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ARTICLE INFO ABSTRACT

Available online 20 November 2011 Variable Neighborhood Search (VNS) has shown to be a powerful tool for solving both discrete and box-
Keywords: constrained continuous optimization problems. In this note we extend the methodology by allowing
Global optimization also to address unconstrained continuous optimization problems.

Nonlinear programming Instead of perturbing the incumbent solution by randomly generating a trial point in a ball of a
Metaheuristics given metric, we propose to perturb the incumbent solution by adding some noise, following a
Variable neighborhood search Gaussian distribution. This way of generating new trial points allows one to give, in a simple and
Gaussian distribution intuitive way, preference to some directions in the search space, or, contrarily, to treat uniformly all

directions. Computational results show some advantages of this new approach.
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1. Introduction following form:

In this paper we consider an unconstrained Nonlinear Program

(NLP) of the form Algorithm 1. Algorithm VNS.

/% Initialization %/

global minf(x) ~ (NLP), 01 Select the set of neighborhood structures Ny,
xek k=1,... kmax

where f : R" - R is a continuous function. No further assumptions 02 Choose an arbitrary initial point xe S

are made on f. In particular f does not need to be convex or 03 Set x*«x, f*—f(x)

smooth, and it may be obtained as the output of a numerical /#* Main loop =/

subroutine. 04 repeat the following steps until the stopping
Unconstrained NLPs naturally arise in many applications, e.g. condition is met

in advanced engineering design, data analysis, financial planning, 05 Setke<1

risk management, scientific modeling, chemistry, etc. In many 06 repeat the following steps until k > kmax

cases of practical interest such problems are very difficult because 07 Shake: Generate at random a point y e A(x*)

of the presence of many local minima, the number of which may 08 Apply some local search method from y to obtain a

grow exponentially with the dimension of the problem. For local minimum y’

problems of even moderate size, methods that offer a guaraqtee 09 if f(y') <f* then

of finding the true global minimum are too time-consuming. 10 . ; .

Hence, different (meta)heuristic approaches, which rely heavily Set x* ', f* —f(y) and goto line 05

on computer power, have been developed, see [1] for a recent 11 endif

presentation of the state-of-the-art. 12 Set k—k+1
A benchmark metaheuristic is Variable Neighborhood 13 end

Search [2-7], which in its most popular version takes the 14 end

15 stop. x* is an approximate solution of the problem.
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efficient compared to variants with fixed geometry and distribu-
tion. In most cases Glob-VNS uses m=4 (geometry, distribution)
pairs, but the user can arbitrarily set their number and
combinations.

Algorithm 2. Algorithm Glob-VNS.

/% Initialization =/

01 Select the pairs (G, P)), [=1,...,m of geometry
structures and distribution types of the set of
radii p;, i=1,...,Kmax

02 Choose an arbitrary initial point xe S

03 Set x* —x, f*—f(x)

/% Main loop =/

04 repeat the following steps until the stopping
condition is met

05 Setl<1

06 repeat the following steps until [ >m

07 Form the neighborhoods N, k=1, ... ,knax using

geometry structure G; and radii p,

08 Set k<1

09 repeat the following steps until k > kpyax
10 Shake: Generate at random a point y € NV (x¥)
using random distribution P,

11 Apply some local search method from y to
obtain a local minimum y’

12 if f(y/) <f* then

13 Set x*« ', f*—f(y") and goto line 05

14 endif

15 Set k«k+1

16 end

17 Set l<1+1

18 end

19 end

20 stop. x* is an approximate solution of the problem.

In order to make the algorithm Glob-vNS applicable, some
choices must be done. First, a geometry G for the neighborhood
structure Np(x),k =1, ..., kmax,x € R", is needed. The most popular
choices are

Ni@) ={y|pxy) < py} (1)
or
N = y]pr_1 <PEY) < py). )

Metric p(-) is usually an ¢, distance, 1 <p < oo [2-5], typically
p=1,2,00. The geometry of neighborhood structures G is thus
determined by the choice of metric p(-), and NV (x) is determined
by G and p,. Both [2,3] use neighborhoods as defined in (2). In [3]
the £, norm is used, while in [2] the choice of metric is either left
to the analyst, or changed automatically in some predefined
order. The radii p, are monotonically increasing in k, and they
are either defined by the user or calculated automatically in the
optimization process.

