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A number of methods for multiple-objective optimization problems (MOP) give as solution to MOP the set of optimal solutions for some
single-objective optimization problems associated with it. Well-known examples of these single-objective optimization problems are the
minsum and the minmax. In this note, we propose a new parametric single-objective optimization problem associated with MOP by means
of Goal Programming ideas. We show that the minsum and minmax are particular instances, so we are somehow combining minsum and
minmax by means of a parameter. Moreover, such parameter has a clear meaning in the value space. Applications of this parametric
problem to classical models in Locational Analysis are discussed.

1. INTRODUCTION

Let S ⊂ �m be a nonempty compact set. For each j =
1� � � � � n, let fj � S → � be continuous, and consider the
vector optimization problem

min
x∈S


f1
x�� � � � � fn
x��� (1)

The two standard scalar problems associated with (1) are
the minsum

min
x∈S

n∑
j=1

�jfj
x�� (2)

where �1� � � � ��n are strictly positive weights assumed,
without loss of generality, to sum unity, and the minmax

min
x∈S

max
j=1� ��� � n

fj
x�� (3)

which minimize respectively the average and the highest
value of the functions fj .

When both the average and the highest value are impor-
tant, a compromise criterion must be constructed, the usual
choice being a convex combination of the two criteria, i.e.,
for a fixed 
 in [0, 1], one obtains


1−
�

( n∑
j=1

�jfj

)
+
 max

j=1� ��� � n
fj

yielding the scalar problem Q

� defined as

min
x∈S

{

1−
�

( n∑
j=1

�jfj
x�

)
+
 max

j=1� ��� � n
fj
x�

}
� Q

�

We may observe that problem Q

� has as particular
cases (2) and (3) when 
 is equal to zero and one, respec-
tively. However, finding real meaning to the parameter 
 to

be chosen in Q

� is not an easy task (e.g., Carrizosa et al.
1994, Saaty 1980).

In this note, we introduce another parametric problem
which, as Q

�, includes as particular choices both (2)
and (3). However, the parameter involved in our model has
a clear interpretation as targets of a certain Goal Program-
ming model (see e.g., Ignizio 1978, Romero 1991, Steuer
1986, Tamiz et al. 1998, Tamiz et al. 1995 and the refer-
ences therein for further details on Goal Programming).

The remainder of this note is structured as follows. In
§2 we introduce a new parametric problem P
z� by using
a Goal Programming model. We prove properties of this
new problem. Moreover, we show that, in general, the para-
metric problem Q

� and ours are not equivalent. The effi-
ciency of the solutions for P
z� is discussed in §3. We
devote §4 to applications of our methodology to derive new
models in Locational Analysis. Finally, §5 contains a short
summary.

2. A NEW PARAMETRIC PROBLEM
Suppose we could give for all the functions fj a common
target fj
x� � z for some z ∈ �. This is possible when
all functions measure in the same units (see §4) or after
normalizing in such a way that e.g.,

0 = min
x∈S

fj
x��

1 = max
x∈S

fj
x�

(see Tamiz et al. 1998). This yields the following Goal
Programming formulation:

min
x∈S

n∑
j=1

�j max
fj
x�− z�0�� (4)
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Assuming �j to sum unity, the objective function of (4)
can be rewritten as( n∑

j=1

�j max
fj
x�� z�

)
− z�

Define for each z ∈ �, the scalar problem P
z�,

min
x∈S

n∑
j=1

�j max
fj
x�� z�� P
z�

which, by the previous discussion, is equivalent to mini-
mizing the average deviation with respect to the common
target fj
x�� z.

We discuss in this section properties of P
z�. Denote by
zmin min and zmin max respectively the optimal values of the
minmin and minmax problems,

zmin min = min
x∈S

min
j=1� ��� � n

fj
x��

zmin max = min
x∈S

max
j=1� ��� � n

fj
x��

which, due to the compactness of S and the continuity of
functions fj , are finite and attained.

As Q

�, the parametric problem P
z� includes as
instances the minsum and minmax problems, in the sense
that particular choices of z yield them.

