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Gauge Distances and Median Hyperplanes'
F. PLASTRIA® AND E. CARRIZOSA®

Communicated by J. P. Crouzeix

Abstract. A median hyperplane in d-dimensional space minimizes the
weighted sum of the distances from a finite set of points to it. When the
distances from these points are measured by possibly different gauges,
we prove the existence of a median hyperplane passing through at least
one of the points. When all the gauges are equal, some median hyper-
plane will pass through at least d — 1 points, this number being increased
to d when the gauge is symmetric, i.e. the gauge is a norm.

Whereas some of these results have been obtained previously by
different methods, we show that they all derive from a simple formula
for the distance of a point to a hyperplane as measured by an arbitrary
gauge.
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1. Gauge Distance to a Hyperplane

Let y be a gauge on R? with unit ball B; i.e., B is a compact convex
set containing the origin in its interior such that

y(x) =min{r=0|x0rB};

see e.g. Refs. 1-2. Given a hyperplane H in R’ the y-distance of a point
a0OR? to H is defined as

d, (a, H) = min{y(x — )| xOH}.
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Let y° be the dual (or polar) gauge of y, given by

yo() = max{@; yly(») =1},

which is well-defined and also a gauge on (the dual space of) R see e.g.
Ref. 3. This definition implies directly the following well-known generalized
Cauchy-Schwartz inequality (see e.g. Ref. 3, p. 129):

@;yCB=y°()y(»,  Ov,yORY (D

in which for any fixed v#0 equality holds iff y = Az, for some A=0 and
some z[@ y°(v), where dy°(v) denotes the (nonempty) subdifferential of the
dual gauge at v; see e.g. Ref. 2. Note that equality in (1) for v, y#0 also
implies [@; y(> 0.

We will denote the hyperplane of equation [&; x(0= 8, u#0, by H(u, 3),
and the set of all hyperplanes in R by 7.

The following theorem gives a simple expression for the gauge distance
to a hyperplane. The use of (1) enables us to simplify the proof given in
Ref. 4 for a similar problem.

Theorem 1.1. For any gauge y and any hyperplane H(u, 3), we have

[B— s all/y (u), when [; al= B,

dv (a, H(u, B)) = {[@; al- B]/y“(—u), when &; e3> [3

Any y-closest point of H(u, B) to a is found as the unique intersection point
of H(u, ) with the line through a having as direction any subgradient of y°
at u when [@; a3= B8, and at —u when &; «(3> .
Proof. Let u#0, and assume first that
; alE=B.

For any xOH(u, B), after substituting v by u(#0) and y by x—a in the
generalized Cauchy—Schwartz inequality (1), we have that

y(x—a)=[; x —ally*(u) = [B — lW; all/y °(w),
where equality happens at xOH(u, B) iff
x —ais of the form Az, for some z[@ y°(u). (2)

Moreover, such an x exists. Indeed, since u#0, for any given z[@ y°(u) we
have

yo(z) = 1’
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so that by (1)
W; zU= y(2)y °(u) = y °(u) > 0;
thus, the function
A=0w— Wia+AzO0-B=W; al B+ Al; z0

has a unique root in [0, + o0[. In other words, there exist some A=0 and
xOH(u, B) satisfying (2).

The same reasoning can be used for the case [@; a(3> 3 and will not be
repeated here. O

When y is symmetric [y(—x) = y(x), for all xOR], i.e. y is a norm, then
its dual enjoys the same property, and the following simplified formula
arises directly (compare with Ref. 5, which uses a proof based on the Kuhn-
Tucker conditions).

Corollary 1.1. For any norm v, we have
dy(a, H(u, B)) = | B — [; ally v°(u).
Note also that, for the particular case of the /,-distances, 1=p= + o0,
this also proves directly the formula (painstakingly derived by Ref. 6)
dy(a, Hu, B)) =B —Ws;alyl,(w),  1/p+1/q=1,
by the well-known duality
=1, with1/p+1/¢g=1,
including their limits
p=1l,g=+0 or p=+w,g=1.

The proof above also shows that in fact this is a direct consequence of the
Holder inequality

; yO= Zq(v)lp(y)‘

2. Median Hyperplanes

Given a finite set A R, together with corresponding positive weights
w, (a0A4) and gauges y, on R, any hyperplane H* minimizing the weighted
sum of the gauge distances from A is called a median hyperplane; i.e.,

H*Oargmin{ f(H)|HO 7 },
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where

fH)= 3 wady,(a, H).

alA
Since for any A #0, we have
HAu,AB) = H(u, B),

the function
H:R\{0} xR - 7 (u, B) — H(u, B)

is surjective, with the property that, for each one-dimensional linear space
Xin RYxR, X# {0} xR, the set H(X\{0}) is reduced to a singleton; i.e., all
the nonzero points in X are mapped to the same hyperplane.

