
An Overview of Hardware Implementations of P
Systems

Zeyi Shang1, Sergey Verlan2, Gexiang Zhang1?,
Miguel A. Martínez-del-Amor3, and Luis Valencia-Cabrera3

1 School of Electrical Engeneering,
Southwest Jiaotong University,

Chengdu, Sichuan, China
{sibanordol,zhgxdylan}@126.com

2 Université Paris Est, LACL (EA 4219), UPEC, F-94010, Créteil, France
verlan@u-pec.fr

3 Research Group on Natural Computing
University of Seville, Sevilla, Spain

{mdelamor,lvalencia}@us.es

Abstract. Implementing the P systems on parallel hardware is a research high-
light in bio-inspired computing since the membrane computing is a large-scale
parallel computing paradigm which have a potential to tremendously speed up
the computation. Field-programmable gate arrays (FPGAs) and CUDA-enabled
GPUs are the primary hardware which is employed to implement P systems.
FPGA-based hardware implementations use different strategies considering re-
gions or evolution rules as processing units. This implies the existence of several
parallel architectures for FPGAs specially designed to implement P systems. In
contrast, the CUDA-enabled GPUs are a pre-defined parallel platform and nu-
merous types of P systems are directly implemented on it.
The object distribution problem (choosing which rules will be applied) is the core
problem of all hardware implementations. This problem is particularly difficult,
because in the general case the model of P systems is non-deterministic and max-
imally parallel, hence the corresponding problem is NP-hard. Several heuristics
were proposed in order to accelerate the process of the computation of the corre-
sponding ruleset.
In this article we overview different approaches and designs for hardware imple-
mentations of P systems as well as corresponding solutions to the object assign-
ment problem.

Keywords: Membrane Computing, P Systems, hardware implementation, FPGA,
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A Introduction

With the putative arising of protocells 3.8–4 billion years ago in hydrothermal vent precipi-
tates, at which a time-line not long after the estimated forming of the the Earth and oceans 4.54
and 4.41 billion years ago [15], the unicellular organisms which are deemed as the most primitive
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lifeforms have existed and evolved until now [51]. From monoplast to multicellularity, the undis-
puted form of lives remain unchanged since then. That is, the biological cell structures defined
by the membranes have evolved so being optimized for billions of years. As a consequence, a
bio-cell is powerful parallel processing unit which can perform sophisticated biologic behaviors.
Enlightened by the insights of biological membranes and the bio-chemistry reactions inside, and
on the foundation of theoretical computer science, membrane computing was initiated by Ghe-
orghe Păun in 1998. Due to its background inspired from, membrane computing has worked as
a modeling framework for biological and ecological objectives such as artificial life [60], pho-
tosynthesis [49], protein signaling pathway [61], etc. On the other hand, the inherent large scale
parallelism of membrane computing has the profound potential for the progress of extreme data
processing. Implementing membrane computing models called P systems on contemporary sili-
con integrated circuits to exploit the desirable parallel computational capability of P systems to
explore a new orientation for high performance computing (HPC) is what we concern about.

Pursuing the parallel computing is an imminent requirement for the time being. The density
of electronic ingredients in the integrated circuit board and the corresponding computational ca-
pability has been subject to the loose Moore’s law for decades. What more make sense is the
fact that the computational capability is determined by the density of electronic components.
However, Moore’s law will not hold for long since the physical limit, which the augmenting of
density is unsustainable and the subsequently awkward thermal dissipation problem, is around
the corner. Even with the further increase of the density, the computational capability growth is
not linearly proportional to the density [69]. Hardware engineers are missing the good old days
when what they should do is just double the density to double the computational capability by
the prestigious law. Before claiming that the era of parallel computing has dawned, one essential
question should be clarified: what does parallel computing mean? Though not rigorous, parallel
computing implies multiple processing nodes computing. This possible conclusion stems from
the evolution of computer processor scheme, from single-core single CPU to multiple-core single
CPU and multiple-core multiple-CPU frame. In this sense, the inherent parallelism infers that
P systems belong to a class of multiple processing nodes computing devices. What constituents
work as processing nodes will give rise to different implementing strategies. The way how living
cells allocate, organize and coordinate processing nodes has evolved for billions of years. Inves-
tigating this magnificent course will illuminate us to handle the multiple cores computing, which
has cut a striking figure in the contemporary parallel computing realm.

The large scale distributed parallel process occurring in vesicle compartments and the vesicle
division functionality enlightened from mitosis of living cells which increase the artificial cells
exponentially are two of the most outstanding advantages of membrane computing that would
underlie the foundation for the construction of highly parallel computation platform whose per-
formance, flexibility and scalability outperforms traditional sequential counterparts substantially.
As a parallel computing paradigm inspired by the structural and functional features of biologi-
cal membranes, only the parallel computing platforms are suitable for the implementation of P
systems with respect to the fact that the limited parallelism of general computers realized by the
communication mechanism among the multiple cores of CPU and GPU cannot make full use of
the large scale parallelism, non-determinism and other particular attributes that impart a enor-
mous computing potential like creation and dissolution of inner membranes, the self-replication
or autopoiesis [16] of the whole cell-like entirety that works as a computing unit, the symport and
antiport of objects, etc. Implementing this new computing paradigm which exhibits a promising
prospect on parallel platforms so that put this theoretical excellent performance into practical ap-
plication is what pursued. It is remarked that programming the membrane computing algorithms
with high level general purpose language and executing them on the computer is just simulating,
not real implementing [52] of P systems.



In fact, software-based and hardware-based parallel computing platforms have developed for
implementing P systems. The software-based parallel computing platform is constructed on a
cluster of computers [14]. This platform achieves good performance and flexibility for that the
CPUs are executing the operations and the changing of objectives is easily carried out by pro-
grams. Nonetheless, with the size of objective P system increasing, the consumption of time and
CPU resources caused by the communications of different computers rising dramatically. More-
over, the underlying hardware (a cluster of computers) of this platform cannot be miniaturized so
that the membrane computing algorithms cannot be utilized in embedded chips and compact con-
trollers which can be employed in robots, automobiles, machine tools, etc. This disadvantage will
limits the range of applications of membrane computing. While the hardware-based platforms are
fabricated on integrated circuits. The corresponding algorithms are mapped to digital circuits and
the performance is much higher compared with the software-based platforms, although this high
performance may comes at the cost of flexibility and extensibility. But the reprogrammable hard-
ware turns the corner, lifting barriers to devise portable and embedded membrane processors
which can used as CPUs, controllers or something like that. This is necessity and importance of
hardware implementation of P systems.