One also needs to specify the distribution P used for obtaining
the random point y from AN(x) in the shaking step. Drawing y
uniformly in MV (x) is the most popular choice. The computational
burden for generating points uniformly distributed in N (x) will
obviously depend on the geometry of the set. Whereas this issue
is trivial for the ¢, norm, things are more complicated if
other norms are used. For instance, to generate random points

uniformly distributed in the unit sphere B of the Euclidian
norm, different algorithms can be used. For example, in the
acceptance-rejection method, one generates a random point
uniformly distributed in the cube Q=[-1,1]", the point is
discarded if it lies outside B, and the process is repeated until a
point falling into B is found. This approach is simple to implement
but it is suitable only for small space dimensions. Indeed, since
the ratio of the volumes of B and Q tends to zero, this approach
becomes inefficient when the dimension increases. Alternatively,
one can use spherical coordinates to overcome this problem, but
the algorithm uses computationally costly trigonometric func-
tions. A more efficient proposal has two steps: (i) using Ahrens—
Dieter algorithm [8,9] for fast generation of gaussian univariate
variables, one generates n-dimensional random vectors which,
after normalization, gives us a point uniformly distributed on a
unit sphere; (ii) a random radius r is generated taking into
account that the density function for r is proportional to the
surface of the sphere of radius r, that is, to Cr"~!. The cumulative
distribution function F(x) and its inverse can be easily computed,
yielding r=F '(u) where ue[0,1] is uniformly distributed.
Observe that by an appropriate modification of step (ii) we can
also efficiently generate uniformly distributed point from a
neighborhood of the type (2).

In the Glob-vNS implementation, the user can specify the
geometry structures G; induced by the ¢, ¢» or £, metric in
(1) and (2), and P; as uniform or a hypergeometric distribution
[2,4]. The user can arbitrarily define the number and order of
combinations (G, P)), [=1,...,m.

Although, as discussed above, drawing y uniformly in AV (X) is
the most popular choice, it is not the only possible one. For
instance, the method proposed in [7] can be seen as taking ¢,
in (2), and then shaking by sampling following a mixture of
one-dimensional uniform distributions along the directions given
by the different eigenvectors of the hessian at x. Assigning
different probabilities to the different eigenvectors (and thus to
the different directions) allows one to give higher priority to those
directions considered to be more promising. Observe that second-
order information is used, thus limiting the applicability of the
procedure to smooth functions; moreover, we believe that much
efforts may be unnecessarily taken to get neighbors that adapt to
the curvature around the incumbent, since this step is followed by
a local search which also takes into account the local behavior of
the function.

With respect to the local search procedures, different proposals
have been made. The commercial solver SNOPT [10] is proposed
in [3], a trust-region type method is suggested in [7], while in [2]
the analyst has a menu of six different local search optimizers.
The local search and the shaking stages can be merged and done
simultaneously, and the metric p may vary from one neighbor-
hood to the next. This is done, for instance, in [6]. Two different
neighborhoods, AV1(x) and N5(x), are used. With A{(x), random
directions from the current point x are generated, and a
one-dimensional search along the direction is performed. This is
of course equivalent to take Aj(x) as in (1), with p as the
Euclidean distance, and combine it with a local search through
the line passing through x and the point y generated in N(x).
It is proposed to repeat this process r times, r being a parameter.
This can be seen as imposing a multistart method, with r trials,
on top of the local search strategy. The second neighborhood
N>, (x) proposed in [6] has the form of (1), now p taken as the
£+, NOrm.

