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Cell-like P systems with symport/antiport rules are computing models inspired by the
conservation law, in the sense that they compute by changing the places of objects
with respect to the membranes, and not by changing the objects themselves. In this
work, a variant of these kinds of membrane systems, called cell-like P systems with
evolutional symport/antiport rules, where objects can evolve in the execution of such
rules, is introduced. Besides, inspired by the autopoiesis process (ability of a system to
maintain itself), membrane creation rules are considered as an efficient mechanism to
provide an exponential workspace in terms of membranes. The presumed efficiency of
these computing models (ability to solve computationally hard problems in polynomial
time and uniform way) is explored. Specifically, an efficient solution to the SAT problem
is provided by means of a family of recognizer cell-like P systems with evolutional
symport/antiport rules and membrane creation which make use of communication rules
involving a restricted number of objects.

1. Introduction

Membrane Computing is a computational paradigm which arises as an abstraction of the compartmentalized structure of
living cells, and the way biochemical substances are processed in (or moved between) membrane-bounded regions [29]. 
The computing models in this paradigm are the so-called P systems or membrane systems. In this framework, three main 
approaches have been widely studied: cell-like P systems, organized with a hierarchical (cell-like) arrangement of membranes 
(a rooted tree), simulating the organization within a cell [29]; tissue-like P systems, inspired by the cell-interconnection 
communication between cells in a living tissue [22,32]; and neural-like P systems, inspired from the way that neurons com-
municate with each other by means of short electrical impulses (spikes), emitted at precise moments of time [18,19].
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The basic ingredient of cell-like P systems is the membrane structure, which is a hierarchical arrangement of membranes 
embedded in a unique main membrane, called the skin membrane [29,30,33]. Each membrane delimits a region (also called 
compartment), where finite sets of symbols (corresponding to the chemicals), finite sets of evolution rules (describing the 
possible interactions between chemicals) and other membranes can be placed. The outside region of the skin membrane is 
called environment, where there are no rules placed in it. If a membrane does not contain other membranes, then it is called 
elementary membrane; otherwise, it is called non-elementary membrane. In terms of types of rules, two main approaches have 
been investigated. On the one hand, rewriting rules are used as a method to make the objects of a system to evolve and 
move them through the compartments of itself. P systems with active membranes are a framework where these kinds of 
rules have defined several frontiers of efficiency in the framework of Membrane Computing. On the other hand, symport/an-
tiport rules can be seen as an abstraction of the movement of chemical compounds between different compartments of a 
system [6,7,27,28], let it be a single cell or a living tissue. In fact, as it happens in living systems, this communication is not 
limited to the compartments of the system, but they can interact with the environment too.

Membrane division and membrane separation are inspired by the mitosis and the membrane fission processes, which 
provide a mechanism to generate an exponential workspace in linear time. With the help of this mechanism, various P 
systems have manifested an excellent performance with respect to address computationally hard problems, including NP-
complete problems [10,11,32,36,44], PSPACE-complete problems [2–4,45,46].

Membrane creation is another mechanism to produce new membranes, which was first considered in [23], inspired 
from the fact that when a membrane compartment becomes too large, new membranes often appear inside it. Membrane 
creation differs from membrane division and membrane separation, since no new membranes with new labels are created 
by means of the execution of a division rule or a separation rule, they only duplicate membranes while maintaining their 
labels. While using creation rules, we have to take care of how many labels will be used and where can they be used. 
As expected, P systems with membrane creation can solve NP-complete problem (subset sum) [15], even PSPACE-complete 
problem (QSAT) [16] in a polynomial time.

In [43], this last approach was extended to tissue P systems in such a way that, while classical symport/antiport rules 
only transport objects between the different compartments [1,5,8,12], evolutional symport/antiport rules are capable of 
modifying them while they travel to a different compartment. As a new methodology to tackle the P versus NP problem 
[13,14,20,21], new frontiers between the non efficiency (only problems in class P can be efficiently solved) and the presumed 
efficiency (ability to solve computationally hard problems in polynomial time and uniform way) have been reached by 
means of these kinds of membrane systems. While using division rules, passing from rules of length at most (1, n) to 
(2, n) (the length of an evolutional symport/antiport rule is an ordered pair whose first component is the total number of 
objects involved in the left hand side of the rule, and the second component is the total number of objects involved in the 
right hand side of the rule), for every natural number n ≥ 1, amounts to passing from the non efficiency to the presumed 
efficiency. If separation rules are used instead of division rules, the non efficiency of tissue P systems with evolutional 
symport/antiport rules of length at most (1, n) or (n, 1), for every natural number n ≥ 1, has been established in [25].

