smaller number of clusters than the desired number K. Such solutions are called
degenerate. In this paper, we reveal that the degeneracy also exists in K-harmonic means
(KHM) method, proposed as an alternative to K -means heuristic, but which is less sensitive
to the initial solution. In addition, we discover two types of degenerate solutions and provide
examples for both. Based on these findings, we give a simple method to remove degeneracy
during the execution of the KHM heuristic; it can be used as a part of any other heuristic
for KHM clustering problem. We use KHM heuristic within a recent variant of variable
neighborhood search (VNS) based heuristic. Extensive computational analysis, performed on
test instances usually used in the literature, shows that significant improvements are obtained
if our simple degeneracy correcting method is used within both KHM and VNS. Moreover,
our VNS based heuristic suggested here may be considered as a new state-of-the-art heuristic
for solving KHM clustering problem.
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1 Introduction

Let E = {e},...,en} be a set of N entities or objects to be clustered (¢; € IR?), and let
C be a subset of E. Then P = {C1,Ca,...,Cg} is a partition of E into K clusters
if it satisfies: (i) Cy # ¥; k = 1,2,...,K, () C;NC; =0; i,j =1,2,...,K;
i # j,and (iii) U 1§= 1 Ck = E. One of the most popular models for partitioning points in
Euclidean space is the minimum-sum-of squares clustering (MSSC) model [2,3,9,14,15]. It
considers simultaneously the homogeneity and the separation criteria. centroid. The partition
that minimizes the sum of squared distances from the entities to the centroid of their cluster
is searched. Then the MSSC can be expressed as follows:

N
. . 2
P) = min min |le; —cil|°, 1
fmssc(P) Jmin _§1j=1 Kll i —cjll (1
1=

,,,,,

where P denotes the set of all K -partitions of 7, and c; the centroid of cluster j i.e.,

1
Cj = —— éj.
IC; ieC;

The most popular heuristics for solving minimum sum-of-squares clustering (MSSC)
alternate (ALT) between keeping one type of variables fixed while determining the other
type: for fixed centroid points, the best assignments of entities to clusters are found and then,
for a given N allocations of entities to clusters, the best centroid points are found. Such
heuristics are known as ALT heuristics. Used for solving MSSC, the ALT heuristic is called
K-means (see Algorithm 1).

Function KM (E, K, Maxit)

1 Choose initial centroids ¢ (k =1, ..., K)
21«0

3 repeat

4 <~ 14+1

5 fori:=1,...,ndo

6 L m(e;) < argminje[l _____ kyllei —cj Hz)2

7 | z= fussc asin(l)
8 forj:=1,..., K do
9 | Calculate centroid c;
until m does not change or | =Maxit

Algorithm 1: K-Means heuristic (KM) for the MSSC problem

Most of the ALT heuristics have an undesirable property known as degeneracy [6,19]:
one or more clusters become empty during their execution. In other words, the better
solution in the next iteration of ALT may be found but with smaller number of clusters.
Clearly, such solutions may easily be improved by adding a new centroid to the posi-
tion of an entity that does not already coincide with some centroid. Papers investigat-
ing the reason for a poor performance of ALT heuristics for some data sets are devoted
to initialization of K means, which is still a subject of debate (see e.g. [4,8,12,22,24]).
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K -harmonic means clustering problem (KHMCP) does not depend much on the choice
of its initial solution. This fact is empirically confirmed in the next section. A question
that naturally arises is then, whether K-harmonic means (KHM) heuristic, the most popu-
lar heuristic for solving KHM problem suffers from degeneracy as well, and if so, to what
degree.

In this paper, we show that the KHM heuristic suffers from two types of degenerate solu-
tions: (i) Type-1, there are some cluster centroids without any entities allocated to them; (ii)
Type-2,there are two cluster centroids that coincide or are at a distance smaller than an arbi-
trary small number €. We suggest an efficient and fast method for removing empty clusters
immediately when they occur in KHM heuristic. Since the KHMCP belongs to non-convex
optimization problems, several heuristics have been proposed in the literature for solving it
[1,17,26,27]. Among them, VNS based heuristic proposed recently in [1] can be considered
as the state-of-the-art method. In this paper, our simple removing degeneracy procedure is
introduced into the VNS based heuristic [1].

Surprisingly, it significantly improves the quality of the final solution obtained by VNS.
We believe that it could also be successfully embedded into other recent heuristic, such as
[17,26,27]. In order to understand degeneracy better, and to show importance of its imme-
diate removal, we performed an extensive computational analysis on test instances from
the literature. It shows that the degeneracy may also harm the quality of the final KHMCP
solution, but less than K-means heuristic for solving MSSCP.

