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Abstract. A median hyperplane in d-dimensional space minimizes the
weighted sum of the distances from a finite set of points to it. When the
distances from these points are measured by possibly different gauges,
we prove the existence of a median hyperplane passing through at least
one of the points. When all the gauges are equal, some median hyper-
plane will pass through at least dA1 points, this number being increased
to d when the gauge is symmetric, i.e. the gauge is a norm.

Whereas some of these results have been obtained previously by
different methods, we show that they all derive from a simple formula
for the distance of a point to a hyperplane as measured by an arbitrary
gauge.
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1. Gauge Distance to a Hyperplane

Let γ be a gauge on �d with unit ball B; i.e., B is a compact convex
set containing the origin in its interior such that

γ (x)Gmin{t¤0 �x ∈ tB};

see e.g. Refs. 1–2. Given a hyperplane H in �d, the γ -distance of a point
a ∈ �d to H is defined as

dγ (a, H ) G
def

min{γ (xAa) �x ∈ H}.
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Let γ ° be the dual (or polar) gauge of γ , given by

γ °(û) G
def

max{〈û; y〉 �γ (y)⁄1},

which is well-defined and also a gauge on (the dual space of) �d; see e.g.
Ref. 3. This definition implies directly the following well-known generalized
Cauchy–Schwartz inequality (see e.g. Ref. 3, p. 129):

〈û; y〉⁄γ °(û)γ (y), ∀ û, y ∈ �d, (1)

in which for any fixed û ≠ 0 equality holds iff yGλ z, for some λ¤0 and
some z ∈∂ γ °(û), where ∂γ°(û) denotes the (nonempty) subdifferential of the
dual gauge at û; see e.g. Ref. 2. Note that equality in (1) for û, y ≠ 0 also
implies 〈û; y〉H0.

We will denote the hyperplane of equation 〈u; x〉Gβ, u ≠ 0, by H (u, β),
and the set of all hyperplanes in �d by H .

The following theorem gives a simple expression for the gauge distance
to a hyperplane. The use of (1) enables us to simplify the proof given in
Ref. 4 for a similar problem.

Theorem 1.1. For any gauge γ and any hyperplane H(u, β), we have

dγ (a, H(u, β))G� [βA〈u; a〉]�γ °(u), when 〈u; a〉⁄β,

[〈u; a〉Aβ]�γ °(−u), when 〈u; a〉Hβ.

Any γ -closest point of H(u, β) to a is found as the unique intersection point
of H(u, β) with the line through a having as direction any subgradient of γ°
at u when 〈u; a〉⁄β, and at Au when 〈u; a〉Hβ.

Proof. Let u ≠ 0, and assume first that

〈u; a〉⁄β.

For any x ∈ H(u, β), after substituting û by u( ≠ 0) and y by xAa in the
generalized Cauchy–Schwartz inequality (1), we have that

γ (xAa)¤ 〈u; xAa〉�γ°(u)G[βA〈u; a〉]�γ °(u),

where equality happens at x ∈ H(u, β) iff

xAa is of the form λ z, for some z ∈∂ γ°(u). (2)

Moreover, such an x exists. Indeed, since u ≠ 0, for any given z ∈∂ γ °(u) we
have

γ °(z)G1,
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so that by (1)

〈u; z〉Gγ (z)γ °(u)Gγ °(u)H0;

thus, the function

λ¤0 > 〈u; aCλ z〉AβG〈u; a〉AβCλ 〈u; z〉

has a unique root in [0,CS[. In other words, there exist some λ¤0 and
x ∈ H(u, β) satisfying (2).

The same reasoning can be used for the case 〈u; a〉Hβ and will not be
repeated here. �

When γ is symmetric [γ (−x)Gγ (x), for all x ∈ �d ], i.e. γ is a norm, then
its dual enjoys the same property, and the following simplified formula
arises directly (compare with Ref. 5, which uses a proof based on the Kuhn–
Tucker conditions).

Corollary 1.1. For any norm ν, we have

dν (a, H(u, β))G�βA〈u; a〉 ��ν°(u).