Hence, it is important to propose hardware implementations of P systems as specific archi-
tectures that do not have the drawbacks related to the traditional ways of implementation. There
are two main directions for such research: (1) Field-programmable gate arrays (FPGAs) and
(2) CUDA-enabled graphical processing units (GPUs). In the first case a completely new paral-
lel circuit is specially designed to simulate some variants of P systems. In the second case the
pre-defined CUDA parallel platform is used to simulate P systems. The achieved performance
and correspondence is lower in this case, but the development effort is much lower, so finally it
becomes an interesting compromise between traditional computers implementations and highly
parallel using specialized circuits.

The core problem for the implementations is the object distribution problem (ODP) that based
on the current configuration yields a multiset of applicable rules that will be applied in order to
pass to the next configuration. This problem is a particular variant of a more general problem that
computes the applicable set of multisets of rules for a configuration and it is known to be NP-
complete [13]. We recall that in the general case the model is non-deterministic, so an equitable
choice among different possibilities should be provided. Known algorithms and heuristics do not
parallelize well, so special heuristics were developed in order to quickly compute the desired
multiset of rules.

Since the ice-breaking work of [32], multiple concerned research groups have engaged in
the hardware implementation of P systems. In this article, the comprehensive and systematic
analysis of hardware implementation course is presented, especially formulating the root cause
of parallelism and non-determinism, and classifying and summarizing the proposed approaches
under the hypothesis that P systems are multiple processing nodes models. This overview of the
domain can play the role of a guideline for the future scientific explorations towards the hardware
implementation of membrane computing. This paper is organized as follows: Section B gives a
short description of the capabilities and the architecture of used hardware, Section C gives the
definition of the most general model of P systems using the formal framework [23]. Section D
presents an overview of different simulation approaches, including the DND algorithm (which
is the base for all CUDA simulators). Next, Section E expresses ODP in terms of integer linear
programming. Section F to Section 8 give more details on existing simulation approaches. Finally,
conclusions and future research directions are discussed in Section 9.



B The Selection of Hardware

The extensive application of multiple cores computing has already pushed forward the world 
into the parallel computing era. As another parallel computing paradigm, the membrane comput-
ing provides a new possible scheme for parallel computation. Among the characters P systems 
possessing, the parallelism is the most dramatic one under the foundation of proved computa-
tional universality. The software simulation of membrane computing algorithm on the general 
computer which is not a highly parallel platform is far from the ideal facility to exploit the poten-
tial large scale parallel computation capacity. Implementing the parallelism and other features of 
P system is a set of formidable undertakings requiring delicate thoughts and excellent hardware. 
In the light of the thought that implements the parallel algorithm on a parallel computing device, 
filter out suitable apparatuses from the voluminous categories of hardware is one of the essential 
assignment. In short terms, we need parallel hardware architectures to execute P systems. From 
another perspective, if we do not select particular hardware at first, the pre-designed implement-
ing strategies are groundless, for the correspondences between ideas and hardware components 
are unknown. FPGAs, CUDA-enabled GPUs and microprocessors are chose to implementing 
variants of P systems.

B.1 FPGA hardware

For the implementation of membrane computing models in hardware, the particular diffi-
culties do not only lie in the realization of maximal parallelism and non-determinism (which are 
mainly two attributes derived from the inherent nature of biological cells that inspired P systems), 
but also come from the fact that there exists a big number of variations of the basic model of P 
systems having quite distinct characteristics [54]. This poses a great challenge for the conception 
of a general computational architecture to implement these various models. With the advent of 
reconfigurable hardware the elaboration of different types of computational models on the same 
reprogrammable devices is no longer an impossible assignment. The field-programmable gate 
arrays (abbreviated as FPGAz hereinafter) is a reconfigurable h ardware a llowing t o prototype 
digital circuits. This property makes it a unique alternative for the implementation of membrane 
computing. The framework of membrane computing constructed on FPGA basis can be a truly 
parallel computing platform different from the sequential one, which just simulates the paral-
lelism, without really implementing it. The modification of circuits for FPGAs is performed by 
altering the codes defining the circuits using a hardware description language. Figure 1 shows the 
internal structure of an FPGA.

The CLBs work as containers for slice-organized logic cells for the rapid increasing densities 
of logical cells. Basically, the logic cells consist of look-up tables (LUTs) and flip-flops (FFs). The 
LUT is used for realizing various combinatorial circuits such as basic gates, decoders, encoders 
and multiplexers. The FF is the sequential logic component acting as a storage element for the 
circuit. In fact, what can be reconfigured is not the CLBs but the interconnects. As result, CLBs 
just like stationary islands stand in the undulant interconnect sea. FPGA interconnect technology 
consists of switch boxes that route signals between various logic blocks of it. Present-day FPGAs 
are based on one of the following interconnect technologies: static RAM, flash memory or anti-
fuse. The first one dominates the current FPGAs. Figure 2  i llustrates the schematic diagram of 
a logic cell and a slice. With the re-programmability, FPGAs comply with the model-oriented 
hardware implementation quite well. The parallelism, non-determinism and other features can be 
realized on FPGAs by the particularly designed circuits.



Programmable interconnect

Programmable logic blocks

Fig. 1: A FPGA’s internal fabric. The structural feature of a FPGA is that the config-
urable logic blocks (CLB) are inlaid in the matrix of interconnects. In this type, the
each CLB contains four slices, each of which includes 2 logic cells [42].

(a) A simplified view of a logic cell (b) A slice containing two logic cells

Fig. 2: The schematic diagram of a logic cell and a slice from [42].