Proposition 2.1. The following statements hold:

1. For any z� zmin min, the problem P
z� is equivalent to
the minsum problem 
2�.

2. The problem P
zmin max� is equivalent to the minmax
problem 
3�.

3. For z � zmin max, any optimal solution to P
zmin max�

also solves P
z�.

Proof. Since, for z � zmin min, x ∈ S and j�1 � j � n, one
has fj
x�� z, it then follows that

n∑
j=1

�j max
fj
x�� z�=
n∑

j=1

�jfj
x�� for each x ∈ S� (5)

thus part 1 follows.
Let xmin max be an optimal solution to (3). In particular,

fj
xmin max�� zmin max� for each j = 1� � � � � n� (6)

Thus, for any x ∈ S, we have by (6)

n∑
j=1

�j max
fj
x�� zmin max�

�

n∑
j=1

�jzmin max =
n∑

j=1

�j max
fj
xmin max�� zmin max��

thus xmin max solves P
zmin max�.

Conversely, let x∗ be optimal for P
zmin max� and we will
show that x∗ also solves (3). Indeed, by the optimality of
x∗ for P
zmin max� and (6), we have that
n∑

j=1

�jzmin max �

n∑
j=1

�j max
fj
x
∗�� zmin max�

�

n∑
j=1

�j max
fj
xmin max�� zmin max�

=
n∑

j=1

�jzmin max�

Hence, the inequalities above are equalities and thus it fol-
lows for each j that

max
fj
x
∗�� zmin max�� zmin max�

thus

max
j=1� ��� � n

fj
x
∗�� zmin max�

showing that x∗ also solves (3), and this shows part 2.
For part 3, observe first that any optimal solution x∗ to

P
zmin max� also solves (3), thus,

max
fj
x
∗�� zmin max�= zmin max� for each j = 1�2� � � � � n�

and then, for any z� zmin max,

max
fj
x
∗�� z�= z� for each j = 1�2� � � � � n�

thus for any x ∈ S,
n∑

j=1

�j max
fj
x
∗�� z� =

n∑
j=1

�jz

�

n∑
j=1

�j max
fj
x�� z��

and the result follows. �

We have two parametric problems Q

� and P
z� asso-
ciated with the vector optimization problem (1). It could
happen that these two parametric problems were equiva-
lent, i.e., the solution set obtained by Q

� when 
 varies
on [0, 1] is the same as the solution set obtained by P
z�
when z varies �zmin min� zmin max�. However, an easy example
shows that these parametric problems are not equivalent.

Example 2.2. Consider the discrete multiobjective linear
problem in �2

min
x∈S


f1
x�� f2
x�� f3
x���

where

f1
x1� x2� = −3x1 +4x2�

f2
x1� x2� = 3x1 −x2�

f3
x1� x2� = x1 +x2�

S = �
1�0�� 
0�1�� 
1�1�� 
0�25�1���
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Figure 1. Trajectory of Q

� for each point in S.

and strictly positive weights �1 = 1/4��2 = 1/2, and �3 =
1/4. Figure 1 plots functions g1� g2� g3, and g4 which cor-
respond to the function on 
 ∈ �0�1��

g
x1� x2�


�= 
1−
�

3∑
j=1

�jfj
x1� x2�+
 max
j=1�2�3

fj
x1� x2��

where 
x1� x2� is equal to 
1�0�, 
0�1�, 
1�1�, and 
0�25�1�
respectively. It is straightforward to see that the solution
set obtained by Q

� is equal to


0�1� if 0 � 
� 0�2�


1�0� if 0�2 � 
� 3/7�


1�1� if 3/7 � 
� 1�

Figure 2 plots functions h1� h2� h3, and h4 which corre-
spond to the function on z ∈ �zmin min =−3� zmin max = 2��

h
x1� x2�

z�=

3∑
j=1

�j max
fj
x1� x2�� z��

where 
x1� x2� is equal to 
1�0�� 
0�1�� 
1�1�� and

0�25�1� respectively. We may observe that the solution set

Figure 2. Trajectory of P
z� for each point in S.

obtained by this criterion is equal to


0�1� if −3 � z�−0�5�


0�25�1� if −0�5 � z� 1�375�


1�1� if 1�375 � z� 2�

Observe that Q
0� and P
−3� are equivalent, as well as
for Q
1� and P
2�, as stated in Proposition 2�1� �

3. EFFICIENCY

One desirable property when finding a solution for (1) is
efficiency. It is well known that Q

� gives efficient solu-
tions when 
∈ �0�1�. As usual in Goal Programming, there
could exist optimal solutions for P
z� which are not effi-
cient. However, we can show that at least one of them is
efficient by using standard restoration techniques (Romero
1991, Tamiz et al. 1998).