Note also that, for the particular case of the lp -distances, 1⁄p⁄CS,
this also proves directly the formula (painstakingly derived by Ref. 6)

dlp (a, H(u, β))G�βA〈u; a〉 ��lq (u), 1�pC1�qG1,

by the well-known duality

l°pGlq , with 1�pC1�qG1,

including their limits

pG1, qG+S or pG+S, qG1.

The proof above also shows that in fact this is a direct consequence of the
Hölder inequality

〈û; y〉⁄ lq (û)lp (y).

2. Median Hyperplanes

Given a finite set A ⊂ �d, together with corresponding positive weights
wa (a ∈ A) and gauges γ a on �d, any hyperplane H* minimizing the weighted
sum of the gauge distances from A is called a median hyperplane; i.e.,

H* ∈ arg min{ f (H ) �H ∈ H },
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where

f (H )G ∑
a ∈ A

wadγ a (a, H ).

Since for any λ ≠ 0, we have

H(λu, λβ )GH(u, β),

the function

H: �d \{0}B�→H : (u, β) > H(u, β)

is surjective, with the property that, for each one-dimensional linear space
X in �dB�, X ≠ {0}B�, the set H(X \{0}) is reduced to a singleton; i.e., all
the nonzero points in X are mapped to the same hyperplane.

It is a well-established fact from topology that no continuous bijective
mapping may exist between a subset of �dB� and the projective space H .
Several continuous and bijective restrictions of H may however be
considered.

For example, consider the restriction of H on the cylinder in �dB�

with base some unit sphere of �d (i.e., SdA1B]0; +S[ ), where

SdA1 G
def

{u ∈ �d � ��u��G1},

and where �� · �� denotes the standard Euclidean norm (or any other norm).
This is an injection, the image of which contains all H except the hyper-
planes through the origin, i.e. of type H (u, 0). Note that allowing also βG
0 leads to loss of injectivity, since

H(u, 0)GH(−u, 0).

Restriction of H to some nonvertical hyperplane in �dB� (which we
will rather call a superplane, to distinguish it from hyperplanes in �d ) not
passing through the origin, and excepting its single point on the β-axis,
yields another continuous injection to H : consider the superplane S(c, λ , µ),
µ ≠ 0, λ ≠ 0, with equation

〈c; u〉CλβGµ,

from which the point (0, µ�λ ) is deleted; then, the only hyperplanes not
represented will be those of form H(û, µ�λ ), where û ≠ 0 is any vector ortho-
gonal to c.

The set of all hyperplanes in �d normal to some fixed u ≠ 0 is denoted
by

H uG{H(u, β) �β∈ �}.
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Lemma 2.1. For any fixed u ∈ �d \{0}, there exists a hyperplane H*u
minimizing f on H u which passes through some point a ∈ A.

Proof. For fixed u ≠ 0, Theorem 1.1 shows that, for any a ∈ A, the
distance γ a (a, H(u, β)) is a convex piecewise linear function of β : it consists
of two unbounded pieces with breakpoint βa

uG〈u; a〉, linearly decreasing
with slope A1�γ°(−u) on ]−S; βa

u ] and linearly increasing with slope 1�γ°(u)
on [βa

u;CS[. Note also that it is coercive, i.e. asymptotically equal to +S
in any direction.

It follows that, as the positively weighted sum over all a ∈ A of such
distance functions, f (H(u, β)) is convex, coercive, and piecewise linear, with
breakpoints βa

u , a ∈ A, and therefore reaches its minimum at least at one of
these breakpoints, say βa0

u with a0 ∈ A. But

〈u; a0 〉Gβa0

u

means that the corresponding minimizing hyperplane,

H*u GH(u, βa0

u ),

passes through a0. �

Let us introduce the notations A#(u, β) for any #∈ {F, ⁄ ,H, ¤} by

A#(u, β)G{a ∈ A � 〈u; a〉#β}.

In fact, the problem of minimizing f on H u may be seen as a one-
dimensional asymmetric distance Weber problem (Ref. 7),

min
β∈ �

∑
a∈ AH(u,β)

[wa�γ °a (−u)]� 〈u; a〉Aβ�C ∑
a∈ AF(u,β)

[wa�γ°a (u)] �〈u; a〉Aβ�, (3)

for which a fixed-point optimality property was derived. This interpretation
of the problem also enables us to state an important property of median
hyperplanes.