B.2 CUDA-enabled GPU hardware

The multiple computing cores solution is introduced from the mainframe computer field to
improve the clock speed. Nowadays, it is hard to find a PC equipped with only one CPU. On the
other side, the component integration scale of some High-end GPUs has outpaced the CPUs for
the booming demand of graphics processing (advanced rendering and 3D vision) [30]. Currently,
the GPU is a computing element as powerful as the CPU. Different from FPGAs, there are man-
ufactured parallel architectures in GPUs. The advantage is that developers should just concern
about the efficient utilization of these architectures and the drawback is that these frameworks are
un-reconfigurable.

Nevertheless, the GPU is not a general processing unit which can handle other computing as-
signments except for graphics processing. The predicament has changed for the arise of compute
unified device architecture, known as CUDA, from the leading chip vendor-NVIDIA corporation.
CUDA is a technology that enables general-purpose computing on graphics processing units
(GPGPU). Usually, when referring to CUDA, what referred is not the parallel computing frame-
work but a GPU supporting CUDA. A CUDA-enabled graphics processing unit is an universal
parallel computing device which is suitable for the implementing of parallel algorithm models.
The parallel computing behavior of CUDA is based on the execution of multiple compute kernels
on the GPU. These compute kernels are without physical construction, but based on an abstract
parallel programming model. In other words, CUDA does not alter the physical structure of GPU.
CUDA programming model is based on heterogeneous computing [30], where the CPU (host) is
the master node that controls the execution flow and launches kernels on the GPU (device) when
massive parallelism is required (see Figure 3). A kernel is executed by a grid of (thousands of)
threads. The grid is a two-level hierarchy, where threads are arranged into thread blocks of equal
size. Each block and each thread is unequivocally identified by an identifier. In this way, threads
and blocks can be distributed easily to different portions of data, or to compute different instruc-
tions. The execution of threads inside a block can be synchronized by barrier operations, and
threads of different blocks can be synchronized only by finishing the execution of the kernel.

The memory hierarchy is explicitly managed (see Figure 3). Although current GPUs contain
cache memories, in order to accelerate memory accesses, best performance is achieved when do-
ing it manually. A GPU basically contains a global memory, which is the largest but the slowest
memory in the system, and shared memory, which is the smallest but fastest memory [30]. Global
memory is accessed by all threads launched in all grids, and also by the host, but shared mem-
ory is only accessible by threads in a block. Threads also have fast access to its own registers
for single variables, and local memory (which is normally outsourced to global memory). Ac-
cesses to memory has to be carefully programmed, so that contiguous portion of data are read by
consecutive threads (coalesced access), since this increases the memory bandwidth utilization.

Nowadays,the architecture of GPUs is upgraded to Streaming Multiprocessors (SMs) which
are composed of an array of Streaming Processors (SPs), working as computing cores. A thread
set consists of 32 threads named warp is the basic unit which a SM fulfills its executions. A
SM can manage multiple warps which are based on Single-Instruction Multiple-Thread (SIMT)
model in effect. Each thread in a warp should commence its processing at the identical program
address concurrently, although after beginning, threads can execute independently abiding by a
sequential manner. The parallelism of CUDA is terminated when a warp branches or the memory
stalls [38]. The SM framework and its warp flow is shown in figure 4.

B.3 Other hardware

Custom application specific integrated circuits (ASIC) can also be employed to implement
P systems. Some researches investigated simulating certain P systems on micro-processors [27].



Fig. 3: (left) CUDA execution model, (right) CUDA memory model. From [1].

Fig. 4: A SM is composed of an array of SPs, shared memory and a couple of caches.
A MT issue module contains a SM instruction scheduler which conducts instruction
flows.



Although the performances of micro-processors are low, they are economical alternatives suitable
for the developing of prototypes and verifying the design methods. However, as stated, membrane
computing model is a sort of machine-oriented model for the various types. The flexibility of the
hardware platform constructed on ASIC is quite insufficient to adapt to the different variants of P
system. However, such attempts are still interesting as they allow to simulate features of P system
on some tailored circuits with different interesting properties, like low power consumption.

C The model of P systems

We assume that the reader is familiar with basic notions of formal language theory and mem-
brane computing; for further details consult [53] and [56].

For a finite multiset of symbols M over an alphabet V , supp(M) denotes the set of symbols
in M (the support of M ) and |M | denotes its size, i.e., the total number of its symbols. By |M |x,
the number of occurrences of symbol x in M is denoted. By V ◦ we denote the set of all finite
multisets over V .

Throughout the paper, every finite multiset M is given as a string w, where M and w have
the same number of occurrences of symbol a, for each a ∈ V .

C.1 Network of Cells
To give a more precise description of the semantics of a P system, the following notions

(functions) were defined:

– Applicable(Π, C, δ) – the set of multisets of rules of Π applicable to the configuration C,
according to some derivation mode δ.

– Apply(Π, C, R) – the configuration obtained by the (usually parallel) application of the
multiset of rules R to the configuration C.

– Halt(Π, C, δ) – a predicate that yields true if C is a halting configuration of the system Π
using the derivation mode δ.

– Result(Π, C) – a function giving the result of the computation of the P system Π when
the halting configuration C has been reached. Usually, this is an integer function. However,
generalizations as for example, Boolean or vector functions can also be considered.

We note that δ, above, differs from the dissolution symbol used in some P system models.
The precise interpretation of the four notions (functions) above depends on the chosen model

of P systems. The goal of works [22,23,65] was to provide a concrete family of P systems based
on the structure of network of cells together with a series of definitions of the functions above.
The obtained model as well as the accompanying tools and methods together are called the formal
framework of P systems. It has the property that most of the existing models of P systems could
be obtained by a strong bi-simulation of a restricted version (eventually, using a simple encoding)
of this formal framework with respect to different parameters, see [66] for some examples.

We would also like to note that based on the formal framework it is possible to reduce the
structure of any P system to one membrane. The corresponding process is called flattening and it
is described in more details in [21, 23].