It is interesting to note that the computational results
reported by all VNS-based heuristics were very promising,
usually outperforming other recent approaches from the lit-
erature. However, one should observe that, since the number
kmax Of different neighbors is assumed to be finite, one cannot
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reach any point in R" from an incumbent solution, and thus
one may not reach the region of attraction of the true global
optimum. In other words, the strategy is most promising when
the problem under consideration is not unconstrained but box-
constrained

globalsminf(x), 3)
Xe

with S={xeR"[a;<x;<b;, i=1,2,...,n}. For unconstrained
NLPs, lower and upper bounds on variables are set to arbitra-
rily large negative and positive values, respectively. Then the
radii

pi are chosen so that the full sequence of neighborhoods
Ni(x),1 <k < kmax allows one to reach any point in the (huge)
box S, assumed to contain an optimal solution of (NLP). This is
a drawback of the existing versions of VNS, since, if we want
the largest neighborhoods to reach any point in S, a very large
number kpnax should be chosen. The so-obtained radii may then
be less efficient for the problem.

In this note we suggest a new variant of VNS which avoids this
limitation. Instead of defining a sequence of neighborhoods
Ni(X), ..., N, (%), and shaking by sampling (eventually from a
uniform distribution) on A (x), we define a sequence of shaking
distributions P1(x), .. ., Px,,,, (%), and the trial points are drawn from
such shaking distributions. For simplicity we assume that each
Pr(x) is an n-variate Gaussian distribution centered at x, and call
this version Gaussian VNS, Gauss-VNS. With this approach, one
can jump from an incumbent x to any trial point in the space, and
thus the region of attraction of the true global optimum is
reachable from any starting point. Moreover, by an adequate
choice of the covariance matrices of the shaking distributions,
higher priority to more promising search directions can be
given, as in [7], or we can treat equally all directions by
taking diagonal covariance matrices for the gaussian distribu-
tions. Computational results on standard test functions from the
literature show that the average number of function evaluations
needed to find the global minimum is smaller than in existing
VNS-based methods.

The paper is organized as follows. In Section 2, details of our
Gauss-VNS method are given. Section 3 reports our computa-
tional experience on test instances from the literature. The paper
ends with Section 4, where some concluding remarks are given
and future lines of research are outlined.

2. Gaussian VNS

We generalize the paradigm of neighborhoods so that pro-
blems with unbounded domains can be addressed. The idea is to
replace the class {NVy(X)}1 <k < ,,, Of neighborhoods of point x by a
class of probability distributions {Py(X)}1 < k < k,,,,- 1h€ next random
point in the shaking step is generated using the probability
distribution Py (x).

If we take as Pi(x) the uniform (or some other previously
mentioned) distribution with support A (x), then we recover the
classical approach. For a distribution with unbounded support,
a natural choice is the multivariate Gaussian distribution.
We assume in what follows that each Py(x) is a multivariate
Gaussian distribution with mean x and covariance matrix X. In
other words, the trial point in the shaking process is generated
from an n-dimensional random vector y with density function of
the form

1 -120-x)7 2 (y—
o) = e~ 120-% 2, —x)
(Zn)n/z‘z‘k‘1/2

Algorithm 3. Algorithm Gauss-VNS.

/% Initialization =/
01 Select the set of covariance matrices Xy, k=1, ...,kmax
02 Choose an arbitrary initial point xe S
03 Set x* —x, f*—f(x)
/% Main loop %/
04 repeat the following steps until the stopping
condition is met

05 Set k1

06 repeat the following steps until k > kpax

07 Shake: Generate y from a Gaussian distribution
with mean x* and covariance matrix X

08 Apply some local search method from y to obtain a

local minimum y’
09 if f(y') <f* then

10 Set x* <y, f*—f(y) and goto line 05
11 endif

12 Set k—k+1

13 end

14 end

15 Stop. x* is an approximate solution of the problem.

From the implementation point of view it is important to have
an efficient generator for Gaussian random points. Random values
following Py (x) are easily obtained from n independent values
z1,...,Z, Oof a univariate Gaussian distribution with mean 0 and
variance 1. Indeed, if ¥, = L;L; is the Cholesky decomposition of
the symmetric positive definite matrix X, then it turns out that
the random vector x+Lz, with z=(zq,...,z,), is distributed as
Pr(x). Hence generating a random vector from 7P, (x) is reduced to
first calculating the Cholesky decomposition of X, and then
generating n univariate independent Gaussian with 0 mean and
variance 1. The process is even simpler if one assumes the
covariance matrices 2 to be multiple of the identity matrix I

Ze=0i, k=1,2,... Kkmax (4)

since in such a case the Cholesky decomposition is simply
= (oo )T, In this particular case coordinates z; of the
random vector z are univariate independent Gaussian variables
with 0 mean and variance oy.