The paper is organized as follows. In the next section, we give for completeness, pseudo-
code for the ALT procedures for solving the KHMCP. In the same section, we show empiri-
cally that KHM is indeed less sensitive than KM to the choice of the initial solution. Also, we
prove by constructing examples that KHM could stop at the degenerate solutions of both Type-
1 and Type-2. At the end of this section, we propose a method for removing degeneracy. In
Sect. 3, we show the impact of removing degeneracy on efficiency of variable neighborhood
search (VNS) and Multi-start KHM local search (MLS) heuristics. In Sect. 4, we perform
extensive computational analysis. Section 5 concludes the paper.

2 Degeneracy of K-harmonic means clustering

K-harmonic means clustering problem. In the KHMCP, the sum of harmonic averages of the
distances between each entity and all centroids is minimized:

P) = mi 3 K Vi=1 N 2
Jrum( )—Pmlnz IR 0 ) i=1...,N, (@)

Pk P z
J=1|le; —c;lI?

and parameter p is a power of the Euclidean norm, used as a distance function. P and Pg
have the same meaning as in (1).

K-harmonic means (KHM) heuristic. The most popular heuristic for solving KHMCP is one of
the ALT type, here referred to as the KHM [13,29]. For the sake of completeness, let us recall
the steps of this heuristic. The set of variables is divided into a set of cluster centroids and a set
of membership variables for each entity and each cluster. KHM uses a weight function which
allows that the same entities can belong to different clusters. A weight function w;, recalled
below, determines the weight of each entity with respect to harmonic means. In contrast to
the K-means algorithm (KM) (see Algorithm 1), where equal weight (i.e. w;=1) are given to
all data, in the KHM algorithm, the weights at each step vary. Another function used in the
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KHM algorithm is called the membership function m;;, which assigns each entity or point e;
to a cluster c;. This function should satisfy the following:

K
)Y myj=1V i=1,_.N;
=1

(i) 0<m;; <1V i=1,...,N, V j=1,....K.

The membership function and the weight function are defined as follows:
lei — ;772
mij = mgum(cj/e) = —x
iy llei —ell™

K
TP 2
2 llei el

w; = wgpm(e) = P 5, Y i=1...,N , “4)
(Z}.zl llei — c,»||—”)

where the centroids are given by the formula [13,28,29]:

, Yi=I1...,N, V j=1,...,K@3)
p—2

;”ew)=Zi:lmKHM(CJ/(Z;)~WKHM(€'1)'(€1), vV j=1,....K . (&)

ZZ\;I mgum(cj/ei) - wiam(e:)

The local search algorithm KHM starts by generating K distinct centroids randomly, chosen
among the given entities ¢; (i = 1, ..., N). Then, new centroids are obtained from Eqgs.
(3), (4), and (5). This process is repeated until the difference between the centroids in two
consecutive iterations is less than ¢ (a small number)or a maximum number of iterations is
reached (see Algorithm 2).

Function KHM (E, K, C, Maxit, &)
clnew) — {c1,¢2, ..., ¢k} // K centroids are chosen from E
<0 // f-iteration counter
repeat
£ £+1;C « Cclew)
7 < fKHM(C) as in (2)
fori=1,..,ndo
for j=1,...,K do
L Calculate m(c; /e;) as in (3)