Below, we provide a summarized version of the definition of a network of cells, the class
containing all networks of cells forming the structure of the formal framework. The definitions
are based on those given in [23]. This version considers only static P systems where the membrane
structure does not change under the computation (this also includes systems with the dissolution
of membranes). We note that in [22], an extension of the formal framework to P systems with
dynamically evolving structure is proposed. We remark that in the case of static structures both
variants coincide, although the notation is slightly different.



Definition 1 ( [23]). A network of cells of degree n ≥ 1 is a construct
Π = (n, V, w, Inf,R)

where

1. n is the number of cells;
2. V is an alphabet;
3. w = (w1, . . . , wn) where wi ∈ V ◦, for all 1 ≤ i ≤ n, is the finite multiset initially

associated to cell i;
4. Inf = (Inf1, . . . , Infn) where Infi ⊆ V , for all 1 ≤ i ≤ n, is the set of symbols

occurring infinitely often in cell i (in most of the cases, only one cell, called the environment,
will contain symbols occurring with infinite multiplicity);

5. R is a finite set of rules of the form
(X → Y ;P,Q)

where X = (x1, . . . , xn), Y = (y1, . . . , yn), xi, yi ∈ V ◦, 1 ≤ i ≤ n, are vectors of
multisets over V and P = (p1, . . . , pn), Q = (q1, . . . , qn), pi, qi, 1 ≤ i ≤ n are finite sets
of multisets over V . We will also use the notation

(1, x1) . . . (n, xn)→ (1, y1) . . . (n, yn) ; [(1, p1) . . . (1, pn)]; [(1, q1) . . . (n, qn)]

for a rule (X → Y ;P,Q); moreover, if some pi or qi is an empty set or some xi or yi is
equal to the empty multiset, 1 ≤ i ≤ n, then we may omit it from the specification of the
rule.

The semantics of the above rule is as follows: objects xi from cells i are rewritten into objects
yj in cells j, 1 ≤ i, j ≤ n, if every cell k, 1 ≤ k ≤ n, contains all multisets from pk and does
not contain any multiset from qk. In other words, the first part of the rule specifies the rewriting
of symbols, the second part of the rule specifies permitting conditions and the third part of the
rule specifies the forbidding conditions.

For a rule r of the form above, the set
{i | xi 6= λ or yi 6= λ or pi 6= ∅ or qi 6= ∅}

induces a (hypergraph) relation between the interacting cells. However, this relation does not need
to give rise to a structure relation like a tree as in P systems or a graph as in tissue P systems.

A configurationC ofΠ is an n-tuple of multisets over V (u1, . . . , un) satisfying ui∩Infi =
∅, 1 ≤ i ≤ n.

P systems work with transitions between configurations; a finite sequence of such transitions
of a P system Π starting with the initial configuration and ending in some final configuration is
called a computation. The final configuration is usually given by halting.

The transition of a P system Π according to the derivation mode δ (usually, the maximally
parallel derivation mode) is defined as follows: the system changes from a configuration C to C′
(written as C ⇒ C′) iff

C′ = Apply(Π, C, R), for some R ∈ Applicable(Π, C, δ)
The result of the computation of a P system is usually interpreted as the union of the results

of all possible computations.

D Simulation of P systems using hardware

When one speaks about the hardware implementation of membrane computing, how to char-
acterize the membrane structures in hardware circuits is the most concerned issue, followed by
the representation of contents included in membranes: multisets of objects and evolution rules.
The implementation of parallelism, non-determinism and other attributes of P systems is realized
on the basis of the hardware characterization of membrane structures and their substances.



D.1 The Characterization of Membrane structures

Indeed, there are no compartments in silicon integrated circuits which can be used as mem-
branes, let alone the specific functions on account of the arising of membranes, for instance, the
traversing membrane behaviors of objects. Nevertheless, according to [52], membrane is just an
idealized concept without internal structures analogous to biological ones. The main functional-
ity of membranes are working as boundaries and the delimited space caused by the presence of
membranes makes P systems as distributed computing models. The spatial placement and size
of membrane is not important, except the inter-relationship among them. In view of this fact, the
representation of three-dimension arrangement of vesicles for membranes can be transformed to
two-dimension Venn diagram expression. This flattening process is favorable for understanding
the essential function of membranes in the sense of hardware implementation.The breaking point
of the conundrum is the one-to-one correspondence between membrane and its enclosed region,
which contains multiset of objects and evolution rules. Then an injective correspondence between
membrane and its contents can be established, which is used in the hardware implementation to
represent the whole cellular construction. Speak straightforwardly, the membrane structure is
transformed to its substances distributed in the hardware which implements the P system. From
the theoretical point of view, any membrane structure can be reduced (flattened) to just a single
membrane, see [21, 23] for more details.

D.2 The Presentation of Multisets of Objects

After transforming the membrane structure into a matter that stands a chance to implement
it on a hardware, there are two problems to deal with for the representation of the multisets of
objects in a region: the distinct symbols from the alphabet representing object types and its corre-
sponding multiplicities. The strategies adopted for the two problems are storing the multiplicities
in different registers of hardware device. Specifically, an array of registers is employed to store
each of the multiplicity value which is a positive integer in a position of the array and the different
locations of registers denote distinct symbols naturally [50]. In view of possible objects traversal
in future evolutions between regions, the number of registers of each array should equal to the
number of object types in the P system. In consequence, the multiplicities of some objects are
zeros in initial configuration and the corresponding array is sparse.

D.3 The Presentation of Evolution Rules

The multisets of objects serve as the reactants for evolution rules inside membranes. The
consequence of applying a rule is reflected by the alteration of multiplicities of objects in associ-
ated regions. From an intuitive point of view, a rule can be represented by storing the two sides
in registers separately [50]. Once the rule is applied according to its instance number, arithmeti-
cal operations of plus and minus commence to increase and decrease multiplicities of relevant
objects in relevant registers.

Rules remain unchanging along with the whole evolving process of configurations until to the
halt condition. Take into consideration that rules are incorporated in regions, to some extent, the
function of rules can be regarded internalized to the regions, i.e., the explicit expression of rules
is the interpretation of the effect of regions. In light of the conceived idea towards the relation of
rules and regions, mapping a processing unit which conducts the execution of a set of rules to each
region [44] is a viable thought. From analogous perspective, mapping a processing unit to each
rule [47] so that the modification of multiplicities can be committed by rules straightforwardly
is also viable. Under this circumstance, the region is consolidated by rules enclosed. The two



fundamental principles are exactly utilized to develop the hardware pattern to execute P systems.
In particular, the two principles motivate the region-based simulation and rule-based simulation
approach, which will be formulated below.