Comparing Gauss-VNS with Glob-VNs, we see that Gauss-VNS
has less parameters to be specified. For Glob-vNs the user must
specify the number and combination of (geometry, distribution) pairs
GLP),l=1,...,m,and radii p;, k=1, ... ,kmax. However, in Gauss-
VNS all neighborhoods are equal (to S or R") and only one family of
distribution (Gaussian) is used. With the obvious choice of X = 621
only the variances oy, k=1, ...,kmax should be specified.

3. Numerical experiments

The main purpose of this section is to compare our new
Gaussian VNS with the previous VNS based heuristics for solving
continuous global optimization. Therefore, we first compare it
with those successful VNS heuristics that have recently appeared
in the literature. Then we perform comparison with recent
metaheuristics based global minimizers.

Software platform: The two methods Glob-vNS and Gauss-
VNS were integrated into the package GLOBC, a test platform for
numerical experiments with VNS, It is recently expanded with
algorithm Gauss-VNS. GLOBC is coded in C+ computer language.
As mentioned earlier, the quality of any method for solving (NLP)
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is usually measured by the number of function evaluations until
the optimal (or best known) solution is reached. However, the
computational effort strongly depends on a number of input
parameters such as a tolerance value for the stopping rule or
the choice of the local optimizer. Here we use the same package
GLOBC, which contains different heuristic algorithms, but they
use mostly the same set of parameters. This approach gives us a
more realistic picture of the effectiveness of the new algorithm
Gauss-VNS compared to the existing ones. The total execution
time is set to be sufficiently large so that the global minimum is
found in every test run. Then, we measure the average computer
effort until such optimum was found.

VNS parameters: The best-found parameterizations for Glob-
VNS, as given in [2], are also used for Gauss-vNs. In other words,
no efforts have been made to estimate the parameters values in
favor or Gauss-vNS, which competes against the best-found
parameterizations of Glob-vNS. The number of neighborhoods
for both Gauss-vNS and Glob-VNs is fixed to kmax =5, and all
tolerances for the local search are set to 1e—4. The remaining
parameters of Glob-VNS (Gauss-VNS), namely the radii p,
(deviations a)) were tuned for each instance, but always follow-
ing a geometric progression. Typical choices for p,, (oy)
k=1,...,5 were (0.1, 0.2, 0.5, 1.0, 2.0) or (0.1, 0.5, 1.0, 3.0, 5.0).
The local-search procedure was chosen from a list of well-known
methods: Nelder-Mead (NM), Hooke-Jeeves (HJ), Rosenbrock
(RO), Steepest Descent (SD), Fletcher-Powell (FP) and Fletcher-
Reeves (FR). One-dimensional search is done with the Quadratic
Approximation method (QA). The local-search procedure was not
optimized for Gauss-vNS as well: we simply took the best
options obtained for Glob-vNS, which gives a clear advantage
for Glob-VNS against Gauss-vNS. Despite of this fact, it appears
that our Gauss-VNS is comparable, and sometimes even better
than the optimized Glob-VNS.

For Gauss-VNS, we assumed the covariance matrices X, to
have the form (4). The Ahrens-Dieter algorithm [8,9] was imple-
mented to generate univariate Gaussian variables in the
shaking phase.

Table 1
Standard test functions.