9 Calculate w(e;) as in (4)

N N R

® 9w

10 fori =1,..,ndo
11 Lforj:l,..‘,l(do

12 L Find new centroids cﬁ."ew), as in (5)

(flew)
J
Algorithm 2: The local search algorithm KHM for KHMCP

until (||c¢ —cjll <e Vj=1,...K) or { =Maxit

Sensitivity on initial solution. As mentioned before, the KHMCP is introduced to reduce
the sensitivity of choosing the initial centroids of the MSSC [18,28,29]. To check this,
we performed computational analysis on several well-known test instances (more detailed
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Table 1 MSSC objective functions for KM and KHM partitions obtained in 100 restarts
DATASET DIM M ALG  WORST-SOL BEST-SOL DIFF
Ruspini (75) 2 3 KM 50,298.04 10,126.72 40,171.32
KHM 12,415.12 10,126.72 2,288.39
Iris (150) 4 3 KM 145.53 78.85 66.68
KHM 78.85 78.85 0.00
Wine (178) 13 3 KM 2,633,555.33 2,370,689.69 262,865.64
KHM 2,371,841.59 2,371,841.59 0.00
Glass (214) 9 2 KM 1,240.11 819.63 420.48
KHM 820.03 819.63 0.40
B-Cancer (699) 10 50 KM 7,700.88 6,112.12 1,588.76
KHM 7,298.29 5,954.09 1,344.20
100 KM 5,853.25 4,348.77 1,504.48
KHM 5,028.09 4,348.92 679.17
TSP (1060) 2 50 KM 349,545,617.68  275,703,293.57  73,842,324.11
KHM 293,226,666.88  257,897,808.70  35,328,858.18
100 KM 157,827,133.11 111,301,083.09  46,526,050.02
KHM 122,563,406.21 102,361,445.84  20,201,960.37
I-Segmentation (2310) 19 50 KM 4,182,208.78 2,819,337.21 1,362,871.57
KHM 3,182,598.13 2,294,420.45 888,177.68
100 KM 2,908,213.19 1,839,231.27 1,068,981.92
KHM 1,947,788.50 1,340,153.25 607,635.25
TSP (3038) 2 50 KM 113,402,496.67 99,913,944.85  13,488,551.83
KHM  105,470,392.38  100,278,655.58 5,191,736.80
100 KM 58,159,312.92 50,568,302.39 7,591,010.53
KHM 50,614,550.76 48,540,001.30 2,074,549.46

description of these test instances is given below, in Sect. 4). In Table 1, we show the
differences between the worst and the best objective function values obtained with 100
restarts of KM and KHM heuristics in turn. Since the objective functions of these two prob-
lems are different, we took crisp partitions obtained from the solution of KHM by setting
to 1 the variable with the largest membership value in each column and O otherwise,
and then computing the corresponding MSSC objective function values. In that way, we
were able to compare the influence of the initial solutions on the final solutions of KM and
KHM.

The first and the second columns in Table 1 display the number of entities and the cor-
responding dimension of data set, respectively. The desired number of clusters is shown in
column 3. In columns 5 and 6, we show the best and the worst values out of 100 restarts. The
last column gives the difference between the worst (largest) and the best (smallest) values
obtained.

Table 1 confirms that the final solution of KHM is not as sensitive as the KM to the choice
of the initial solution, since the differences between the worst and the best solutions obtained
by KHM are much smaller than the differences obtained by the KM heuristics. Note also that
in some cases, better objective function values are obtained with KHM despite the fact that
MSSC problems are considered (see, e.g., the TSP-1060 dataset).
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Fig. 1 Ruspini data set

2.1 Degeneracy of KHM

In this subsection we show, by counter-example, that the solution obtained by KHM could
also be degenerate. First, we distinguish 2 types of degeneracy. We can say that the solution
of the clustering problem is degenerate Type-1 if there is one, or more cluster centres without
allocated entities. We can say that the solution of the clustering problem is degenerate Type-2
if there exist at least two identical cluster centres. We also define the degree d of degeneracy
[6] as the number of empty clusters.
Type-1 degeneracy of KHM. We illustrate degenerate Type-1 on the following well-known
Ruspini data set [23] (entities are 75 points in the plane, as given in Fig. 1). We show
that a degenerate solution of Type-1 may occur even in the first iteration of the KHM algo-
rithm if K = 4. Indeed, if the initial cluster centres are located at entities 75, 63, 65 and
61 (see Fig. 2a), then after the allocation step, the objective function of such a proper
solution is f = 669, 408.938. Entities are divided into 4 clusters, as follows: 63 entities
{1,2,...,59,71,72,74,75} are the closest to entity 75; 4 entities {60, 63, 66, 73} are the
closest to entity 63; 7 entities {62, 64, 65, 67, 68, 69, 70} are the closest to entity 65. The last
entity, i.e. 61 is a cluster by itself. The next step shows the degeneracy in cluster 4 (see Fig.
2b). It is interesting to note that Type-1 degeneracy could appear in the KHM algorithm and
then, it can disappear without applying additional rules. Indeed, it happens in our example
in the next iteration, as shown in Fig. 2c. However, the objective function is almost 3 times
smaller: 252,499.813.

Degeneracy of degree 2 also exists if K = 5. It is shown in Fig. 2d, where we use the
same initial solution as in Fig. 2a but entity 62 is added as the cener of the fifth cluster. Thus,
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(a) Initial solution and K = 4. (b) 1% iter ; K = 4; degeneracy degree=1.
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Fig. 2 KHM clustering degeneracy for the Ruspini dataset

the degenerate solution is already obtained in the first iteration (see Fig. 2e). However, it is
removed from the solution as before, in the next step of KHM. Therefore, type 1 degeneracy
may be automatically corrected during the execution of KHM. But for many other data sets,
the degenerate solutions are significantly affected at the end of the local search, as explained
in Sect. 2.2.