D.4 The Analysis of Parallelism and Non-determinism of P Systems

There are two parallelism meaning in P systems: the region-level parallelism which stems
from applying multiple rules concurrently and system-level parallelism which derives from the
parallel executing of region-level parallelism in all the regions [46]. The organization and ex-
ecution of applicable rules subject to certain parallel derivation mode, which brings about the
region-level parallelism, i.e., what applied is not a single rule but a multiset of rules in a given
region. This fact lead to the parallelism, which is implemented in hardware by synchronization
operations. Usually, several multisets of rules meet the applicability and derivation mode require-
ments. Each region should choose one multiset of rules to evolve configuration. Consequently, the
non-determinism emerges. In general, it is a multi-solution problem to combine rules in terms of
parallel derivation mode in every region to evolve the the configuration. To dispose of this prob-
lem, the living cells adopt non-determinism to select one multiset of rules from the alternatives.
Furthermore, choosing and applying the multiset of rules in every region non-deterministically
give rise to the non-deterministic evolving of configurations. The common strategy adopted for
implementing non-determinism is assigning each multiset of rules equi-probability. To articulate
the parallelism and non-determinism in P systems, a static P system whose membrane structure
does not change during the transition of configurations is introduced, shown in figure 4.
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Fig. 5: A Configuration of a static P System. The multiset of objects and evolution rules
contained in each region are illustrated. The right-hand side of each rule is not given
since it is not required for identifying its applicability.

One of the most used derivation modes is maximal parallelism mode, abbreviated as max.
Informally, consuming the ceiling number of objects is the goal of maximal application of rules,
which means that the combinations of applicable rules consume objects as many as possible, until
exhausting some kinds of objects, or the remaining objects are not enough for one more applying



of any rules. The sets of multisets of rules calculated in terms with max mode in each region of
the P system are shown in figure 5. object The application of rules is a course to consume objects.
This course can be abstracted as a object distribution problem which allocates objects to appli-
cable rules. Develop approaches to converge to all the feasible multisets of rules associated with
current configuration accurately and efficiently and utilize them non-deterministically to evolve
the system are the two core tasks. Specifically, in the context of parallel and non-deterministic
computing, it needs to be clear that the goal of the approach for the object distribution prob-
lem is to acquire a serial of sets composed of multisets of rules constructed coinciding with the
parallel derivation mode. Each such set corresponding to a region of the P system and a solu-
tion is the group of all the sets obtained in every region. We will illustrate the parallelism and
non-determinism systematically as follows.
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Fig. 6: The set of multisets of rules in each region. All the multisets of rules in a region
corresponding to a regional solution, a single multiset of rules in a region denotes a
regional feasible multiset. All regional solutions comprise the complete solution, and
the set of selected regional feasible solutions from each region comprise the dynamic
solution.

Consider the following example depicted on Figure 6. In region 1 the multiset of rules is of
form rα11r

β
12r

γ
13r

δ
14, where α ∈ [0, 2], β ∈ [0, 2], γ ∈ [0, 4], δ ∈ [0, 3]. Of course, all the indexes

are integers in their range. The upper boundary is calculated without taking in consideration
other rules, according to max mode. The combination space of the four rules is composed of
180 (C1

3C
1
3C

1
5C

1
4 ) compositions (zero rule is regarded as a composition). However, the set of

multisets of rules depicted in figure 6 shows that only 11 combinations [45] are valid for the object
distribution problem. There seem to be dependencies between a selected rule and its predecessors
that influence the subsequent rules’ composition. It can be assumed that the dependency and the
ceiling number of instance stem from the limited quantity and variety of objects.

We would like to remark that it is not necessary to compute the set of multisets of (maximally
parallel) applicable rules. It is sufficient to obtain one of them, according to some hypotheses,
e.g. of equiprobable distribution. Next, the corresponding multiset is applied and the process is
repeated for the new configuration. Hence, it is important to clearly define the notion of the solu-



tion to ODP. The set of multisets of applicable rules in each region is called a regional solution,
while a single multiset of rules from the aforementioned set is referred as a regional feasible
multiset. The collection of regional solution in all regions is defined as complete solution. For
the evolution purposes, from each region a random feasible solution is selected. The entire of
the selected regional feasible solutions is called the dynamic solution. If the considered P system
is represented from the multiset rewriting system with only one skin membrane, the complete
solution and dynamic solution degenerate to the regional solution and a regional feasible multiset
respectively.

It is worthwhile to note that the complete solution consists in the outset of a particular config-
uration. Once a dynamic solution executes, the configuration evolves and a new complete solution
is computed. Do we have to compute the complete solution? The answer is negative considering
the Pyrrhic is not worth the loss for calculating the complete solution with respect to the time
and hardware resource consuming. Whereas, it needs to be emphasized here that although a dy-
namic solution is computed to evolve the system, it dose not imply that the complete solution
should be refused to take into consideration. This statement is on account of the fact that the
non-determinism will decline if the feasible solutions always belong to the same proper subset
of complete solution. From a intuitive perspective, this reduction of non-determinism is non-
positive. We need calculate the dynamic solution with minimal effort while do not impair the
degree of non-determinism.

An efficient way to compute and represent the dynamic solution from the complete solution
(denoted as Applicable(Π,C, δ) in [54]) is required. The difficulty of the problem is not only to
compute the complete solution, but also to ensure that it is non-deterministically chosen among
all feasible solutions. The common practice is to assign the same probability to each feasible
solution. In most of the cases investigated in the literature, this aspect is neglected and it is not
possible to affirm that this property holds. The Direct Non-deterministic Distribution (DND) al-
gorithm introduced in [45] tries to take this aspect into account, although without giving a formal
proof. In [54,67] a truly non-deterministic evolution is implemented, however the corresponding
implementation is limited to some particular derivation modes.