It is a well-established fact from topology that no continuous bijective
mapping may exist between a subset of R*x R and the projective space 7 .
Several continuous and bijective restrictions of H may however be
considered.

For example, consider the restriction of H on the cylinder in R’x R
with base some unit sphere of R’ (i.e., S,_; x ]0; +o0[), where

def
Sa-1 = {uOR|lul| = 1},

and where ||-|| denotes the standard Euclidean norm (or any other norm).
This is an injection, the image of which contains all 7 except the hyper-
planes through the origin, i.e. of type H(u, 0). Note that allowing also 3=
0 leads to loss of injectivity, since

H(u,0)= H(-u, 0).

Restriction of H to some nonvertical hyperplane in R‘x R (which we
will rather call a superplane, to distinguish it from hyperplanes in R?) not
passing through the origin, and excepting its single point on the f(-axis,
yields another continuous injection to # : consider the superplane S(c, A, W),
HU#0,A#0, with equation

l; ub- AB=H,

from which the point (0, u/A) is deleted; then, the only hyperplanes not
represented will be those of form H(v, u/A), where v #0 is any vector ortho-
gonal to c.

The set of all hyperplanes in R normal to some fixed «#0 is denoted
by

7= {H(u, B)| BOR}.
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Lemma 2.1. For any fixed «0R?\{0}, there exists a hyperplane H
minimizing f on #, which passes through some point a[JA.

Proof. For fixed u#0, Theorem 1.1 shows that, for any aA, the
distance y,(a, H(u, B)) is a convex piecewise linear function of f3: it consists
of two unbounded pieces with breakpoint f; = [&; ] linearly decreasing
with slope —1/y°(-u) on ]-c0; ;] and linearly increasing with slope 1/y°(«)
on [fB;; + oo[. Note also that it is coercive, i.e. asymptotically equal to +c0
in any direction.

It follows that, as the positively weighted sum over all ¢[04 of such
distance functions, f(H(u, 8)) is convex, coercive, and piecewise linear, with
breakpoints f;, a0A4, and therefore reaches its minimum at least at one of
these breakpoints, say 8% with ¢°0A. But

w; a° 0= B
means that the corresponding minimizing hyperplane,
H} = H(u,By),

passes through a’. O

Let us introduce the notations A*(u, B) for any #0{ <, =, >, =} by
A'(u, B) = {aDA|; aFB}.

In fact, the problem of minimizing f on 7, may be seen as a one-
dimensional asymmetric distance Weber problem (Ref. 7),

min Yy [wo/viCwll@al-Bl+ Y [wa/ya)]|d; aO- B, 3)

BOR ,04™ (u,B) a0A= w,B)

for which a fixed-point optimality property was derived. This interpretation
of the problem also enables us to state an important property of median
hyperplanes.

Definition 2.1. The hyperplane H(u, ) halves A4 if

Y owdYaw= Y wl/ya(w), 4
a0A= (u,B) a4~ u.B)

Soowlyatw= Y w./ya(u). %)
a0A” (u,B) a0A4= u.B)

The following result generalizes analogous results in Ref. 8, and the
first part proves a conjecture made there on p. 182.
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Theorem 2.1. There exists a median hyperplane which passes through
some point a«[J4. Moreover, any median hyperplane halves A.

Proof. Lemma 2.1 shows that, for every fixed u # 0, the minimum of
f(H) is reached on 7, at some hyperplane H(u, B) with BO[B., BL], where

B.=min{Bila04},  Bu.=max{B;la04}.

The values B, and B, are clearly continuous in u, so they reach their extreme
values

B'=min{Llu0S, 1},  B"=max{BLluDS, 1}

on the (compact) unit sphere S;_;.

It follows that finding the minimum of fon # is equivalent to finding
the minimum of f(H(u, B)) on S,_; x[B', B"], which is compact. Since f is
continuous, this minimum will be reached, establishing the existence of a
median hyperplane. Then, the existence of a median hyperplane which meets
A follows immediately from Lemma 2.1.

Finally, if H(u’, B°) defines a median hyperplane, then B° must solve
(3) for u=u". The left and right directional derivatives of this convex func-
tion of B are respectively

Y owyie) - Y wa/yad),

w04 <(M0,BU) a0A Z(uo,ﬁ(’)
Yoowd/ysw)— Y wlya(=d).
a04=0, % a0a”@°,B%

A necessary and sufficient condition for a minimum is that the first should
be nonpositive and the second nonnegative; in other words, (°, 8°) should
satisfy (4)—(5). O

Observe that, when there exists a hyperplane in R containing 4, then
this is clearly a median hyperplane with objective value 0. Therefore, we
further assume that this is not the case; i.e.

dim(4) = d,

meaning that 4 contains at least d+ 1 affinely independent points.

When all gauges are symmetric and equal (i.e., when all distances are
measured by a same norm), we may then derive a much stronger result
which was obtained already by other means in Refs. §-9.