3.1. Comparison of VNS based methods

Recently many metaheuristic methods for solving continuous
global optimization problems have been proposed. Heuristics are
usually compared by the number of function evaluations until the
optimal solution is reached. However, such a comparison is not
easy. Indeed, different methods use different stopping conditions,
they use different precision, they are implemented in different
programming languages and they run in different computers.
Despite of those difficulties for direct comparison, we decided
to compare our Gauss-VNS heuristic with the four recent
VNS-based approaches that were already briefly described in
the Introduction of this note. Note that these VNS-based methods
compared favorable with other metaheuristics used for the
comparison purposes in papers where they were proposed. The
computational effort, measured by means of the number of
function evaluations, is given for the following methods:

Gauss-VNS—this paper;
Glob-vNS—DraZic et al. [2];
VNS-1—Bielaire et al. [7];
VNS-2—Toksari and Giiner [6] and
VNS-3—Audet et al. [11].

Comparison on standard test instances: Experiments were per-
formed on a set of standard test functions from the literature
[7,12]. We measured the computer effort (the number of function
calls plus n times the number of gradient calls) made until the
algorithm finds the global minimum. Each experiment was
repeated 10 times, and the average values are taken as results.

The dimensionality of most of these standard test problems is
rather low, and should not be considered at all as the size limit of
problems VNS can successfully handle. However, the results give a
clear picture about the computational effort in the different versions
analyzed.

The numerical results are summarized in Table 1. The results in
columns 4 (VNs-1) and 5 (VNS-2) are the same as reported in [7,6]

Function n Computer effort Local minim. Computer effort % Deviation
VNS-1 VNS-2 Glob-VNS Gauss-VNS

Branin RC 2 153 308 FR 131 112 16.96
asom ES 2 167 - HJ 163 148 10.14
Goldstein and Price GP 2 - 206 NM 260 116 124.14
Rastrigin RA 2 246 - RO 206 199 3.52
Hump HM 2 335 - NM 160 80 100.00
Shubert SH 2 366 - FR 382 591 —35.36
De Joung DJ 3 104 - FP 38 26 46.45
Hartmann H3,4 3 249 521 NM 246 223 10.31
Hartmann H6,4 6 735 1244 HJ 397 448 —-11.38
Colville cv 4 854 - NM 669 497 34.61
Shekel 54,10 4 590 988 SD 599 399 50.13
Griewank GR 6 807 - SD 135 126 7.14
Dixon DX 10 2148 - FP 1640 1576 4.06
Rosenbrock R2 2 556 - NM 158 125 26.40
Rosenbrock R5 5 1120 - NM 1286 1308 —1.68
Rosenbrock R10 10 2653 - FP 2357 2561 -7.97
Rosenbrock R50 50 11,934 - FR 38621 37901 1.90
Rosenbrock R100 100 30,165 - FR 147,274 122,446 20.28
Zakharov Z2 2 251 - FR 179 133 34.59
Zakharov Z5 5 837 - FR 728 461 57.92
Zakharov Z10 10 1705 - FR 1142 1010 13.07
Zakharov Z50 50 17,932 - FR 4304 5302 —-17.28
Average 2217




2210

respectively. The next columns contain information about the local
minimizer used in Glob-VNS and Gauss-VNS and the average
computational efforts for G1ob-vNS and Gauss-VNS obtained in
their 10 restarts. Finally, the last column, marked % deviation,
contains the ratio of the two previous calculated values, namely

0
0.

fGlob—VNS _fGauss—VNs . 100%

f Gauss—VNS

The smallest computational effort among four methods is boldfaced.

The results from Table 1 in columns vNs-1 [7] and vNS-2 from
|6] are not directly comparable with those reported for Glob-vNS
and Gauss-VNS due to different stopping criteria and tolerance
parameters used in the corresponding programs, but they are
nevertheless illustrative. The remarkable performance of vNs-1
for R50 and R100 functions are consequence of a better local
minimizer used, i.e., a truncated conjugate gradient algorithm for
the trust-region problem. However, the Rosenbrock test functions
have only one local minimum, and thus they are not suitable for
comparing the global optimization methods.

As Table 1 shows, Gauss-VNS heuristic outperformed Glob-
VNS in most standard test instances. Since the main goal of our
numerical test was to compare VNS-based heuristics, we fixed in
advance most parameters for all test functions. This implies that
these results should not be considered as best-possible for each
test function. Further, Gauss-vNs used the same parameters as
Glob-VNs, which makes it possible to perform even better with
other configuration of parameters.