Indirect approaches As in [45] we will classify different algorithms for the multiset of rules
to be applied in direct and indirect ones. In the direct approach, the corresponding multiset is di-
rectly constructed by the algorithm. The indirect approaches are based on the observation that the
solution number is finite, because the solution space is bounded by the size of the configuration.
Hence, an heuristic or brute-force approach can be used to explore this bounded space. However,
since it is an overestimation, there might be visited elements that are not valid solutions. Hence,
the algorithms are iterative and explore the whole space until a valid solution is encountered.
Sometimes it is not easy to classify an algorithm in one of these categories. We will classify an
algorithm as a direct approach if its main goal is to construct a valid multiset of rules, otherwise,
if the algorithm is exploring different combinations until it reaches a valid one, it will be classified
as indirect.

Generally, the enumeration of all possible solutions and their verification one by one until a
correct solution is obtained is the simplest method for the indirect approach [20]. Before the first
correct solution is obtained, some invalid solutions should be rejected. This approach is called
indirect straightforward approach [45]. Taking into account that it is not viable to enumerate all
possible solutions for many problems, the feasibility of the approach is low. However, the perfor-
mance of the algorithm suggests its use as to compute the floor values for the object distribution
problem.

Another indirect approach discussed in [45, 47] called indirect incremental approach inves-
tigates a strategy generating possible solutions in rounds. This course can be detailed as follows.



All the applicable rules verified in accordance with the multiset of objects in a region are laid in a
pool [35]. The maximal instance of each rule is calculated as well. In the first round, the instance
number of a rule selected randomly is assigned a random value which contained in its range.
After that the multiplicity of objects in the configuration is updated accordingly to the number of
instances of the rule. Then another rule from the rest of rules is randomly picked out randomly
and assigned a random number in its range, consuming the amount of objects accordingly and
updating multiplicity value. This process is repeated until the last rule is reached. The number
assigned to each rule’s instance value is preserved until this rule is no longer considered. In the
second round, the number of instances of every randomly selected rule is increased by a random
amount, but keeping the number of rule instances below the maximally possible amount. When
the number of rule instances cannot be increased anymore, it is removed from the pool. The whole
process is repeated until the pool is empty. At each round the current multiset of rules is checked
if it represents a solution. This allows to stop the process in advance. Clearly, the described algo-
rithm allows to compute a random solution, however with an unclear distribution. Also, it is not
possible to use this algorithm to compute all possible solutions as the number of instances of a
rule can only increase.

Earlier variants of the indirect approach used to increment the multiplicity of one randomly
chosen rule at a time [17], but this proved to be time consuming. Another attempts based on a
similar idea but with different rule elimination strategies were done in [18, 26, 29, 58, 62, 63].

Direct approaches In contrast to indirect approaches, the direct approach fabricates a solu-
tion straightforwardly rather than identifying a number of possible solutions before a solution is
confirmed.

In the direct straightforward approach, all the solutions to the object distribution problem
are given as input, and one of these solutions is simply selected at random. While in [45] is
argued that such approach is infeasible for an arbitrary configuration and rule types, it can still
be applied in a big number of cases. As shown in [54,67], if at each step the number of solutions
can be expressed as a the number of words of some length in a regular language, then it becomes
possible to compute the solution only based on its number (in a way similar to the representation
of a number in the combinatorial number system). In [67] it is shown that the corresponding
class of P systems is quite large and also that this method is particularly interesting for bounded
derivation modes like the set-maximal derivation mode (called also flat mode) where the rules are
chosen in a set-maximal way (instead of the multiset maximal way).

Another variant of the direct approach is the Direct Non-deterministic Distribution algorithm
(DND) proposed in [45]. A similar algorithm can also be found in [57]. This algorithm works in
2 phases. At the first phase all rules (initially randomly shuffled) except one are selected to be
applied a random number of times between 0 and its maximal applicability value. In the second
phase, all the rules beginning by the one excluded of the previous phase are applied to its maximal
applicability benchmark in the converse order.

The DND algorithm was never implemented in FPGA hardware. However, a variant of it
became popular in the simulation of Population Dynamics P (PDP) systems, named DND-P [41].
In CUDA-based development, the evolution of the DND-P algorithm, DCBA [40], was employed
for the engine of the PDP system simulator [39].

One of the difficulties of the above approaches is the handling of the non-determinism. From
the formal point of view, the non-determinism corresponds to a random equiprobable choice of
an element from the set of all applicable multisets of rules (Applicable(Π,C, δ)). In the case of
indirect approaches, due to the iterative nature of the algorithms, it is not easy to argue that each
possibility has the same probability to occur. We would state that solutions containing a smaller
number of different rules have a higher chance to be selected.



In the case of DND algorithm and related variants, it looks like the obtained solution tends
to be an equiprobable choice. However, the corresponding articles do not give such a proof and
there are some unclear points, which do not allow us to affirm this fact.

Up to now, the only algorithm that is performing a truly non-deterministic choice is the one
described in [54, 67]. We recall that it is a direct approach – for any configuration the cardinality
of Applicable(Π,C, δ) can be computed in constant time and then a random number between
1 and this cardinality is uniformly selected and the corresponding solution is decoded from this
number. We also remark that this algorithm was implemented in FPGA hardware and yielded a
very good performance.

E Reduction to Diophantine Equations and Integer Linear
Programming

In this section we show the reduction of the problem of the computation of an element from
Applicable(Π,C,max) to the problem of solving a system of Diophantine equations or to inte-
ger linear programming (ILP).

We start with the remark that several attempts were done to express the maximally parallel
choice of rules using Diophantine equations or ILP. In [2, 55] a simple variant of ILP was used
(corresponding to the equations (1a) below and variable sum as maximization function). How-
ever, in this case only maximally parallel rulesets having a maximal number of rules are obtained.
In terms of the formal framework [23] this corresponds to maxrulesmax derivation mode. An-
other attempt using ILP was done in [12, 13] where the objective function is a weighted sum (by
the number of objects in the left-hand-side). Such ILP problem finds only maximally parallel
solutions involving the maximal number of objects, corresponding to maxobjectsmax mode in
terms of the formal framework.