In this work, we apply evolutional symport/antiport rules in cell-like P systems, and using membrane creation rules 
as a mechanism to construct an exponential workspace in terms of membranes in polynomial time. More precisely, an 
efficient solution to the SAT problem is provided by means of a family of recognizer cell-like P systems with evolutional 
symport/antiport rules and membrane creation which make use of communication rules involving the left-hand side (LHS) 
of length at most 2 and the right-hand side (RHS) of length at most 2.

We emphasize the following facts that in [17], the SAT problem was solved by P systems with membrane creation using 
rules of length at most (1, 2), where object evolution rules, communication rules, creation rules and dissolution rules are 
applied; however, in this work, the SAT problem can be efficiently solved by P systems with evolutional symport/antiport 
rules and membrane creation using rules of length at most (2, 2), where evolutional communication rules and creation 
rules are used. Although to a certain extent, evolutional communication rules, evolution rules and communication rules can 
mutual transform, “dissolution rules” are a very power tool to achieve the desired computational power as described in 
[14,17], it is shown that dissolution rules provide a borderline between efficiency and non-efficiency for P systems with 
membrane creation, that is, P systems with membrane creation without dissolution rules characterize standard class P [14]. 
In the present work, dissolution rules are not allowed for P systems with evolutional symport/antiport rules and membrane 
creation, and we show that NP-complete problem can be efficiently solved by such kind of P systems. Moreover, in P 
systems with membrane creation, all rules are noncooperative, that is, the length of left-hand side of rules is at most 1; 
however, in P systems with evolutional symport/antiport rules and membrane creation, the length of left-hand side of rules 
can be arbitrary. Hence there exist essential differences between P systems with membrane creation and P systems with 
evolutional symport/antiport rules and membrane creation.

The paper is organized as follows. In the next section, some notations and the computing model of cell-like P system with 
evolutional symport/antiport rules and membrane creation are presented. In section 3, the result about the computational 
efficiency of cell-like P systems with evolutional symport/antiport rules and membrane creation is demonstrated. Finally, 
some conclusions and open problems are presented.



2. Preliminaries and model description

Some basic notions used in this work from formal language theory are recalled, one is referred to [33,37] for further
information.

An alphabet is denoted by �, which is a non-empty set, and the elements in � are called symbols. A string u over � is 
a finite sequence of symbols from �, and the length of the string u (denoted by |u|) from � is the number of occurrences 
in u of symbols. For an alphabet �, a multiset over � is a pair (�, f ) where f : � → N is a mapping, N is the set of 
natural numbers. Let m1, m2 be multisets over �. The union of m1 and m2, denoted by m1 + m2, is the multiset over �
defined as (m1 + m2)(x) = m1(x) + m2(x) for each x ∈ �. The relative complement of m2 in m1, denoted by m1 \ m2, is the 
multiset defined as (m1 \ m2)(x) = m1(x) − m2(x) if m1(x) ≥ m2(x), and (m1 \ m2)(x) = 0 otherwise. We denote by ∅ the 
empty multiset and by M f (�) the set of all finite multisets over �.

Next we give the definition of cell-like P systems with evolutional symport/antiport rules and membrane creation.

Definition 1. A cell-like P system with evolutional symport/antiport rules and membrane creation of degree q ≥ 1 is a tuple

� = (�,E, H,μ,M1, . . . ,Mq,R, iout),

where

• � is a finite alphabet of objects;
• E is a finite alphabet of objects initially placed in the environment (note that each object initially placed in the envi-

ronment is available in an arbitrary number of copies), such that E ⊆ �;
• H is a finite alphabet such that {0, 1, . . . , q} ⊆ H (the environment is identified by the label 0);
• μ is a membrane structure (a rooted tree) whose nodes are bijectively labelled with 1, . . . , q (the root of the tree is

labelled by 1);
• Mi , 1 ≤ i ≤ q, are finite multisets over � \ E ;
• R is a finite set of rules of the following forms:

– Evolutional symport rules:
– Among membranes:

� [ u[ ] i ] j → [ [ u′ ] i ] j , where i, j ∈ H , i 
= j, u, u′ ∈ M f (�), |u| > 0 (send-in rules);
� [ [ u ] i ] j → [ u′[ ] i ] j , where i, j ∈ H , i 
= j, u, u′ ∈ M f (�), |u| > 0 (send-out rules);

– Between the root and the environment:
� [ u[ ]1 ]0 → [ [ u′ ]1 ]0, where u, u′ ∈ M f (�), |u| > 0, and there exists at least one object a ∈ u, such that

a ∈ � \ E (send-in rules);
� [ [ u ]1 ]0 → [ u′[ ]1 ]0, where u, u′ ∈ M f (�), |u| > 0 (send-out rules);

– Evolutional antiport rules: [ u[ v ] i ] j → [ v ′[ u′ ] i ] j , where i, j ∈ H ∪{0}, i 
= j, u, v, u′, v ′ ∈ M f (�), |u| > 0, |v| > 0;
– Creation rules: [ a → [ u ] i ] j , where i, j ∈ H , i 
= j, a ∈ �, u ∈ M f (�);

• iout is the output region.