Although the KHM heuristic eventually reduces Type-1 degeneracy automatically, we show
in Sect. 4 that it is better to remove degeneracy immediately when it appears. Moreover, in
this way, the number of iterations of the new KHM is reduced as well (see Table 2).

Type-2 degeneracy of KHM. The following example illustrates the degeneracy of Type-2
for KHM local search. The position of entities e(i, £) and the initial solution c(j, £) are as
follows:

05 0

1 5
1

1 1

E=1] 1 5 1; C=

1.5 0
1 =5

05 0
1.5 0

The initial solution of this step is shown in Fig. 3a. The next step is to calculate the objective
function, as in (2), to get new centroids as in (5), and to calculate the membership and
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Table 2 Comparison between methods KHM and KHM+ on Ruspini dataset

K mth Obj Dev % Maxit Type Maxdeg Time
4 KHM 42,980.7852 0.000 10 1 1 0.062
4 KHM+ 42,980.7812 9 0.000
5 KHM 41,442.8750 0.000 23 1 2 0.016
5 KHM+ 41,442.8711 13 0.016
6 KHM 38,989.2109 0.000 45 1 2 0.016
6 KHM+ 38,989.2109 28 0.016
7 KHM 40,957.8125 2.5717 59 1 2 0.016
7 KHM+ 39,928.8477 60 0.031
8 KHM 35,056.9453 1.431 42 1 3 0.016
8 KHM+ 34,562.2109 40 0.016
9 KHM 32,716.4531 0.000 34 1 4 0.031
9 KHM+ 32,716.4512 41 0.031
10 KHM 32,406.1074 10.126 42 2 6 0.047
10 KHM+ 29,426.3652 34 0.031
11 KHM 30,778.1641 4.234 41 2 7 0.016
11 KHM+ 29,527.8652 65 0.047
12 KHM 30,869.2480 0.394 41 2 8 0.016
12 KHM+ 30,748.0254 80 0.047
13 KHM 31,482.8633 7.965 41 2 7 0.047
13 KHM+ 29,160.1875 107 0.062
14 KHM 36,413.9570 3.864 59 2 8 0.078
14 KHM+ 35,059.1758 30 0.031
15 KHM 37,569.1562 3.501 54 2 9 0.078
15 KHM+ 36,298.4766 41 0.031

weight matrices as in (3) and (4). We choose p = 2 and ¢ = 0.01. The objective function
is:

N N
4
fkum(P)= ) HA;(K,P) =
; ' ; lei —cill=2+llei — c2l=24lle; — c3ll 2 +lle; — call =2
_ 4,444 4
_10,001.84 10,001.66 10,000.14 0.12 10,001.84
= 34.1938

By simple calculations, we get the membership matrix:

0.0000 0.0000 1.0000 0.0249 0.0000
0.0000 1.0000 0.0000 0.1925 0.0000
mirm(Ci/e) =160000 0.0000 0.0000 0.3913 1.0000
1.0000  0.0000 0.0000 0.3913  0.0000

The fact is that m34 = ma4 = 0.3913 will cause future degeneracy. From this matrix, in fact,
we can obtain a crisp clustering matrix, as follows:
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Fig. 3 KHM clustering degeneracy for dataset-2
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By repeating the same steps in the next iteration we get:

wiam(e) = (0.9996  0.9997 1.0000 0.2929 0.9996)T.

Now the new centroids, calculated from (5) are

1.0000  4.9275
C— 1.0000  0.6797

1.4486 —0.5143

0.5514 —0.5143

The results are shown in Fig. 3b. We see in Fig. 3b, c that all five entities are clustered in
4 groups, as desired. But in Fig. 3d, two centroid points are almost joined in one cluster. In
the rest of the Fig. 3e, f, we can see clearly how they coincide. This step implies that the
degeneracy in this example is considered to be of type 2. The final solutionis:
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1.0000  4.9953
) 1.0000  0.3291
Clfinal) = |1 0000 —4.9891
1.0000  —4.9891

Note that entity 4 belongs to clusters 3 and 4 equally in the initial solution, as well as in all 5
iterations. At the end, cluster centroids 3 and 4 become identical, producing a solution with
degeneracy of Type-2.