Comparison on large-size test problems: The behavior of our new
algorithm was also tested in problems of higher dimensionality.
Three challenging test problems from the literature were chosen:
RAn, MPEn, and ACn.

20 =2 N W N
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O
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e
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Fig. 2. Ackley function with bounds [ —15,30] x [ -15,30], and [ -2,2] x [ -2,2].
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Rastrigin function (RAn) (see Fig. 1 for n=2):

fx)=10n+ Y " (x?—10 cos(2mx;)),
=1

—512<x <512, i=1,...,n, fmin=0.

Molecular potential energy function (MPEn) function [13,14]:
feo= zn: 14cos 3x;+ 1)
B ! \/1 0.60099896—4.141720682 cos x;

i=1
0<x;<5, i=1,....n, fmn=—0.0411183034 - n

and Ackley (ACn) function [15,16] (Fig. 2):

1& 1¢
f(x)=20+e—20exp| —0.2 EZX? — exp EZ cos2mx;) |,

i=1 i=1
i=],..,,n,fmin=O.

~15 <x; <30,

All three functions have an exponential number of local minima
(11" for RAn, 3" for MPEn and 45" for ACn). The tolerances were
set to 1E—5. The comparison between Glob-VNS and Gauss-VNS
on Rastrigin, Molecular potential energy and Ackley functions are
presented in Tables 2-4, where k.. is increased to 15 and 10
respectively.

It appears that no systematic advantage of one heuristic over
the others exists. Glob-vNs performed better for RAn, while
Gauss-VNS was better for MPEn and superior for ACn. We believe
that Glob-vNs performs better for instances with local minima
distributed rectangularly (RAn) while Gauss-vNs gives better

Table 2
Rastrigin function.

Function n Local minim. kp.x Computer effort % Deviation
Glob-VNS Gauss-VNS
RA10 10 SD 15 52,471 85,589 —38.69
RA20 20 SD 15 213,597 287,075 —25.60
RA30 30 SD 15 366,950 599,635 —38.80
RA40 40 SD 15 697,160 1,115,923 —-37.53
RA50 50 SD 15 1,334,842 1,504,701 -11.29
RA100 100 SD 15 5,388,075 6,248,753 —13.77
RA150 150 SD 15 11,007,093 13,678,014 —19.53
RA200 200 SD 15 24,026,456 31,639,001 —24.06
Average —26.16
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results in case of spherical-like function shapes. For Ackley
function Gauss-VNS even improves its superiority for higher
dimensions.

Table 3
Molecular potential energy function.

function n local minim. kmax Computer effort % deviation(%)
Glob-VNS Gauss-VNS
MPE10 10 SD 10 8102 5015 61.56
MPE20 20 SD 10 26,647 21,172 25.86
MPE30 30 SD 10 66,441 49,162 35.15
MPE40 40 SD 10 118,006 109,468 7.80
MPE50 50 SD 10 202,280 143,309 41.15
MPE100 100 SD 10 830,343 1,183,873 —29.86
MPE150 150 SD 10 2,353,315 2,802,372 —-16.02
MPE200 200 SD 10 7,683,209 5,859,705 31.12
Average 19.59
Table 4

Ackley function.

Function n  Local minim. kpn,, Computer effort % Deviation
Glob-VNS Gauss-VNS

AC10 10 SD 10 188,670 50,149 276.22
AC20 20 SD 10 433,194 158,412 173.46
AC30 30 SD 10 909,918 304,825 198.51
AC40 40 SD 10 1,577,138 528,718 198.30
AC50 50 SD 10 4,791,075 1,143,721 318.90
AC60 60 SD 10 7,820,247 2,315,178  237.78
AC70 70 SD 10 36,641,634 4,255,533 761.04
AC80 80 SD 10 212,944,367 17,180,658 1139.44
Average 412.96%

