An optimal bound for d.c. programs with convex constraints*

Emilio Carrizosa†

†Facultad de Matemáticas. Universidad de Sevilla. Tarfía s/n, 41012 Sevilla, Spain.
(e-mail: ecarriz@cica.es)

Manuscript received: November 2000/Final version received: April 2001

Abstract. A well-known strategy for obtaining a lower bound on the minimum of a d.c. function $f - g$ over a compact convex set $S \subset \mathbb{R}^n$ consists of replacing the convex function f by a linear minorant at $x_0 \in S$. In this note we show that the x_0^* giving the optimal bound can be obtained by solving a convex minimization program, which corresponds to a Lagrangian decomposition of the problem. Moreover, if S is a simplex, the optimal Lagrangian multiplier can be obtained by solving a system of $n + 1$ linear equations.

Key words: d.c. programs; bounds; Lagrangian decomposition

1 Problem statement

Let S be a nonempty compact convex subset of \mathbb{R}^n, and let f, g be convex and finite on \mathbb{R}^n. Our aim is to find a lower bound on the optimal value z^* of the d.c. program

$$\min_{x \in S} f(x) - g(x) \quad (1)$$

Obtaining such lower bounds may be a real need when one is solving global optimization problems by a branch-and-bound strategy, [2, 1, 3], both in the bounding process (indeed, one needs to find good lower bounds for subproblems in the form (1) at each stage in the resolution of $\min_{x \in A} f(x) - g(x)$ using polyhedral, — say, simplicial or hyperrectangular — branching schemes) and in order to check feasibility as well (showing that a lower bound

* The research of this author is partially supported by Grant PB96-1416-C02-02 of Dirección General de Enseñanza Superior, Spain
for \(\min_{x \in S} f(x) - g(x) \) is strictly positive implies the infeasibility of the (sub)-problem \(\min \{ h(x) : f(x) - g(x) \leq 0, x \in S \} \). In both cases, it is important to have the bounds as sharp as possible, since this may considerably reduce the computational effort.

Now we introduce some notation: let \(\text{ext}(S) \) denote the set of extreme points of the convex set \(S \), and, for any \(x_0 \in S \), let \(\partial f(x_0) \) denote the subdifferential of \(f \) at \(x_0 \).

One immediately derives the following result from the definition of sub-gradients and the fact that a concave function attains its minimum on a bounded convex set \(S \) at some point in \(\text{ext}(S) \), e.g. [2].

Proposition 1. For any \(x_0 \in S \) and \(u_0 \in \partial f(x_0) \), it follows

\[
 z^* \geq \min_{x \in S} f(x_0) + \langle u_0, x - x_0 \rangle - g(x)
\]

\[
 = \min_{x \in \text{ext}(S)} f(x_0) + \langle u_0, x - x_0 \rangle - g(x)
\]

The bound given in Proposition 1 strongly depends on the choice of the point \(x_0 \in S \). Such bound can then be sharpened if one choses the best possible \(x_0 \).

Corollary 1. Define

\[
 z_p = \sup \left\{ \min_{x \in \text{ext}(S)} f(x_0) + \langle u_0, x - x_0 \rangle - g(x) : x_0 \in S, u_0 \in \partial f(x_0) \right\}
\]

Then, \(z_p \leq z^* \).

Finding the optimal lower bound \(z_p \) from the definition amounts to solving a max-min nonlinear problem with nonconvex constraints, thus, at first glance, it does not seem obvious at all that the possible enhancement of the bound \(z_p \) with respect to any of the simple bounds given in Proposition 1 will deserve the resolution of the global-optimization problem (2). It turns out however that (2) can be formulated as a convex program, as shown in Section 2.

2 A Lagrangian decomposition scheme

Lower bounds for \(z^* \) can also be obtained via Lagrangian decomposition, [4]. Indeed, (1) can be equivalently rephrased as

\[
 \min \{ f(x) - g(y) : x = y, x \in S, y \in S \}
\]

Dualizing the constraints \(x = y \), one obtains the Lagrangian dual

\[
 z_D = \max_{u \in \mathbb{R}^*} L(u),
\]

(3)
with
\[
L(u) = \min_{x, y \in S} (f(x) - \langle u, x \rangle - g(y) + \langle u, y \rangle)
\]
\[
= \min_{x \in S} (f(x) - \langle u, x \rangle) + \min_{y \in S} (-g(y) + \langle u, y \rangle).
\]

We see that (3) is a bilevel problem, since the mere evaluation of the Lagrangian function \(L \) at a given \(u \in \mathbb{R}^n \) amounts to solving the convex minimization program \(\min_{x \in S} (f(x) - \langle u, x \rangle) \) and the concave minimization program \(\max_{y \in S} (-g(y) + \langle u, y \rangle) \).

Since the latter reduces to vertex enumeration if \(S \) is polyhedral, \(L \) can be evaluated in finite time for particular instances (e.g., when \(f \) is polyhedral or quadratic and \(S \) is a polytope), whilst for general problems \(L \) must be approximated by finding a near-optimal solution of a nonlinear program.

The next result shows that finding an optimal multiplier is equivalent to solving (2).