2.2 Removing degeneracy (KHM+)

There are many efficient ways to remove degeneracy from the solution. Such procedures
are found, for example in Cooper’s ALT type algorithm for solving the Multi-Source Weber
problem in [6,19]. For some data sets (for example in the B-Cancer data set 699), the
degeneracy remains in all iterations of KHM, i.e., it does not automatically vanish as in
the example in Fig. 2. This result lead us to design a heuristic for removing degeneracy
immediately when it appears. Our pseudo-code is given in Algorithm 3. If a degeneracy of
degree d occurs, our algorithm randomly selects d new distinct centroid points among the
positions of the existing entities, which do not already coincide with existing centroids. Such
a new solution is obviously not degenerate since all K centroids have at least one entity
allocated to them, but may become degenerate again after the assignment step.

We also tested some different strategies for choosing the entities to be taken as a new
centroid points. However, it appears that the most efficient rule is the random selection
described above, although the solution qualities do not differ significantly. We found that
the computing time for any deterministic search is long, and does not usually improve the
quality of the final solution.

Function KHM+ (E, K, C, Maxit, )

1 CU) ={cr o, ..., cx) // K centroids are chosen from E at random
20«0 // i-iteration counter

3 repeat

4 | i<i+1;C <« Cclew

5 z < fkam(C) asin (2)

6 Calculate m as in (4) and w as in (5) for all entities

(new)

7 Find new centroids ¢; ,j=1,...,Kasin(6)

Find indices b, of degenerate clusters (£ =1, ..., g), where g is the degree of degeneracy

9 if (g > 0) then

10 fort:=1,...,¢gdo
11 h=|1+N - rnd] // choose an unoccupied entity h at random
12 t<by; ¢ < ey // replace degenerate centroid by chosen entity

until (Hc;"ew) —cjll <& Vj=1,..,K ori =Maxit)

Algorithm 3: KHM+ local search with removing degeneracy

It is clear that KHM+ converges to a local optimum in a finite number of steps. In fact,
most of ALT type heuristics converge since they iterate until there is an improvement in
the objective function value. Obviously, for the KHM clustering problem, the lower bound 0
exists and thus, the decreasing sequence of objective function values cannot tend to —oo. The
fact that the obtained solution is locally the best in continuous space is confirmed by the the
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Fig. 4 KHM clustering for the Ruspini dataset after removing degeneracy

stopping condition ||c;"ew)
as well.

By applying Algorithm 3, we can simply remove the degeneracy in the previous example
for k = 5 in Sect. 3. Figure 4 shows the solutions obtained by our KHM+. Although the
solutions obtained by KHM and KHM+ are both proper, after the second iteration, it appears
that the objective function value of the former is more than twice larger that the latter one
(compare fxgy = 212,390 with fxgpy+ = 97, 519).

To make a precise comparison between KHM and KHM+, we use the same initial solutions
for both heuristics. Table 2 contains results of the comparison of the two local searches on
Ruspini data and different values of the number K of clusters. In column 4 of Table 2, we

give the % difference between the two heuristics calculated as:

—cjll < &. Since KHM+ is an ALT type heuristic, it converges

Sfkam — fraM+

- 100 6
SxHM+ ©

In column 5, we report the number of iterations used, and in column 6 the type of degeneracy
occurred.

3 VNS for KHM

Variable neighborhood search is a metaheuristic for solving combinatorial and global opti-
mization problems whose basic idea is a systematic change of neighborhoods both within
a descent phase, finding a local optimum, and in a perturbation phase,getting out of the
corresponding valley. The efficiency of VNS is based on three simple facts: (i) A local min-
imum with respect to (w.r.t.) one neighborhood structure is not necessarily the same for
another neighborhood structure; (ii) A global minimum is a local minimum w.r.t. all possi-
ble neighborhood structures; (iii) For many problems, the local minima w.r.t. one or several
neighborhoods are relatively close to each other. The VNS metaheuristic is well-established
in the literature. For an overview of the method and its numerous applications, the reader
is referred to [7,20], and for the most recent surveys, to [16,21]. For solving KHMCP, the
VNS based heuristic (VNS-KHM) has already been proposed in [1], but without degeneracy
removal subroutine. For the sake of completeness, we repeat its steps in Algorithm 4.