‘

Fig. 3. Function (5) with bounds [ —5,5] x [—5,5], and [ -0.2,0.2] x

\\ NG
‘\W t “

0 -02

Comparison on a two-dimensional instance: Finally we compare
Glob-VNS and Gauss-VNS with Mesh Adaptive Direct Search
method (MADS) coupled with VNS (vNs-3) [11]. To do this, one
test instance from [11] is used. This test instance, that was firstly
suggested in [17] (problem 4), has two variables a,b € [-5, 5]

f(a,b) = e5"®% 1 sin(60e)+sin(70 sin a)+ sin(sin(80b))
—sin(10(a+ b))+ (a®+b?)/4. 5)

The global optimum (a*,b*) of f(a,b) is known, namely

f(a*,b*) = f(—0.024,0.211) = —3.307.

The graph of the objective function (5) is shown in Fig. 3.

Beside the plot on the entire domain [-5,5] x [-5,5] we
zoom in f(a,b) on the rectangle [—0.2,0.2] x [0.0,0.4]. As initial
solution we use (—3,3), the same point used in [11], where
several algorithmic variants of MADS had been tested. Those
that contain VNS are denoted as C, E, F, E+F. The results for
Glob-VNS, Gauss-VNS and vNs-3 (CD,E,FE+F) are summarized
in Table 5.

Again, the performances of these methods are not easy to
compare. The stopping criterion of vNs-3 makes the algorithm
stop in most cases before the global minimum is found. This
explains why average errors in the best function values are rather
big for this test function. On the other hand, Glob-vNs and
Gauss-VNS are designed to search for the solution for a longer
time (as much as we can afford) with better chances to find the
global minimum for harder problems. In Table 5 the overall
computational effort until the program stops is also presented. In
order to compare with vNsS-3, we also limited the number
of VNS meta-iterations to examine how well the algorithms behave
in given time. In all cases tolerances were set to 1E—4, Hook-
Jeeves was used as local-search algorithm and average values for
10 test runs are presented [always with the same initial solution
(3,3)]. It appears that G1ob-vNs is more efficient than Gauss-VNSs.
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Moreover, both VNS versions found approximate solutions with
less function evaluations than MADS (vNs-3). For instance, while
vNs-3 found the solution with an error of 7.62% in 6146 function
evaluations, Glob-vNs found it with 5.16% with 4374 evaluations.
For an error of 9.01% vNs-3 took 5182 evaluations while Gauss-
vNS needed 3930 for an error of 8.92%.

3.2. Comparison with recent metaheuristics

In this subsection we compare our new Gauss-VNS with
several metaheuristic based algorithms from the literature, such

Table 5
Comparison of three methods on 2-dimensional function (5) from [17].

Heuristic # Soest % Comp. Total comp.
methods Iterations Error efforts efforts
Glob-VNS 300 —-3.3069 0 7303 26,133
200 —3.2970 0.30 5907 17,466
100 —3.2286 237 3994 8750
50 —-3.1364 5.16 3158 4374
30 —2.9789 9.92 2356 2630
Gauss-VNS 400 —-33069 0 11,585 37,918
300 -3.2970 030 9149 27,391
200 —3.2871 0.60 8259 17,199
100 —3.1539 4.63 4265 7953
50 -3.0121 8.92 2801 3930
30 —2.9059 12.13 1648 2364
MADS-VNS
C —3.009 9.01 5182
E (VNS-3) —3.055 7.62 6146
F -2.837 1421 2809
E+F —2.778 15.99 3171
Table 6
The global metaheuristics based minimizers.
Method Abbrev.  Reference Stopping
Genetic and Nelder-Mead GNM Chelouah and Siarry  (7)
[18]
Continuous Reactive Tabu CRTS? Battiti and Tecchiolli  (6)
Search [19]
Swarm with Nelder-Mead SNM Fan et al. [20] (7)
Continuous scatter search CSS Herrera et al. [21] (6)
Restarted modified Nelder- RMNM Zhao et al. [22] (6)
Mead
Ant Colony Optimization ACO Toksari [23] (6)
Tabu search TS Al-Sultan, Al-Fawzan (8)
[24]
Gauss Variable neighborhood Gauss- This paper (6)
search VNS