Proposition 3.1. Let x
z� be an arbitrary optimal solution
for P
z�. Then, any optimal solution for

min
n∑

j=1

�jfj
y�

s�t� y ∈ S (7)

fj
y�� fj
x
z�� for each j = 1� � � � � n

is optimal for P
z� and efficient for (1).

Proof. Since S is assumed to be compact and each
fj is continuous on S, for each z ∈ �, an opti-
mal solution x
z� for P
z� exists. The feasible region
of (7), S
x
z��, is a nonempty compact set. It is evi-
dent that any point in S
x
z�� also solves P
z�; more-
over, any optimal solution to (7) is efficient for (1).

�

We cannot ensure efficiency for all the optimal solutions
for P
z�. Nevertheless, the next proposition proves weak
efficiency for all of them.

Proposition 3.2. For each z � zmin max� any optimal solu-
tion for P
z� is a weakly efficient solution for problem (1).

Proof. By contradiction, we will assume that the result is
not true. Then, there exists some optimal solution x
z� for
P
z� and some y ∈ S such that

fj
y� < fj
x
z��� for each j = 1� � � � � n� (8)

Moreover, there exists at least an index j0 such that

fj0
y�� z� (9)

Indeed, otherwise, for each j, fj
y� < z, thus

max
j=1���� �n

fj
y� < z� zmin max�

but this is a contradiction with the definition of zmin max. So,
from (8),

max
fj
y�� z�� max
fj
x
z��� z�� for each j = 1� � � � � n�



172 / Carrizosa and Romero-Morales

and, by multiplying by �j , we have

�j max
fj
y�� z�� �j max
fj
x
z��� z��

for each j = 1� � � � � n�

Moreover, by (8) and (9), the last inequality is strict for
j = j0. Then,

n∑
j=1

�j max
fj
y�� z� <
n∑

j=1

�j max
fj
x
z��� z��

but this is a contradiction with the fact that x
z� is optimal
for P
z�. �

4. APPLICATIONS

4.1. p-Facility Location Problem

A set of n customers, with demand �1� � � � ��n, must be
served from a set of p plants, to be chosen from m candi-
date sites. For each i = 1�2� � � � �m and j = 1�2� � � � � n�dij
denotes the distance from customer j to candidate plant i.

The two basic p-facility location problems are the p-
median and the p-center (e.g., Daskin 1995, Haudler 1990,
Mirchandani 1990),

min
n∑

j=1

�j min
i� yi=1

dij

s�t�
m∑
i=1

yi = p

yi ∈ �0�1�∀i
and

min max
j=1���� �n

min
i� yi=1

dij

s�t�
m∑
i=1

yi = p

yi ∈ �0�1�∀i�
where, for each i = 1� � � � � n� yi is the binary variable

yi =
{

1 if plant i is open

0 otherwise.
(10)

It is well known that both problems can be readily rewrit-
ten as Linear Integer problems; indeed, by defining for each
i = 1�2� � � � �m and j = 1�2� � � � � n the allocation variable
xij ,

xij =
{

1 if customer j is served by plant i,

0 otherwise,

and the region S,

S =
{

x� y� � xij � yi for each i� j�

m∑
i=1

yi = p�xij� yi ∈ �0�1� for each i� j

}
�

the p-median problem can then be written as

min
n∑

j=1

�j

m∑
i=1

dijxij

s�t� 
x� y� ∈ S

and the p-center becomes

min W

s�t�
m∑
i=1

dijxij �W∀j


x� y� ∈ S�

Define fj
x� =
∑m

i=1 dijxij . In this case, the parametric
problem P
z� can be written as follows

min

x� y�∈S

n∑
j=1

�j max
fj
x�� z�

= min

x� y�∈S

n∑
j=1

�j max

( m∑
i=1

dijxij� z

)
�

The next result will show that the parametric problem
P
z� is equivalent to a p-median problem.