In our VNS-KHM+, the initial solution is obtained by randomly selecting K centroid
points among the existing entities. The method terminates when the given running time
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Function VNS+(X, K, kmax, tmax, C)

1 repeat

2 k<1 // the neighborhood index
3 repeat

4 C’ < shake (X, k, C) // Shaking

5 C" « ®HM+ (X,K,C’,Maxit,¢) // Local search

6 NeighborhoodsChange (C, C”, k) // Change centroid

until k = kpax
7 t < CpuTime ()
until 7 > 7,4

Algorithm 4: Steps of the basic VNS+

is reached. The inner loop iterates until there is no better solution in the last neighborhood
(kimax) of the incumbent solution C. The inner loop consists of 3 steps: Shaking, Local
search and Neighborhood change. The only difference between the new VNS based heuristic
suggested here (VNS-KHM+) and the VNS-KHM as in [1] is that KHM+ local search, given
in Algorithm 3 is used in the new method, instead of the KHM used in the old VNS. Details
regarding the functions of Shake and NeighborhoodChange may be found in [1]. For
the sake of completeness, we give their pseudo-codes here.

Function Shaking (X, K, C)
1j<«0 // initializing iteration counter
2 repeat
3 j<—j+1
4 rl < [(K—j+1)-rnd] // a cluster is chosen at random
5 r2 < [((N—j+1)-rnd] // an entity is chosen at random
6 Crl < X2 // a cluster centroid is positioned at entity
until j = K

Algorithm 5: Shaking step

Main purpose of the Shaking step is to diversify the incumbent solution C. Neighborhood
k (k=1,..., knax) consists of random centroid-to-entity swaps. Such a random solution is
the initial one for the KHM+ local search, as it is usual in VNS.

Function NeighborhoodChange (C, C’, k)
Lif £(C) < f(C) then

2 ‘ C«—Chik<«1 // make a move
else
3 L k<—k+1 // next centroid

Algorithm 6: Neighborhood change or move or not function

Function NeighborhoodChange () compares the new value fg gy (C’) with the
incumbent value fx gy (C) obtained in the neighborhood k (line 1). If an improvement
is obtained, k is returned to its initial value, and the new incumbent is updated (line 2).
Otherwise, the next neighborhood is considered (line 3).

@ Springer



J Glob Optim (2015) 63:427-443 439

500

-
n
o

> >
[2) K-means (3] K-means
€ w0 S
g 400 g 100 *
& ) & )
% 350 B % 80 ot
5 300 . S .
$ 250 . 8 60 .
2 £ .
2 200 2 o
i T 40 .
g 150 g .
g 100 E 20 .
% 50 20
£ 0 £ 0 Lo o o—ee——e ey e
100 200 300 400 500 600 50 100 150 200
number of clusters number of clusters
(a) Dataset:Breast Cancer-699 (b) Dataset:Image Segmentation-2310

Fig. 5 Comparison between the degeneracy degrees of K -means and KHM local searches after 100 restarts

4 Computational results

Computer. All experiments were performed on a personal computer Intel(R) Core(TM)2 with
0.98 GB of RAM and a speed of 2.40 GHz. All our methods were coded in Lahey/Fujitsu
FORTRAN 95. For plotting, we used MATLAB 7.6.
Test instances. We choose the following test instances: (i) Ruspini which has 75 entities in
2-dimensions [23]; (ii) Iris which has 150 entities in 4-dimensions; (iii) Wine which has
178 entities in 13-dimensions; (iv) Glass which has 214 entities in 9-dimensional space; (v)
Breast-cancer which has 699 entities in 10-dimensions, and (vi) Image Segmentation with
2,310 entities in 19-dimensions. For more details about them, see [5].
Parameters. We choose ¢ = 0.01 in all our experiments. In Algorithm 2, the parameter
Maxit = 180. For all data sets and for all number of clusters K, we put the power p of the
KHM objective function equal to 2 (p = 2).
Maximum degree of degeneracy. As mentioned above, the KHM heuristic for harmonic means
clustering has smaller degree of degeneracy than the KM heuristic for Minimum sum-of-
squares clustering. In Fig. 5, we show the maximum degree of degeneracy obtained during
the execution of these two heuristics. Comparative results on two well-known data sets are
presented: (i) Breast-cancer and (ii) Image Segmentation. The difference between these two
heuristics is clear: the maximum degree of degeneracy is much larger for KM than for KHM. It
is interesting to note that the maximum degree of degeneracy is empirically closer to linear
function of the number K of clusters.
Comparison between KHM and KHM+. In the following tables, we present a comparison
between the objective function values obtained with KHM and KHM+. The first column indi-
cates the desired number K of clusters. The second column indicates the method used.
Column 3 gives the corresponding objective function values. Column 4 shows the percent-
age improvement obtained by KHM+ in comparison with KHM. The number of local search
iterations is displayed in Columns 5. The type and the maximum degree of degeneracy are
displayed in columns 6 and 7, respectively. The last column shows the computing time (in s)
for each method.