Definition 2.1. The hyperplane H(u, β) halves A if

∑
a ∈ A¤ (u,β)

wa�γ °a (−u)¤ ∑
a ∈ AF(u,β)

wa�γ °a (u), (4)

∑
a ∈ AH(u,β)

wa�γ °a (−u)⁄ ∑
a ∈ A⁄ (u,β)

wa�γ °a (u). (5)

The following result generalizes analogous results in Ref. 8, and the
first part proves a conjecture made there on p. 182.
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Theorem 2.1. There exists a median hyperplane which passes through
some point a ∈ A. Moreover, any median hyperplane halves A.

Proof. Lemma 2.1 shows that, for every fixed u ≠ 0, the minimum of
f (H ) is reached on H u at some hyperplane H(u, β) with β∈ [β l

u , βh
u ], where

β l
uGmin{βa

u �a ∈ A}, βh
uGmax{βa

u �a ∈ A}.

The values β l
u and βh

u are clearly continuous in u, so they reach their extreme
values

β lGmin{β l
u �u ∈ SdA1}, βhGmax{βh

u �u ∈ SdA1}

on the (compact) unit sphere SdA1 .
It follows that finding the minimum of f on H is equivalent to finding

the minimum of f (H(u, β)) on SdA1B[β l, βh ], which is compact. Since f is
continuous, this minimum will be reached, establishing the existence of a
median hyperplane. Then, the existence of a median hyperplane which meets
A follows immediately from Lemma 2.1.

Finally, if H(u0, β0) defines a median hyperplane, then β0 must solve
(3) for uGu0. The left and right directional derivatives of this convex func-
tion of β are respectively

∑
a ∈ AF(u0,β0)

wa�γ °a (u0)A ∑
a ∈ A¤ (u0,β0)

wa�γ °a (−u0),

∑
a ∈ A⁄ (u0,β0)

wa�γ °a (u0)A ∑
a ∈ AH(u0,β0)

wa�γ °a (−u0).

A necessary and sufficient condition for a minimum is that the first should
be nonpositive and the second nonnegative; in other words, (u0, β0) should
satisfy (4)–(5). �

Observe that, when there exists a hyperplane in �d containing A, then
this is clearly a median hyperplane with objective value 0. Therefore, we
further assume that this is not the case; i.e.

dim(A)Gd,

meaning that A contains at least dC1 affinely independent points.
When all gauges are symmetric and equal (i.e., when all distances are

measured by a same norm), we may then derive a much stronger result
which was obtained already by other means in Refs. 8–9.

In the sequel, we will write f ′ for f ° H, i.e.,

f ′ (u, β) G
def

f (H(u, β)),
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and consider the median hyperplane determination as the problem of mini-
mizing f ′ on �dB�.

Theorem 2.2. For distances measured by a fixed norm, i.e. γ aGν,
a ∈ A, with ν (−x)Gν (x) for all x ∈ �d, when dim(A)Gd, some median hyper-
plane passes through d affinely independent points of A.

Proof. Let H(u0, β0) be a median hyperplane, the existence of which
follows from Theorem 2.1. Without loss of generality, we may assume that
ν°(u0)G1. Define T ⊂ �dB� by

(u, β) ∈ T iff � 〈u; a〉¤β, ∀ a ∈ A¤ (u0, β0),

〈u; a〉⁄β, ∀ a ∈ AF(u0, β0),

and the following linear function:

g: �dB�→�

: (u, β) > ∑
a ∈ A¤ (u0,β0)

wa(〈u; a〉Aβ)C ∑
a ∈ AF(u0,β0)

wa (βA〈u; a〉).

Consider the set P in �dB� defined as

PG{(u, β) ∈ T �g(u, β)Gg(u0, β0)}.

P is a closed polyhedral set in �dB�: it is defined by linear inequalities and
one linear equality in dC1 variables.

P is also bounded. Indeed, if unbounded, there would exist some
(u, β) ≠ (0, 0) such that

(λuCu0, λβCβ0) ∈ P, for all λ¤0.