In [45] the set of maximally parallel multisets of rules is expressed as solutions of a system
of Diophantine equations (roughly equations (1a) from below) with an additional constraint to be
satisfied on a solution, expressed as another system of Diophantine equations. Finally, in [5] the
set of maximally parallel multisets of rules can be expressed as solutions to a system of equations
defining some Diophantine sets. While the construction is similar to the one we give below, it
is not trivial to manipulate Diophantine sets and it is not clear how to express the constraints
as a single system of equations. Below, we show how to handle this problem by using same
construction as for handling multiple "either-or"constraints in ILP.

For simplicity, we consider that Π has only one membrane (and no environment). If this is
not the case, we can apply the flattening procedure reducing it to one membrane [21, 23]. So,
Π = (O,w1, R).

Let R = {r1, . . . , rm} and O = {a1, . . . , an}. Consider that ri : ui → vi, 1 ≤ i ≤ m.
Let C be the current configuration and let Ca = |C|a, a ∈ O. Consider a value M ∈ N that is
sufficiently big.

We will construct a system of inequalities whose integer solutions will be maximally parallel
multisets of rules for the configuration C. For a solution, the set of variables xi, 1 ≤ i ≤
m indicate the cardinality of corresponding rules in some maximally parallel multiset M ∈
Applicable(Π,C,max).



m∑
i=1

|ui|axi ≤ Ca, ∀a ∈ O, (1a)

m∑
i=1

|ui|axi + |uk|a +Mzka ≥ Ca + 1, 1 ≤ k ≤ m,a ∈ O, |uk|a > 0, (1b)∑
a∈O

zia = Ni − 1, 1 ≤ i ≤ m, Ni =
∑
a∈O

sgn(zia) (1c)

xi ∈ N, 1 ≤ i ≤ m, (1d)

zia ∈ {0, 1}, 1 ≤ i ≤ m, a ∈ O. (1e)
Inequalities (1a) state that the sum of all consumed objects is included in C. Technically, for

each object a ∈ O it is verified that the weighted sum (by the number of symbols a in the lhs) of
rule cardinalities is smaller or equal than the number of objects a in C.

Inequalities (1b) state the maximality property of the rule set defined by x1, . . . , xm. It veri-
fies that for each rule there exist at least one object whose remaining quantity is not sufficient to
apply this rule. They are based on multiple "either-or" constraints representation in ILP. The big
value of M and the inequalities (1c) ensure that only one constraint from (1b) will be considered
(the other ones will be satisfied because of M ).

Hence, any solution x1, . . . , xm satisfying the system of inequalities (1) corresponds to a
maximally parallel rule setM = rx11 . . . rxmm applicable to configuration C. From the construc-
tion given above, it immediately follows that system (1) is Diophantine.

Example 1. Consider the system Π = (O,w1, R), with O = {a, b, c} and R = {r1 : abc →
ab; r2 : a → bb; r3 : b → cb}. Consider the configuration C = a2b3c2. Then, we construct an
ILP according to the rules above (we recall that M is a big integer number):

Derived from (1a):
x1 + x2 ≤ 2

x1 + x3 ≤ 3

x1 ≤ 2

Derived from (1b) for r1:
x1 + x2 + 1 +Mz1a ≥ 3

x1 + x3 + 1 +Mz1b ≥ 4

x1 + 1 +Mz1c ≥ 3

Derived from (1c) for r1:
z1a + z1b + z1c = 2

Derived from (1b) for r3:
x1 + x2 + 1 ≥ 3

Derived from (1b) for r3:
x1 + x3 + 1 ≥ 4

It is not difficult to see that this system has 3 solutions: (2, 0, 1), (1, 1, 2) and (0, 2, 3), cor-
responding to multisets of rules r21r3, r1r2r23 and r22r33 , which are exactly the maximal multisets
of rules applicable to C.

We remark that all solutions of (1) might be tedious to obtain. For the simulation purposes,
only one such solution is necessary. Hence, in the literature, there are several algorithms that
describe how to construct a single solution having certain properties. We will discuss below the



DND algorithm introduced in [45] for the FPGA simulations and further considered for CUDA
hardware.

Another interesting possibility is to consider the inequalities (1) as constraints in an ILP. This
allows for faster solving algorithms, however it is important to specify the objective function
that will chose one of the solutions. For example, using maxx1 as objective function with the
constraints from Example 1, would yield the solution (2, 0, 1). By using min(x1 + x2 + x3− 5)
as the objective function, the solution (0, 2, 3) is obtained (the above constraint allows to consider
only multisets of rules of size 5).

It is remarked that the algorithm from [67] uses a different approach. It supposes that for a P
system Π working in the derivation mode δ there exists a function NBV ariants(Π,C, δ) that
for any configuration C gives the number of solutions of (1). Next, it also supposes that there
exists a function V ariant(Π,C, δ, n) that for each integer n (up to the corresponding value)
yields the corresponding solution (the used method is similar to the decoding of a number in the
combinatorial number system).

We explain briefly the functioning of the DND algorithm in the view of equations (1). First
a random rule permutation is computed. Next, during the forward step a random value (bounded
by the number of possible applications) for the number of each rule applications is taken. This
corresponds to finding the values of xi, satisfying the constraints (1a). Finally, during the back-
ward step, the frequency of each rule is increased until it cannot be applied anymore. This step
corresponds to the validation of inequalities (1b). The computation of the random permutation
and of the initial random rule frequency can be written in the form of an objective function. The
first property corresponds to a probabilistic choice of the carefully chosen weights of the sum of
all variables xi to be placed in the objective function, while the second one gives constraints on
the number of objects to be placed. However, it turns out that it is quite tedious to specify the
corresponding objective function, which requires carefully assign the weights to the variables (by
solving an additional system of equations).

F An Overview of Existing FPGA Simulations

With the advent of reconfigurable hardware which realizes the idea of modifying the hard-
ware circuits by programming, conceiving a novel circuit simulating an innovative processing
paradigm is no longer a exceedingly hard task. The first attempts to use FPGA reconfigurable
hardware to simulate P systems date back to 2003 [50]. Since then two simulation approaches
emerged, considering the region or the rules as basic processing units.