Based on the comparative results between KHM and KHM+ given in Table 3, one can make
the following observations:

(i) Using KHM+ instead of KHM, the solution qualities are improved up to 58 % in smaller
number of iterations and less computing times, on average.
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Table 3 Comparison between KHM and KHM+ based on one run

K Method Obj Dev % Maxit Type Maxdeg Time

(a) Dataset: Wine-178

50 KHM 1,010,980.81 0.160 153 1 1 1.25
50 KHM+ 1,009.370.12 138 0.84
60 KHM 772,767.75 50.279 119 1 1 0.93
60 KHM+ 514,221.22 93 0.73
70 KHM 1,214,848.75 57.338 93 1 1 0.86
70 KHM+ 772,127.44 73 0.78
(b) Dataset: Glass-214

180 KHM 136.40 26.538 4 2 1 0.09
180 KHM+ 107.79 4 0.21
190 KHM 89.61 55.899 4 2 1 0.12
190 KHM+ 57.48 5 0.37
200 KHM 37.74 21.598 5 2 1 0.09
200 KHM+ 31.04 5 0.60
(c) Dataset: Breast Cancer-699

100 KHM 29,219.30 0.535 125 2 42 4.06
100 KHM+ 29,063.82 68 2.57
150 KHM 31,468.25 9.242 48 2 39 2.35
150 KHM+ 28,806.04 7 0.57
200 KHM 30,548.25 28.757 3 2 50 0.20
200 KHM+ 23,725.55 3 0.62
250 KHM 26,197.01 37.502 3 2 62 0.25
250 KHM+ 19,052.13 2 0.85
300 KHM 23,265.06 57.817 2 2 78 0.20
300 KHM+ 14,741.80 2 1.09
(d) Dataset: Image Segmentation-2310

100 KHM 32,480,866 0.197 104 2 1 14.75
100 KHM+ 32,416,846 131 16.67
200 KHM 31,760,192 0.017 157 2 1 38.18
200 KHM+ 31,754,658 150 40.87
300 KHM 30,295,272 0.023 105 2 3 37.68
300 KHM+ 30,288,258 91 38.03
400 KHM 29,596,908 0.968 105 2 6 49.70
400 KHM+ 29,313,292 102 48.68
500 KHM 28,287,296 0.419 50 2 10 29.28
500 KHM+ 28,169,312 43 26.18

(i) The degeneracy type depends on the instance considered. There is no instance with
both types of degeneracy: Wine-178 exhibits only type 1 and the other instances only
type 2 degeneracy.

(iii) The number of clusters without entity (the maximum degree of degeneracy) can be
more than 40 % of the total number of clusters K (see the Breast Cancer-699 instance).
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Table 4 Comparison between KHM-VNS and KHM-VNS+

Dataset K Obj Dev% obj  Dev % tmls tvns tmax
Wine (178) 50 MLS 619,330.5630 8.754 VNS 466,665.6250 0.777 0.02 0.04 0.17
MLS+ 569,476.3750 VNS+ 463,067.2190 0.02 0.15 0.16

60 MLS 571,392.2500 11.118 VNS 435,012.0310 9.155 0.00 0.13 0.13

MLS+ 514,221.2190 VNS+ 398,527.0000 0.00 0.03 0.47

70 MLS 463,024.7500 3.282 VNS 353,198.4380 3.812 0.02 0.17 0.29

MLS+ 448,310.0940 VNS+ 340,229.7810 0.02 0.21 0.31

Glass (214) 180 MLS 106.0072 30.034 VNS 28.8215 4.237 0.05 0.14 0.17
MLS+ 81.5225 VNS+ 27.6500 0.02 0.05 0.12

190 MLS 48.2871 3.967 VNS 19.9370 1.294 0.09 0.14 0.14

MLS+ 46.4445 VNS+ 19.6822 0.46 0.45 0.56

200 MLS 29.4370 3.111 VNS 8.5587 3.984 0.08 0.71 0.75

MLS+ 28.5487 VNS+ 8.2308 0.12 1.16 1.16

Breast Cancer (699) 100 MLS 28,901.5645 0.673 VNS 27,519.3906 0.255 0.08 0.23 0.23
MLS+ 28,708.2246 VNS+ 27,449.3926 0.19 0.21 0.21