A configuration Ct at an instant t of cell-like P system with evolutional symport/antiport rules and membrane creation
at any moment is described by the current membrane structure, together with all multisets of objects over � associated 
with the regions of this membrane structure and the multiset of objects over � \ E associated with the environment at that 
moment.

An evolutional send-in rule [ u[ ] i ] j → [ [ u′ ] i ] j is applicable to a configuration Ct if there exists a region i from 
Ct whose parent membrane, labelled by j, contains multiset u. When applying such a rule, the multiset of objects u
in region j is consumed and the multiset of objects u′ is produced in region i from Ct+1. An evolutional sent-out rule 
[ [ u ] i ] j → [ u′[ ] i ] j is applicable to a configuration Ct if there is a region i from Ct which contains multiset u and the 
parent of i is labelled by j. When applying such a rule, the multiset of objects u in region i from Ct is consumed and the 
multiset of objects u′ is generated in region j from Ct+1.

An evolutional antiport rule [ u[ v ] i ] j → [ v ′[ u′ ] i ] j is applicable to a configuration Ct if there exists a membrane 
i from Ct which contains multiset v , whose parent region is labelled by j and contains multiset u. When applying such a 
rule, the multiset of objects v in membrane i and the multiset of objects u in region j are consumed; simultaneously, the 
multiset of objects u′ is produced in membrane i from Ct+1 and the multiset of objects v ′ is produced in region j.

A creation rule [ a → [ u ] i ] j is applicable to a configuration Ct if there exists a membrane j from Ct which contains 
object a. When applying such a rule, under the influence of object a, a new membrane with label i having inside the 
multiset u, is created in such manner that it will be a daughter of the membrane with label j.

Following the definition in [25], in this work, we denote by CCEC(k1, k2) (k1, k2 are natural numbers, and k1 ≥ 1, 
k2 ≥ 1) the class of cell-like P systems with evolutional symport/antiport rules and membrane creation which makes use 
of evolutional communication rules such that the total number of objects involved in the LHS is at most k1 and the total 
number of objects involved in the RHS is at most k2.

The rules of a cell-like P system with evolutional symport/antiport rules and membrane creation are used in the following 
manner: at each step, a maximal multiset of rules is applied (no further rule can be added being applicable) with the 



following restriction: when a creation rule is applied to a membrane j, this rule is the only one which is applied for that 
membrane at that step, that is, the objects inside that membrane do not evolve by means of communication rules. The 
objects in the new membranes resulting from creation could participate in the interaction with the objects in the (upper or 
lower) neighbor of membranes by means of communication rules at the next step.

The transition of system � is defined by transferring from a configuration to a next configuration. The computation of �
over the initial configuration is a finite or infinite sequence of transitions. When system � runs to a configuration where 
no rule of the system is applicable in this configuration, the system is said to run to the halting configuration. Only a 
computation reaching a halting configuration gives a result, which is encoded by the specific objects present in the output 
region iout .

In order to solve decision problems, a recognizer cell-like P system with evolutional symport/antiport rules and mem-
brane creation is given.

Definition 2. A recognizer cell-like P system with evolutional symport/antiport rules and membrane creation of degree q ≥ 1
is a tuple

� = (�,E,�, H,μ,M1, . . . ,Mq,R, iin, iout),

where

• (�, E, H, μ, M1, . . . , Mq, R, iout) is a cell-like P system with evolutional symport/antiport rules and membrane creation
of degree m ≥ 1, such that � has two distinguished objects yes and no, M1, . . . , Mq are finite multisets over � \ �;

• � is an input alphabet strictly contained in �;
• iin ∈ {1, . . . , q} is the input membrane, and iout = 0;
• all computations halt;
• for each computation of �, either object yes or object no (but not both) is released into the environment, at the last

step of the computation.

We denote by CCEC(k1, k2) the class of all recognizer cell-like P system with evolutional symport/antiport rules and
membrane creation such that the total number of objects involved in the LHS of the evolutional communication rules is at 
most k1 and the total number of objects involved in the RHS of the evolutional communication rule is at most k2 .