2 The best results of variants CRTSmin and CRTSave are chosen.

Table 7
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as Tabu search, Genetic algorithm, Ant Colony Optimization,
Scatter Search, Swarm intelligence, and their hybrids. We made
efforts to find the best representatives, among dozens, for each of
these metaheuristics. The chosen methods used for comparison
are listed in Table 6. So, in the list there are two tabu search based
heuristics (CRTS and DTS), one genetic algorithm (GNM), one
Scatter search (CSS), one Ant colony (HCIAC), one Swarm intelli-
gence (SNM), one Restarted simplex search (RMNM) and our
Gauss VNS.

It is not easy to perform correct comparison of these different
approaches due to many reasons. Besides those previously men-
tioned, different methods could use different formulas to measure
success or termination of the search. Last column of Table 6
indicates which stopping criterion is used among the following
three:

‘fffmin‘ < 1074 ‘fmin‘ +10—6' (6)
f~Fimin| <107 finie| +107°, %)
‘f_fmin‘ <107 ‘fmin‘ +107%, 8)

The meaning of variables in the above formulas are as follows: f is
the objective function value obtained by the method; f;,;, denotes
known global minimum value and f;,; is empirical average of the
objective function values calculated over 100 randomly selected
feasible points. It is obvious that the criterion (6) is more strict
than the two others, i.e., it is necessary to perform more function
evaluations to satisfy it. Our Gauss VNS use it.

Finally, in Table 7, eight methods are compared based on
average computational efforts they spent (out of 100 random
initializations), before the known optimal solution f;, was
reached. Some methods could not get f,;, in each 100 runs. In
such cases we denote in brackets the number of successful runs.
For example, average number of function evaluations for the GNM
method in solving SHs instance is 698, but measured only in 85
restarts, since 15 times the optimal solution was not reached.

It appears that our Gaus VNS heuristic outperforms other
seven approaches from the literature on average. It needed
minimum efforts in four out of nine standard test instances, and
was the second in three cases.

4. Conclusions

In this note we present a new VNS-based heuristic for solving
continuous unconstrained optimization problems. We call it
Gauss-VNS since it uses Gauss distribution for generating
random point X' from the kth neighborhood of the incumbent
solution x (x' e Ni(x)). It in fact simplifies the previous VNS
version proposed in [4], where four different distribution types

Computational efforts (CE) of eight metaheuristic based minimizers. In bold and italic are marked the smallest and the second smallest CE for each instance, respectively

(only methods that solved 100% instances are considered).

Test function GNM? CRTS? SNM? Css? RMNM? ACOP TSP Gauss VNS?
BR 295 38 230 65 60 324 398 112
GP 259 171 304 108 69 (80) 264 281 116
HT; 492 513 436 - 67 528 578 223
HTg 930 750 - - 398 (50) 1344 2125 448
SB 345 - 753 762 275 (40) - - 591
RO, 459 - 440 292 224 924 1632 125
RO10 14,563 (83) - 3303 5847 (75) 5946 (95) 8726 11,448 2561
SHs 698 (85) 664 850 1197 912 (90) 648 753 1042
SH10 635 (85) 693 - - 318 (75) 1044 1203 399

2 The average CE of 100 runs.
P The average CE of four runs.
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were considered: (i) uniform in £; norm; (ii) uniform in £, norm;
(iii) hypergeometric in ¢; and (iv) special constructed distribution
in £, norm. Instead of using all of them, we try just Gauss
normal distribution, with different values of parameter ¢2. In that
way, Ni(x) becomes Py (x). Beside improving user-friendliness by
simplifying previous algorithm, our Gauss-VNS has two additional
desirable properties: (i) it can be used in cases where there are no
bounds on variables (box constraints); (ii) it allows us to generate
uniformly distributed points in £, norm (previously only £; and
{, norms were used).

It is shown that the results obtained by our Gauss-VNS are
comparable with recent four VNS-based heuristics from the litera-
ture. Future research may contain extension to the constrained case,
as well as automatic estimation of range of parameter ¢ during the
execution of the code.
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