150 MLS 27,848.8496 2.505 VNS 24,057.1543  0.148 0.09 0.40 0.40

MLS+ 27,168.3398 VNS+ 24,021.5273 0.22 0.31 0.34

200 MLS 27,974.0879 22.398 VNS 20,640.6973 10.334 0.43 0.40 0.48

MLS+ 22,854.9551 VNS+ 18,707.5488 0.50 0.50 0.50

250 MLS 26,197.0117 44.040 VNS 18,345.2031 21.149 0.06 0.55 0.65

MLS+ 18,187.2559 VNS+ 15,142.7334 0.62 0.62 0.62

300 MLS 23,265.0645 71.161 VNS 16,581.6523 47.983 0.08 0.67 0.70

MLS+ 13,592.4814 VNS+ 11,205.0742 0.70 0.54 0.70

Image Segmentation 100 MLS 32,480,866 ~ 7.213 VNS 24,805,398  0.142 0.09 0.26 0.98
2310 MLS+ 30,295,774 VNS+ 24,770,124 0.76 0.83 0.95
150 MLS 25,970,568 0.041 VNS 21,838,422 1.360 1.92 1.55 2.14

MLS+ 25,960,054 VNS+ 21,545,372 0.25 0.41 2.06

200 MLS 24,675,180 3.892 VNS 18,951,112  0.608 2.18 2.78 3.64

MLS+ 23,750,836 VNS+ 18,836,514 1.25 1.01 4.25

250 MLS 24,025,238 1.047 VNS 17,222,892 0.061 2.17 2.75 4.42

MLS+ 23,776,396 VNS+ 17,212,400 2.12 2.54 4.43

300 MLS 21,686,348 3.819 VNS 16,094,108  0.572 2.17 2.67 5.34

MLS+ 20,888,608 VNS+ 16,002,548 1.03 1.98 5.18

Comparison between VNS-KHM and VNS-KHM+. The next table illustrates the influence of
KHM+ when applied within two metaheuristics: MLS and VNS. Heuristics which use KHM+
as a local search within MLS and VNS, we denote as MLS+ and VNS+, respectively. Table
4 presents comparative results obtained by these 4 methods. For each data set, we first run
KHM and KHM+ 100 times to get the maximum time allowed for VNS and VNS+ (#,4x)-
These values are given in the last column of Table 4. Then, in the two columns before the
last one, we report on running times when the best solution is found for each method.

It appears that:

(1) The results of best quality are obtained by the VNS+ heuristic in less CPU time than
those reported by VNS, the current state-of-the-art heuristic for KHM clustering.

@ Springer



442 J Glob Optim (2015) 63:427-443

(i) VNS is always better than ML.S+, except for two Breast cancer instances (for K = 250
and K = 300).

(iii) MLS+ improves the solution quality of MLS significantly. Thus, the four heuristics can
be ranked as follows: VNS+, VNS, MLL.S+ and MLS.

(iv) Better results are obtained by VNS+ than VNS even when the final solution obtained by
this last heuristic is not degenerate. This means that removing degeneracy immediately
when it appears during the KHM iteration is better than waiting for possible auto
correction in future iterations.

(v) Regarding CPU time, MLS+ and VNS+ are slightly faster on average than MLS and
VNS respectively.

5 Conclusions

In this paper, we consider the KHMCP and an ALT type of heuristic (ALT) to solve it. We show
that the KHM clustering heuristic for solving KHMCP suffers from degeneracy, i.e., that some
clusters could become or remain empty (without entities) during the execution of the heuristic.
We distinguish two types of degenerate solutions, and provide an efficient procedure which
removes degeneracy immediately when it appears. Moreover, this new routine is used as a
local search within a recent variable neighborhood search (VNS+) heuristic, which appears
to represent the current state-of-the-art. Extensive computational analysis on some usual data
sets from the literature confirms that degeneracy could seriously damage the solution qualities
of both KHM and VNS -KHM.

Future research may include: (i) application of our approach to investigating effective-
ness of ALT procedures for solving k-Heronian, Generalized k-Heronian mean [11] and
k—logarithmic mean clustering [10]; (ii) the development of a general statement regarding
degeneracy in ALT iterative procedures; (iii) the design of different methods for correcting
degenerate solutions for ALT methods; (iv) an investigation of the relation between initial
solution methods of K -means and KHM with degeneracy, i.e., whether the proper initialization
method could avoid degeneracy completely.
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