Next, following [34,35], the concept of solving a decision problem in a uniform way and polynomial time by means of a 
family of recognizer membrane systems, is defined.

Definition 3. A decision problem X = (I X , θX ) is solvable in polynomial time and uniform way by a family � = {�(n) | n ∈
N} of membrane systems from CCEC(k1, k2) if the following conditions hold:

• the family � is polynomially uniform by Turing machines, that is, there exists a deterministic Turing machine working
in polynomial time which constructs the system �(n) from n ∈N;

• there exists a pair (cod, s) of polynomial-time computable functions over I X such that:
– for each instance u ∈ I X , s(u) is a natural number and cod(u) is an input multiset of the system �(s(u)); we denote

by �(s(u)) + cod(u) the system obtained by adding cod(u) to the multiset in the region iin of �(s(u));
– for each n ∈N , s−1(n) is a finite set;
– the family � is polynomially bounded with regard to (X, cod, s), that is, there exists a polynomial function p, such

that for each u ∈ I X every computation of �(s(u)) with input cod(u) is halting and it performs at most p(|u|) steps;
– the family � is sound with regard to (X, cod, s), that is, for each u ∈ I X , if there exists an accepting computation of

�(s(u)) with input cod(u), then θX (u) = 1;
– the family � is complete with regard to (X, cod, s), that is, for each u ∈ I X , if θX (u) = 1, then every computation of

�(s(u)) with input cod(u) is an accepting one.

We denote by PMCCCEC(k1,k2) the set of all decision problems which can be solved in a uniform way and polynomial 
time by means of recognizer cell-like P system with evolutional symport/antiport rules and membrane creation, where the 
evolutional communication rules of length at most (k1, k2).

3. An efficient solution to the SAT problem in CCEC(2, 2)

In this section the presumed efficiency of CCEC(2, 2) is established, by providing a polynomial-time uniform solution to
the SAT problem (one is referred to [24] for the detail of the SAT problem) by means of a family of membrane systems 
� = {�(t) | t ∈N} from CCEC(2, 2).

For each pair of natural numbers n, p ∈ N , we consider the recognizer tissue P system from CCEC(2, 2), �(〈n, p〉) =
(�, E, �, H, μ, M1, . . . , Mq, R, iin, iout), defined as follows:



• The working alphabet:

� = � ∪ {xi, j,t, xi, j, f , x̄i, j,t, x̄i, j, f | 1 ≤ i ≤ n,1 ≤ j ≤ p}∪
{ai,t,ai, f | 1 ≤ i ≤ n + 1} ∪ {c j,t, c′

j,t, c j, f , c j, E j, E ′
j | 1 ≤ j ≤ p}∪

{αi,α
′
i | 0 ≤ i ≤ 4n + 2p + 5} ∪ {a1,b, E p+1, t,yes,no}.

• The input alphabet: � = {xi, j, ̄xi, j | 1 ≤ i ≤ n, 1 ≤ j ≤ p}.
• The environment alphabet: E = {α′

i | 0 ≤ i ≤ 4n + 2p + 4}.
• The set of labels: H = {lt, l f | 1 ≤ l ≤ n} ∪ {0, 1, 2, n + 1}.
• The membrane structure: μ = [ [ ]2 ]1.
• The initial multisets: M1 = {a1, b, α0}, M2 = ∅.
• iin = 1 is the input membrane.
• iout = 0 is the output region.
• The set R consists of the following rules:

– Rules to generate the 2n possible truth assignments:
r1 ≡ [ a1[ ]2 ]1 → [ [ a1 ]2 ]1,
r2,i, j ≡ [ xi, j[ ]2 ]1 → [ [ xi, j ]2 ]1, 1 ≤ i ≤ n, 1 ≤ j ≤ p,
r3,i, j ≡ [ x̄i, j[ ]2 ]1 → [ [ x̄i, j ]2 ]1, 1 ≤ i ≤ n, 1 ≤ j ≤ p,
r4 ≡ [ [ a1 ]2 ]1 → [ a1,ta1, f [ ]2 ]1,
r5,i, j ≡ [ [ xi, j ]2 ]1 → [ xi, j,t xi, j, f [ ]2 ]1, 1 ≤ i ≤ n, 1 ≤ j ≤ p,
r6,i, j ≡ [ [ x̄i, j ]2 ]1 → [ x̄i, j,t x̄i, j, f [ ]2 ]1, 1 ≤ i ≤ n, 1 ≤ j ≤ p,
r7 ≡ [ a1,t → [ a2,ta2, f ]1t ]1,
r8 ≡ [ a1, f → [ a2,ta2, f ]1 f ]1,
r9,i,l ≡ [ ai+1,t → [ ai+2,tai+2, f ] (i+1)t ] il , 1 ≤ i ≤ n − 1, l = t, f ,
r10,i,l ≡ [ ai+1, f → [ ai+2,tai+2, f ] (i+1) f ] il , 1 ≤ i ≤ n − 1, l = t, f ,
r11, j ≡ [ x1, j,t[ ]1t ]1 → [ [ c j,tc j, f ]1t ]1, 1 ≤ j ≤ p,
r12, j ≡ [ x̄1, j,t[ ]1t ]1 → [ [ λ ]1t ]1, 1 ≤ j ≤ p,
r13,i, j ≡ [ xi, j,t[ ]1t ]1 → [ [ xi, j,t xi, j, f ]1t ]1, 2 ≤ i ≤ n, 1 ≤ j ≤ p,
r14,i, j ≡ [ x̄i, j,t[ ]1t ]1 → [ [ x̄i, j,t x̄i, j, f ]1t ]1, 2 ≤ i ≤ n, 1 ≤ j ≤ p,
r15, j ≡ [ x1, j, f [ ]1 f ]1 → [ [ λ ]1 f ]1, 1 ≤ j ≤ p,
r16, j ≡ [ x̄1, j, f [ ]1 f ]1 → [ [ c j,tc j, f ]1 f ]1, 1 ≤ j ≤ p,
r17,i, j ≡ [ xi, j, f [ ]1 f ]1 → [ [ xi, j,t xi, j, f ]1 f ]1, 2 ≤ i ≤ n, 1 ≤ j ≤ p,
r18,i, j ≡ [ x̄i, j, f [ ]1 f ]1 → [ [ x̄i, j,t x̄i, j, f ]1 f ]1, 2 ≤ i ≤ n, 1 ≤ j ≤ p,
r19,i, j,l ≡ [ c j,t[ ] (i+1)t ] il → [ [ c j,tc j, f ] (i+1)t ] il , 1 ≤ i ≤ n − 1, 1 ≤ j ≤ p, l = t, f ,
r20,i, j,l ≡ [ c j, f [ ] (i+1) f ] il → [ [ c j,tc j, f ] (i+1) f ] il , 1 ≤ i ≤ n − 1, 1 ≤ j ≤ p, l = t, f ,
r21,i, j,l ≡ [ xi+1, j,t[ ] (i+1)t ] il → [ [ c j,tc j, f ] (i+1)t ] il , 1 ≤ i ≤ n − 1, 1 ≤ j ≤ p, l = t, f ,
r22,i, j,l ≡ [ x̄i+1, j,t[ ] (i+1)t ] il → [ [ λ ] (i+1)t ] il , 1 ≤ i ≤ n − 1, 1 ≤ j ≤ p, l = t, f ,
r23,i, j,l ≡ [ xi+1, j, f [ ] (i+1) f ] il → [ [ λ ] (i+1) f ] il , 1 ≤ i ≤ n − 1, 1 ≤ j ≤ p, l = t, f ,
r24,i, j,l ≡ [ x̄i+1, j, f [ ] (i+1) f ] il → [ [ c j,tc j, f ] (i+1) f ] il , 1 ≤ i ≤ n − 1, 1 ≤ j ≤ p, l = t, f ,
r25,i, j,k,l ≡ [ xk, j,t[ ] (i+1)t ] il → [ [ xk, j,t xk, j, f ] (i+1)t ] il , 1 ≤ i ≤ n − 2, 1 ≤ j ≤ p, i + 2 ≤ k ≤ n, l = t, f ,
r26,i, j,k,l ≡ [ x̄k, j,t[ ] (i+1)t ] il → [ [ x̄k, j,t x̄k, j, f ] (i+1)t ] il , 1 ≤ i ≤ n − 2, 1 ≤ j ≤ p, i + 2 ≤ k ≤ n, l = t, f ,
r27,i, j,k,l ≡ [ xk, j, f [ ] (i+1) f ] il → [ [ xk, j,t xk, j, f ] (i+1) f ] il , 1 ≤ i ≤ n − 2, 1 ≤ j ≤ p, i + 2 ≤ k ≤ n, l = t, f ,
r28,i, j,k,l ≡ [ x̄k, j, f [ ] (i+1) f ] il → [ [ x̄k, j,t x̄k, j, f ] (i+1) f ] il , 1 ≤ i ≤ n − 2, 1 ≤ j ≤ p, i + 2 ≤ k ≤ n, l = t, f ,
r29,l ≡ [ an+1,t → [ E1 ]n+1 ]nl , l = t, f .