Lemma 4.1. For any z ∈ �, problem P
z� is equivalent to
the p-median problem with distances d̂ij
z� �= max
dij� z�.

Proof. Let P ′
z� denote the p-median problem with dis-
tances d̂ij
z�, i.e.,

min

x� y�∈S

n∑
j=1

�j

m∑
i=1

max
dij� z�xij � P ′
z�

The feasible regions of both problems are the same. Then,
we only need to show that the objective functions coincide
in both problems at any feasible point. Let 
x� y� be a feasi-
ble solution for P
z� and P ′
z�. The value of the objective
function associated with index j in P
z� is equal to

�j max

( m∑
i=1

dijxij� z

)
= �j max

( m∑
i=1

dijxij�
m∑
i=1

zxij

)
(11)

= �j

m∑
i=1

max
dij� z�xij� (12)

where equality (11) follows from
∑m

i=1 xij = 1, and (12)
since exactly one variable xij is equal to 1 and the rest are
zeroes. We have just shown that, for each j, the objective
function associated with j in P
z� and P ′
z� are equal, and
then, the result follows. �

4.2. Locating an Obnoxious Service

The models described in the previous section are suitable
when the facilities to be located are desirable, in the sense
that customers want them near, and the minimization of
transportation costs is the main concern. When, due to the
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nature of the facilities, the main concern is, on the con-
trary, the environmental impact (individuals want the facili-
ties far), one faces completely different location models, as
reviewed in Erkut and Neuman (1989) and Plastria (1996).

Suppose that a single obnoxious facility is to be located
within a region S ⊂ �2 with a polygonal boundary. Such
location affects a set A of population areas each modeled
as a point a in �2, with population �a.

The two basic models are the euclidean maxsum and
maxmin, maximizing the average and minimum euclidean
distance (Erkut and Neuman 1989 and Plastria 1996). Such
models correspond to cost minimization models if one
assumes that locating the facility at x yields for a ∈ A a
per-habitant (environmental) cost K−da
x�, where da
x�
is the euclidean distance from a ∈ A to x and K is a posi-
tive constant, such as

K � max
x∈S

max
a∈A

�ada
x��

Thus, we obtain the following equivalent formulations for
the maxsum,

min
x∈S

∑
a∈A

�a
K−da
x�� (13)

and the maxmin,

min
x∈S

max
a∈A


K−�ada
x��� (14)

The corresponding parametric problem P
z� becomes
now

min
x∈S

∑
a∈A

�a max
K−da
x�� z�� (15)

which was suggested in Erkut and Neuman (1989) as a
more realistic version of (13) (it models environmental
impact as linearly decaying until reaching a threshold value,
after which it remains constant/negligible), but no solution
procedure has been proposed since then.

The extreme cases of P
z�, (13) and (14) have finite
dominating sets, since an optimal solution to (13) always
exists within a finite set of points (Erkut and Neuman 1989
and Plastria 1996). This property is enjoyed also by the
remaining instances of P
z�, as shown in the following
proposition.

Denote by bd
c� r� the boundary of the ball centered at c
with radius r . One then has

Proposition 4.2. Given z� zmin max, let Dz be the finite set
consisting of the points in

• the set of vertices of S,
• the intersection of some edge of S with some

bd
a�K− z�, with a ∈ A,
• the intersection of two sets of the form bd
a�K− z�,

bd
c�K− z�, with a� c ∈ A.

Then, Dz is a finite dominating set for P
z�.