This means that we would have

〈u; a〉Aβ¤0, ∀ a ∈ A¤ (u0, β0),

〈u; a〉Aβ⁄0, ∀ a ∈ AF(u0, β0),

g(u, β)G0,

which by the definition of g implies that

〈u; a〉AβG0, for all a ∈ A;

in other words, A ⊂ H(u, β), which contradicts the assumption dim(A)Gd.
Therefore, P is a polytope of (at most) dimension d. It contains the optimal
solution (u0, β0), so any solution optimizing f ′ on P is also a global optimal
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solution. Moreover,

f ′(u, β)Gg(u, β)�ν°(u)Gg(u0, β0)�ν°(u), ∀ (u, β) ∈ P.

Hence, minimizing f ′ on P turns out to be equivalent to maximizing the
function (u, β)> ν°(u) on P. Since this function is convex, it attains its
maximum on the polytope P at some extreme point (u1, β1). Since (u1, β1) is
obtained as the point common to d hyperplanes bounding linearly indepen-
dent halfspaces defining P, it corresponds to the hyperplane H(u1, β1) pass-
ing through d affinely independent points of A. �

That the previous theorem does not hold for an asymmetric gauge is
shown by the counterexample in Ref. 8. However, we may show the follow-
ing only slightly weaker result.

Theorem 2.3. For distances measured by a fixed gauge (i.e. γ aGγ , a ∈
A), when dim(A)Gd, some median hyperplane passes through dA1 affinely
independent points of A.

Proof. Let H(u0, β0) be a median hyperplane, and define the functions
f 0 and g on �dB�,

f 0(u, β)G
1

γ °(u) � ∑
a ∈ A¤ (u0,β0)

wa(〈u; a〉Aβ)�
C

1

γ °(−u) � ∑
a ∈ AF(u0,β0)

wa(βA〈u; a〉)�
G
def

f ¤ (u, β)Cf F(u, β),

g(u, β)G
1

γ °(u0) � ∑
a ∈ A¤ (u0,β0)

wa (〈u; a〉Aβ)�
C

1

γ °(−u0) � ∑
a ∈ AF(u0,β0)

wa (βA〈u; a〉)�.
Observe that g is linear, f 0 is nonlinear, while

g(u0, β0)Gf 0(u0, β0)Gf ′(u0, β0).

Let the subset P ⊂ �dB� be defined by the constraints

〈u; a〉¤β, ∀ a ∈ A¤ (u0, β0),

〈u; a〉⁄β, ∀ a ∈ AF(u0, β0),

g(u, β)Gf ′(u0, β0).
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It is easy to see by similar arguments as those used in Theorem 2.2 that P
is a polytope of (at most) dimension d. Since for all (u, β) ∈ P, we have

A#(u, β)GA#(u0, β0), #∈ {¤ ,F},

it follows that on P we have f 0Gf ′. But P contains the optimal solution
(u0, β0) of f ′ on �dB�, so any minimum of f 0 on P will also be a global
optimum of f ′ and yield a median hyperplane.

Since

f 0Gf ¤Cf F,

any solution minimizing f 0 on P is an efficient solution to the biobjective
problem of minimizing both f ¤ and f F on P.

Each of the functions f ¤ and f F is quasiconcave on P (see e.g. Ref. 10),
since their upper level sets at level α are given respectively by inequalities of
the form

αγ °(u)A ∑
a ∈ A¤ (u0,β0)

wa (〈u; a〉Aβ)⁄0,

αγ °(−u)A ∑
a ∈ AF(u0,β0)

wa (βA〈u; a〉)⁄0,

which, by the convexity of γ °, define convex sets in �dB�.
It was shown in Ref. 11 that, in this case, the set of edges (one-dimen-

sional faces) of P constitutes a dominator of P; i.e., for any (u, β) ∈ P, there
exists some (u′, β′ ) on some edge of P with

f ¤(u′, β′ )⁄ f ¤(u, β),

f F(u′, β′ )⁄ f F(u, β),

and hence

f 0(u′, β′ )⁄ f 0(u, β).

And any edge of P is the intersection of dA1 hyperplanes bounding linearly
independent halfspaces defining P. Therefore, there exists some minimum
of f 0 on P (and hence a global minimum of f ′ ) satisfying as equality dA1
linearly independent inequalities among those defining P. But this corre-
sponds to a hyperplane H passing through dA1 affinely independent points
of A. �
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