– Rules to check if a given truth assignment makes true the input formula ϕ:
r30, j,l ≡ [ c j,t[ ]n+1 ]nl → [ [ c′

j,t ]n+1 ]nl , 1 ≤ j ≤ p, l = t, f ,
r31, j,l ≡ [ [ c′

j,t ]n+1 ]nl → [ c j[ ]n+1 ]nl , 1 ≤ j ≤ p, l = t, f ,
r32, j,l ≡ [ c j[ E j ]n+1 ]nl → [ E ′

j[ ]n+1 ]nl , 1 ≤ j ≤ p, l = t, f ,
r33, j,l ≡ [ E ′

j[ ]n+1 ]nl → [ [ E j+1 ]n+1 ]nl , 1 ≤ j ≤ p, l = t, f .
– Rules to return the correct answer:

r34,l ≡ [ [ E p+1 ]n+1 ]nl → [ t[ ]n+1 ]nl , l = t, f ,
r35,i,l,l′ ≡ [ [ t ] il′ ] (i−1)l → [ t[ ] il′ ] (i−1)l , 2 ≤ i ≤ n, l = t, f , l′ = t, f ,
r36,l ≡ [ [ t ]1l ]1 → [ t[ ]1l ]1, l = t, f ,
r37 ≡ [ [ bt ]1 ]0 → [ yes[ ]1 ]0,
r38,i ≡ [ α′

i [ αi ]1 ]0 → [ [ αi+1 ]1 ]0, 0 ≤ i ≤ 4n + 2p + 4,
r39 ≡ [ [ bα4n+2p+5 ]1 ]0 → [ no[ ]1 ]0.

3.1. An overview of the computation

Let us consider the polynomial encoding (cod, s) of the SAT problem in the family � defined as follows: for each Boolean 
formula in CNF and simplified form with n variables and p clauses, ϕ = C1 ∨· · ·∨ C p , where C j = l j ∧· · ·∧ l j

m , 1 ≤ j ≤ p and 
1 j
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Fig. 1. The membrane structure of the system when the generation stage completes. Numbers at nodes indicate labels of membranes.

l j
r ∈ {xi, ¬xi}, 1 ≤ i ≤ n, 1 ≤ r ≤ m j , we define s(ϕ) = 〈n, p〉 and cod(ϕ) = {xi, j | xi ∈ C j} ∪ {xi, j | ¬xi ∈ C j}. Then, the system 
�(s(ϕ)) with input multiset cod(ϕ) (denoted by �(s(ϕ)) + cod(ϕ)) will process the formula ϕ , and �(s(ϕ)) ∈ CCEC(2, 2).

The system �(s(ϕ)) +cod(ϕ) has been designed following a brute-force algorithm and it consists on the following stages:

(a) Generation stage: by using creation rules all truth assignments associated with the set of variables {x1, . . . , xn} will be
generated and, simultaneously, the clauses satisfied for each truth assignment are checked.

(b) Checking stage: truth assignment satisfying all clause of ϕ are checked.
(c) Output stage: the system sends to the environment an object yes or an object no at the last step of the computation

depending on if the formula ϕ is or not satisfiable, according to the previous stage.

Next, an exhaustive description of each stage is given.

Generation stage
In this stage, by using membrane creation rules, a binary tree structure with 2n leaves is produced, all truth assignments 

for the variables associated with ϕ(x1, . . . , xn) will be generated (corresponding to the labels of membranes). During this 
process, the clauses that are satisfied by the corresponding truth assignment are checked. In this way, after completing this 
stage, there are some of the objects c1,t, c1, f , c2,t, c2, f , . . . , cp,t, cp, f in a membrane with label nt or nf , which correspond 
to the clauses satisfied by the truth assignment. Besides, object αi in membrane 1 is evolved to count the number of steps.

In the initial configuration of the system, we have objects a1, b, α0, cod(ϕ) in membrane 1, objects α′
i (0 ≤ i ≤ 4n +2p +4) 

in the environment.
The processes of assigning truth-assignment of variable xi as well as looking for the clauses satisfied by the truth-

assignment of variable xi are described as follows. Note that from step 1 to step 4n + 2p + 5, the count object αi is evolved 
in each step in membrane 1; that is, the subscript of αi is increased by one for each step.