Proof. Let x̄ ∈ S\Dz be optimal to P
z�. We will show that
another optimal solution belongs to Dz. Define the partition
of A

A�
x̄� = �a ∈ A� da
x̄�� K− z��

A<
x̄� = �a ∈ A� da
x̄� < K− z�

and the feasible subset S
x̄�,

S
x̄�= �x ∈ S � da
x�� K− z for each a ∈ A�
x̄�

da
x�� K− z for each a ∈ A<
x̄���

which is nonempty since x̄ ∈ S
x̄�. Then, one has

F
x� �= ∑
a∈A

�a max
K−da
x�� z�

= ∑
a∈A�
x̄�

�az+
∑

a∈A<
x̄�

�a
K−da
x��

for each x ∈ S
x̄�� (16)

Hence, the objective function F is concave on the (noncon-
vex) set S
x̄�.

Since we assume x̄ �∈Dz, two cases may arise:

1. x̄ is in the boundary of S, or
2. x̄ is interior to S.

In the first case, the intersection of the boundary of S with
S
x̄� is a set of closed intervals, one of which (say I) con-
tains x̄ in its relative interior. By construction, both end-
points of I are in Dz, and, by (16), F is concave on I , thus
attains its minimum at one of its endpoints, say x∗; since x̄
was supposed to be absolute minimum, x∗ also enjoys this
property and the result holds.

We will show now, by contradiction, that x̄ cannot be
interior to S. Indeed, suppose that x̄ is in the interior of S.
For z= zmin max, it follows from Proposition 2.1 that x̄ also
solves the maxmin problem, thus (e.g., Erkut and Neuman
1989), at least three points of A are equidistant from x̄,
showing that x̄ is in Dz, which is a contradiction with the
definition of zmin max. Hence,

z < zmin max� (17)

In particular,

A<
x̄� �= ∅� (18)

Indeed, else, for all a∈A, da
x̄��K−z, thus maxa∈A
K−
da
x̄��� z < zmin max, which is a contradiction. Hence (18)
holds.

Since x̄ �∈Dz, one can construct a triangle T whose ver-
tices are in S
x̄� and that contains x̄ in its interior. Then
(recall that F is concave on S
x̄) and x̄ is a minimizer) F
is constant on the nonempty interior set T , thus F is also
constant on S
x̄�. Hence, by (16) and (18), the function
x→∑

a∈A<
x̄� �ada
x� is constant on the set with nonempty
interior S
x̄�, which is a contradiction.

Example 4.3. To illustrate Proposition 4.2, consider the
feasible region S and the set of population areas A =
�a1� a2� a3�= �
1�2�� 
3�1�� 
4�3�� depicted in Figure 3.

Suppose the population areas are equally weighted, i.e.,
�a = 1/3 for each a ∈ A. We set K = 6, which satisfies
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Figure 3. Feasible region S and population areas A.

Figure 4. Dominating set for z= 3.

K � maxx∈S maxa∈A �ada
x� 
=
√

29/3�, as checked after
inspecting the convex vertices of the feasible region S.

By inspecting the convex vertices of S, we obtain as
optimal solution for (13) the point c1 = 
6�4�. However,
the optimal solution of (14) is obtained (after constructing
the Voronoi diagram of A) at c2 = 
95/18�10/9�. Hence,
the optimal solutions for (13) and (14) do not coincide.

When both criteria are combined through problems P
z�,
a finite dominating set can be constructed.

For instance, for z = 3 (for which z � zmin max = 6 −√

4−95/18�2 + 
3−10/9�2/3�, Figure 4 represents the

dominating set.

5. CONCLUSIONS

The two basic scalarizations of a vector optimization prob-
lem are the minsum (minimization of the average) and
minmax (minimization of the maximum) problems. When
both the average and the maximum have to be considered,
the usual way of aggregating them has consisted of tak-
ing a convex combination of these two criteria. However,
the weight used in this convex combination has no clear
meaning, thus it could be difficult to obtain. In this note,
we propose a new parametric problem based on a Goal
Programming formulation, in which the parameter used is
defined as the target fixed for each objective. We show that
both minsum and minmax problems can be obtained as par-
ticular cases. Hence, our approach can be seen as a new
way of combining minsum and minmax, which, in general,
turns out to be not equivalent to the convex combination
approach. Two applications in Locational Analysis are pre-
sented as an alternative way to the standard convex combi-
nation criterion.
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