In the sequel, we will write f” for f° H, i.e.,

7', B) = f(H(u, B),
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and consider the median hyperplane determination as the problem of mini-
mizing /" on R?x R.

Theorem 2.2. For distances measured by a fixed norm, i.e. y,=V,
a0A, with v(-x) = v(x) for all xOR?, when dim(4) = d, some median hyper-
plane passes through d affinely independent points of 4.

Proof. Let H(u’, B°) be a median hyperplane, the existence of which
follows from Theorem 2.1. Without loss of generality, we may assume that
ve(’) = 1. Define v ORYx R by

o [@eaC=B, Oa04™ W', B°),
(u, 0.7 iff = 0 o
; alE=pL, OaOA4~ (', B),
and the following linear function:
g. Rdx R — R

: (Ll, E) = z Wu(m; all- B) + z Wa(ﬁ —W; ClD-

a0A= @0, 8% a4, 8%

Consider the set P in R?x R defined as

P={(u,p)0/ |g(u, B) = gl’, B°)}.

P is a closed polyhedral set in R x R: it is defined by linear inequalities and
one linear equality in d+ 1 variables.

P is also bounded. Indeed, if unbounded, there would exist some
(u, B) # (0, 0) such that

Au+u’, AB+p°)0OP,  forallA=0.
This means that we would have
; a- B=0, Oa04= °, B°),
; a0- B=0, Oa04= @, B°),
gu, B) =0,
which by the definition of g implies that
@; alB=0, forall a0A;

in other words, A H(u, 3), which contradicts the assumption dim(A4) = d.
Therefore, P is a polytope of (at most) dimension d. It contains the optimal
solution (#°, B°), so any solution optimizing f* on P is also a global optimal
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solution. Moreover,

[, B) =g(u, B)/v°o(u) = g(’, B°)/v°(w),  O(u, B)0P.

Hence, minimizing /' on P turns out to be equivalent to maximizing the
function (u, 8) — v°(u) on P. Since this function is convex, it attains its
maximum on the polytope P at some extreme point («', B8"). Since (u', B") is
obtained as the point common to d hyperplanes bounding linearly indepen-
dent halfspaces defining P, it corresponds to the hyperplane H(u', B') pass-
ing through d affinely independent points of A. O

That the previous theorem does not hold for an asymmetric gauge is
shown by the counterexample in Ref. 8. However, we may show the follow-
ing only slightly weaker result.

Theorem 2.3. For distances measured by a fixed gauge (i.e. y, =y, al
A), when dim(A) = d, some median hyperplane passes through d — 1 affinely
independent points of A.

Proof. Let H(u’, B°) be a median hyperplane, and define the functions
f%and g on R‘x R,

7o, fy=— [ 5 1M@mDBﬂ

y °(u) )

- [ 5 mw—mmﬂ

Y (=) Laoaoo. g

E B +f B,

g, B) = { Y wa(l; al- B)}

=%

1
yew’)
P [ 5

ye(-u’) a0A4= @, 8%
Observe that g is linear, f° is nonlinear, while

g’ B =1’ B") =1 (’, B°).
Let the subset POR?x R be defined by the constraints
; aC= B, Oa04= W, B°),
; a= B, Oa04~ W’ B°),
g(u, B) =1’ B°).

wa (B —@;aﬂi}-
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It is easy to see by similar arguments as those used in Theorem 2.2 that P
is a polytope of (at most) dimension d. Since for all (u, ) 0P, we have

A, B) = A", B°), #0{ =, <},

it follows that on P we have f°=/". But P contains the optimal solution
@, B% of " on R“x R, so any minimum of /° on P will also be a global
optimum of /' and yield a median hyperplane.

Since

fo=r s
any solution minimizing /° on P is an efficient solution to the biobjective
problem of minimizing both /= and /'~ on P.

Each of the functions /= and f ~ is quasiconcave on P (see e.g. Ref. 10),
since their upper level sets at level a are given respectively by inequalities of
the form

ay°wy—- Y w,(; al- B)=0,
ad4= @, p%
ay°(-u)— Yy wa(B-;ad=0,

a04=w".p%

which, by the convexity of y°, define convex sets in R’ x R.

It was shown in Ref. 11 that, in this case, the set of edges (one-dimen-
sional faces) of P constitutes a dominator of P; i.e., for any (u, ) 0P, there
exists some (', B') on some edge of P with

foW BY=f" (P,

ST, BY=f"(u, P,
and hence

1w, BY=1"(u, B).
And any edge of P is the intersection of d — 1 hyperplanes bounding linearly
independent halfspaces defining P. Therefore, there exists some minimum
of % on P (and hence a global minimum of f") satisfying as equality d— 1
linearly independent inequalities among those defining P. But this corre-

sponds to a hyperplane H passing through ¢ —1 affinely independent points
of 4. O
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