At step 1, rule r1 is used, object a1 is sent into membrane 2; simultaneously, all the input objects cod(ϕ) are sent into 
membrane 2 by using rules r2,i, j, r3,i, j . At step 2, rules r4, r5,i, j, r6,i, j are enabled and applied, all objects a1, xi, j, ̄xi, j in 
membrane 2 are sent to membrane 1 and evolved to a1,ta1, f , xi, j,t xi, j, f , ̄xi, j,t x̄i, j, f , respectively. With object a1,t (resp., a1, f ) 
appears in membrane 1, rule r7 (resp., r8) is applied, object a1,t (resp., a1, f ) creates a membrane with label 1t (resp., 1 f ), 
where objects a2,t , a2, f are placed.

From step 3, rules from r9,i,l to r29,l are selected in a non-deterministic way as follows: as no communication rules can 
be applied to a membrane that will generate a new membrane within it in the next configuration, then three sets of rules 
can be applied to a single membrane in a given step: (a) rule r9,i,l , that creates a new membrane labelled by (i +1)t and two 
new objects ai+2,t , ai+2, f within it by consuming one object ai+1,t or rule r29,l to create a membrane labelled by n + 1 with 
an object E1 to start the next stage; (b) rule r10,i,l , that creates a new membrane labelled by (i + 1) f and two new objects 
ai+2,t , ai+2, f within it by consuming one object ai+1, f ; and (c) rules r11, j, r12, j, r15, j, r16, j, r21,i, j,l, r22,i, j,l, r23,i, j,l, r24,i, j,l , 
devoted to check whether a given truth assignment makes a literal satisfy its clause, r13,i, j , r14,i, j , r17,i, j , r18,i, j , r25,i, j,k,l , 
r26,i, j,k,l , r27,i, j,k,l , r28,i, j,k,l , devoted to move literals from the parent membrane to a child membrane, r19,i, j,l, r20,i, j,l , devoted 
to duplicate objects c j to send them to the inner membranes.

Hence, after 3n + 3 the generation stage completes, a binary tree structure with 2n leaves is produced (see Fig. 1), where 
each membrane with label n + 1 contains an object E1, each membrane with label nt or nf contains some objects from the 
set {c1,t, c1, f , c2,t, c2, f , . . . , cp,t , cp, f }.

Checking stage.
When the generation stage completes, the system has 2n copies of membrane nt or nf , and each of these membranes 

contains a membrane n + 1 and some objects from the set {c1,t , c1, f , c2,t, c2, f , . . . , cp,t, cp, f }, which correspond to clauses 



satisfied by the truth assignment of the variables (note that objects c j,t, c j, f appear in pairs). If there exists at least one 
membrane nt or nf that contains all the objects c1,t , c2,t, . . . , cp,t , then the formula ϕ is satisfied by the corresponding truth 
assignment in that membrane; if there is no membrane nt or nf that contains all the objects c1,t , c2,t, . . . , cp,t , then the 
formula ϕ is not satisfied.

The checking stage takes 2p + 2 steps, which consists of a loop with p iterations, each iteration takes two steps, and two 
addition steps.

By using rules r30, j,l, r31, j,l , all the objects c j,t (1 ≤ j ≤ p) evolve to c j .
At the first step of the j-th loop (1 ≤ j ≤ p), rule r32, j,l is enabled if and only if membrane nt or nf encodes a truth 

assignment making clauses C1, . . . , C j true. We remark that for any membrane nt or nf , if it contains a truth assignment 
that does not make the clause C j true, then the computation will halt in that membrane. By using rule r32, j,l , object c j is 
sent into membrane n + 1 and consumed; simultaneously, object E j is sent out of membrane n + 1 and evolved to E ′

j .
At the second step of the j-th loop (1 ≤ j ≤ p), if a membrane nt or nf contains object E ′

j , then rule r33, j,l is enabled
and applied, object E ′

j is sent into membrane n + 1 and evolves to E j+1.

Output stage.
If the formula ϕ is satisfiable, then there exists at least one membrane n + 1 that contains object E p+1 after 3n + 2p + 3

steps. In this case, at step 3n + 2p + 4, by using rule r34,l , object E p+1 is sent out of membrane n + 1 and evolved to t . 
At the next n steps, by applying rules r35,i,l,l′ , r36,l , object t will be sent to membrane 1. At step 4n + 2p + 5, rule r37 is 
enabled and used, objects b, t are sent to the environment and evolved to yes. Note that rule r38,i is used from step 1 to 
step 4n + 2p + 5. Hence the computation of the system halts, the answer of the system being affirmative.

If the formula ϕ is not satisfiable, then there is no membrane n + 1 that contains object E p+1 after 3n + 2p + 3 steps. 
In this case, from step 3n + 2p + 4 to step 4n + 2p + 5, only rule r38,i is enabled and applied, so that object α4n+2p+5 will 
appear in membrane 1. At step 4n + 2p + 6, rule r39 is applied, objects α4n+2p+5, b are sent to the environment and evolved 
to no. The computation of the system halts, the answer of the system being negative.