Proposition 2. One has \(z_D = z_P \)

Proof. Let \(f_S \) the restriction of \(f \) to \(S \),
\[
f_S(x) = \begin{cases}
 f(x), & \text{if } x \in S \\
 +\infty, & \text{else}
\end{cases}
\]
and let \(f_S^* \) denote the Fenchel conjunct of \(f_S \), [5]
\[
f_S^*(p) = \sup \{ \langle p, x \rangle - f_S(x) : x \in \mathbb{R}^n \}
\]

We will show now that
\[
L(u) \leq z_P \quad \forall u \in \mathbb{R}^n
\]

(5)

Indeed, for any given \(u \in \mathbb{R}^n \),
\[
L(u) = -f_S^*(u) + \min_{y \in S} \langle u, y \rangle - g(y)
\]

Moreover, there exists \(x_0 \in S \) such that \(f_S^*(u) = \langle u, x_0 \rangle - f_S(x_0) \), thus it follows that \(u \in \partial f_S(x_0) \), see [5]. Hence, by definition of subgradients,
\[
L(u) = f(x_0) - \langle u, x_0 \rangle + \min_{y \in S} \langle u, y \rangle - g(y)
\]
\[
= \min_{y \in S} (-\langle u, x_0 \rangle + f(x_0) + \langle u, y \rangle - g(y))
\]
\[
= \min_{y \in \text{ext}(S)} (-\langle u, x_0 \rangle + f(x_0) + \langle u, y \rangle - g(y))
\]
\[
\leq z_P
\]

Hence, (5) holds.
Conversely, given \(x_0 \in S \) and \(u_0 \in \partial f(x_0) \), one has that \(-f^*_S(u_0) = f_S(x_0) - \langle u_0, x_0 \rangle\), thus

\[
\min_{x \in S} (f(x_0) + \langle u_0, x - x_0 \rangle - g(x)) \\
= f(x_0) - \langle u_0, x_0 \rangle + \min_{x \in S} (\langle u_0, x \rangle - g(x)) \\
= -f^*_S(u_0) + \min_{x \in S} (\langle u_0, x \rangle - g(x)) \\
= L(u_0) \\
\leq z_D
\]

Since, by (4), the function \(L : u \in \mathbb{R}^n \mapsto L(u) = \min_{x \in S} (f(x) - \langle u, x \rangle) + \min_{x \in S} (-g(x) - \langle u, x \rangle) \) is minimum of affine functions, thus concave, Proposition 2 implies that \(z_P \) can be obtained by solving the concave maximization problem

\[
\max_{u \in \mathbb{R}^n} L(u) \tag{6}
\]

Although much simpler than the original expression (1), solving (6) still involves some computational burden, since it is a (nondifferentiable as a rule) nonlinear concave program, the objective function of which has no known analytical expression but must be evaluated by solving a convex minimization problem. This implies that, in practice, finding the optimal multiplier in (6) may be too costly, and, as customary in branch-and-bound approaches to combinatorial problems, see [6], one just performs a few iterations of some concave-maximization algorithm, leading to a lower bound on \(z_P \).

This should be the strategy for an arbitrary compact convex set \(S \). However, branch-and-bound schemes often assume \(S \) to be a simplex in \(\mathbb{R}^n \), see e.g. [2]. In that case, Proposition 2 can be further strengthened, since finding the optimal multiplier for (6) is reduced to solving a linear system of \(n + 1 \) equations. Indeed, one has

Proposition 3. Let \(S \) be a simplex in \(\mathbb{R}^n \), with vertices \(v_0, \ldots, v_n \), and let \(\tilde{u} \) be the solution to the system of linear equations

\[
g(v_1) - \langle v_1, u \rangle = g(v_0) - \langle v_0, u \rangle \\
g(v_2) - \langle v_2, u \rangle = g(v_0) - \langle v_0, u \rangle \\
\ldots \\
g(v_n) - \langle v_n, u \rangle = g(v_0) - \langle v_0, u \rangle \tag{7}
\]

Then, \(z_D = L(\tilde{u}) \)

Proof. First of all, since \(S \) is assumed to be a simplex, the system of equations (7) has a unique solution, thus \(\tilde{u} \) is well defined. In order to show the result, it
An optimal bound for d.c. programs with convex constraints

suffices to show that \(\hat{u} \) is an optimal solution to the convex program \(\min_{u \in \mathbb{R}^n} -L(u) \), by showing that 0 is a subgradient of \(-L\) at \(\hat{u} \). Indeed, since \(f \) is finite at \(S \) and \(S \) is compact, the optimal value of the optimization problem

\[
\max_{x \in S} f(x) - \langle \hat{u}, x \rangle
\]

is attained at some \(x_0 \in S \). In other words, \(x_0 \) satisfies

\[
-fS(x_0) + \langle \hat{u}, x_0 \rangle = f_S^*(\hat{u}).
\]

Hence, by Theorem 23.5 of [5], \(x_0 \in \partial f_S^*(\hat{u}) \). Moreover, since the piecewise linear function \(h : u \in \mathbb{R}^n \mapsto h(u) = \max_{0 \leq i \leq n} -\langle v_i, u \rangle + g(v_i) \) has all its components active at \(\hat{u} \), it follows that

\[
\partial h(\hat{u}) = \text{conv}\{\{-v_0, \ldots, -v_n\}\}
\]

\[
= -S.
\]

Hence \(-x_0 \in \partial h(\hat{u})\), thus

\[
0 \in \partial f_S^*(\hat{u}) + \partial h(\hat{u})
\]

\[
= \partial(-L)(\hat{u}),
\]

showing that \(\hat{u} \) minimizes \(-L\), as asserted. \(\square \)

Acknowledgements. The author thanks Dr. Christian Michelot (Université de Bourgogne) and Dr. Frank Plastria (Vrije Universiteit Brussel) for their helpful comments.

References