3.2. Formal verification of the solution

Next, we prove that the family � of recognizer cell-like P systems from CCEC(2, 2), designed in the previous subsection, 
provides a polynomial time and uniform solution to the SAT problem, according with Definition 3.

Theorem 3.1. SAT ∈ PMCCCEC(2,2) .

Proof. The family of P systems previously constructed verifies the following:

• Every system of the family � is a recognizer P systems from CCEC(2, 2).
• The family � is polynomially uniform by Turing machines because for each n, p ∈ N , the rules of �(〈n, p〉) of the

family are recursively defined from n, p ∈N , and the amount of resources needed to build an element of the family is
of a polynomial order in n and p, as shown below:
– Size of the working alphabet: 6np + 10n + 10p + 20 ∈ 
(np).
– Initial number of membranes: 2 ∈ 
(1).
– Initial number of objects: 3 ∈ 
(1).
– Number of rules: 8n2 p + 4np + 12n − 2p + 9 ∈ 
(n2 p).
– Maximal number of objects involved in any rule: 4 ∈ 
(1).

• The pair (cod, s) of polynomial-time computable functions defined fulfill the following: for each instance ϕ of the SAT
problem, s(ϕ) is a natural number, cod(ϕ) is an input multiset of the system �(s(ϕ)), and for each n ∈ N , s−1(n) is a
finite set.

• The family � is polynomially bounded: indeed, according to subsection 3.1, for each instance ϕ of the SAT problem, the
computation of �(s(ϕ)) + cod(ϕ) always halts and sends to the environment object yes (it takes at most 4n + 2p + 5
steps) or object no (at step 4n + 2p + 6), being n the number of variables of ϕ and p the number of clauses.

• The family � is sound with regard to (X, cod, s): indeed, for each instance ϕ of the SAT problem, if the computation
of �(s(ϕ)) + cod(ϕ) is an accepting computation, then ϕ is satisfiable.

• The family � is complete with regard to (X, cod, s): indeed, for each instance ϕ of the SAT problem such that it is
satisfiable, the computation of �(s(ϕ)) + cod(ϕ) is an accepting computation. �

Corollary 3.1. NP ∪ co − NP ⊆ PMCCCEC(2,2) .

Proof. It suffices to make the following observations: the SAT problem is NP-complete, SAT ∈ PMCCCEC(2,2) and the class 
PMCCCEC(2,2) is closed under polynomial time reduction, and is under complementary. �



4. Conclusions and further works

In this work, a variant of cell-like P systems with evolutional communication rules, called cell-like P systems with evolu-
tional communication rules and membrane creation has been proposed, and the computational efficiency of such P systems 
has been studied. In section 3, the presumed efficiency of CCEC(2, 2) has been established by providing a polynomial time 
and uniform solution to the SAT problem by means of a family of recognizer membrane systems CCEC(2, 2); that is by us-
ing recognizer cell-like P systems with evolutional communication rules and membrane creation such that the total number 
of objects involved in the LHS of the evolutional communication rules is at most 2 and the total number of objects involved 
in the RHS of the evolutional communication rule is at most 2.

The SAT problem has been solved by cell-like P systems from CCEC(2, 2) in Section 3. It seems interesting to study the 
computational power of cell-like P systems from CCEC(2, 1), CCEC(1, 2) or CCEC(1, 1).

In [24,41], a new strategy of using rules, called flat maximal parallelism was proposed, where in each membrane, a 
maximal set of applicable rules is chosen and each rule in the set is applied exactly once in each step. It would be interesting 
to investigate the presumed efficiency of cell-like P systems with evolutional communication rules and membrane creation 
by using rules in a flat maximally parallel way.

Time-free solutions to NP-complete problems have been studied widely [26,38–40,42], where the correctness of the 
solution is irrelevant to the times associated with the involved rules. It deserves to investigate the computational efficiency 
of cell-like P systems with evolutional communication rules and membrane creation by using rules in a time-free way.

The computational power of P systems with symport/antiport rules with respect to the number of objects and the num-
ber of membranes was investigated in [9,31]. An interesting open problem for P systems with evolutional symport/antiport 
rules is to find the minimal number of objects as well as the minimal number of membranes such that all recursively 
enumerable sets of natural numbers can be generated. Another interesting problem is to find characterizations of the sets 
of natural numbers for such kind of P systems that do not contain all recursively enumerable sets of natural numbers.
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