F.1 Region-based Simulations

In the region-based simulation approach rules and objects from different membranes are
physically located in different places of the circuit, while those from the same membrane are
physically close and well connected. The biggest problem is to ensure the correct communication
of objects between membranes as this requires a global level synchronization. As advantage, the
obtained system is highly scalable and robust. Below, we give two examples of region-based
simulations.

As the two primary features of intuitive conceptual understanding of a P system, membranes
and regions partitioned by membranes are not directly implemented as hardware circuit modules.
The rule-oriented implementation approach explicitly represent the evolution rules as processing
units and multisets of objects as register arrays, while implicitly represent membranes and regions
as logical constructions existing between those processing units and data structures. The absence



of membranes impairs the understandability according to the intuitive conceptual understanding
of a P system and the membrane-mediated behaviors cannot be taken into consideration. The
motivation for transforming the rule-oriented design to the region-oriented way is focus on pro-
viding a framework to incorporate important intuitive features such as cell-to-cell connections and
membrane-mediated rules so as to heighten the extensibility of the hardware platform. Another
intention of region-oriented approach is to distribute computational activities in P systems. This
distribution fits the comprehension of intuitive concept of a P system and can vary the amount of
hardware resource with the size of the P system to be implemented. The region-oriented approach
contributes to constitute larger systems with different scales of P systems.

Petreska and Teuscher simulation [50] As the spearhead of simulating membrane comput-
ing on FPGA, some groundbreaking matters had been devised by Petreska and Teuscher, for in-
stance, trading communication for membrane containment relations, taking the priorities of rules
into account, proposing the first attempt to simulate membrane creation and dissolving mecha-
nism in integrated circuit, etc. Their outstanding achievement inspired the successors to engage
in this challenging and breathtaking field to advance the development of hardware simulation of
P systems. For the sake precision the general model of a P system is modified in two aspects:
the application of evolution rules in each membrane is not done in a maximally parallel but in a
sequential manner (still keeping a parallelism at the system level); the non-deterministic evolu-
tion of configuration is substituted by a definite transition following a predetermined order. This
corresponds to an ILP with the objective function as a weighted sum of variables with predefined
fixed weights.

In theory, membranes are borders without internal structures and material consistence. The
primary functionality of membranes is breaking new grounds for computations and their size and
their placement are not important. In this simulation, the membranes structures are replaced by
the enclosed substances, i.e., the multisets of objects, evolution rules and children membrane ar-
chitectures. The objects exchange among parent membranes and children membranes is a kind
of bi-directional traversing behavior, which is the sufficient and unnecessary conditions for the
membranes’ containment relationships. Namely, the existing of containment relation of mem-
branes does not always means that there are objects interchanges, not vice versa. The widely
existing of bi-directional transfer for objects are handled as communications. In case of the pos-
sible objects exchange invoked in after steps, the communications realized by data bus connect-
ing to different parts of hardware are prearranged in all containment cases. The interconnections
are in direct proportion to children membranes. To avoid the multiple buses used to connect
the upper-immediate membrane to its plural lower-immediate membranes, a bus links all the
children membranes before it connects to the upper-immediate membrane. The communication
only presents between upper-immediate membrane and upper-immediate membranes, its chil-
dren membranes. There are no objects exchange among children membranes or non-immediate
contained membranes. In general, a membrane of P system corresponding to an area of integrated
circuits storing objects specifying multisets of objects and sets of rules. The containment relation
of immediate-include membranes is substituted by a bus connecting them.

The representation of the multisets of objects is implemented by using registers. Different
registers just preserve different multiplicities of objects. A register does not store the objects but
only the vector of numbers indicating the multiplicity of each object. The order of these registers
is in accordance with the lexicographic order of the alphabet of objects. The recognizing of an
object is indirectly realized by examining the position of the register storing the multiplicity of
this object. An evolution rule defined here is in the form of u→ v(v1, ini)(v2, out), where v1 is
the string to be sent into lower-immediate membrane labeled i, v2 will be sent to upper-immediate
membrane. The treatment employed to deal with the formulation of evolution rules is storing the



rules’ left-hand side and right-hand side into different registers separately. The fact that rules are
not the processing unit or something like that makes the simulation becoming a region-based
implementation. A particular module is designed to determine whether a rule is applicable. This
module compares the left-hand side of a rule u with the multiset of objects w present in the current
membrane. If and only if u ≤ w, this rule is applicable and this module will generate a signal
Applicable = 1. Input all the Applicable signals to an OR gate, the result of this logical gate
can used as a monitor to identify whether the evolution reaches halt configuration.

The transition of configurations of P system is realized deterministically and concurrently,
which is different to the general model. The consecutive transformation of configurations is
regarded as the evolution process. This evolution process is decomposed into micro-steps and
macro-steps. The application of rules enclosed by membranes is performed in terms of a prede-
fined sequential order. This deterministic execution of rules is conducted in micro-steps sequen-
tially. If a selected rule is applicable, the left-hand side of the rule u will be removed. Then the
right-hand sides v, v1 and v2 is stored in corresponding registers. The objects from the upper im-
mediate membrane will be preserved in another register. Although the micro-steps are carried out
deterministically, they are performed simultaneously in all membranes, until there are no appli-
cable rules. The micro-steps terminates when there are no applicable rules, i.e. the halt condition
is reached. All the registers are updated in line with associated rules in macro-steps.

The simulation considered and respected the priorities of applicable rules at the beginning
of each micro-step. By labeling the applicable rules with higher priorities and storing the cor-
responding labels, applicable rules are executed in accordance with their respective priorities.
Besides, two additional features of P system, the dissolution and creation of membranes, are sim-
ulated. When a rule with membrane dissolving function is applied, its contents are owned by
its upper immediate membrane, setting the membrane Enable signal of the relevant membrane
to “0”. However, the connections and registers defining the dissolved membrane still exist, for
the hardware reconfiguration will cause the reconstruction of buses that connect different regions
of the circuits. This scheme gives rise to a disadvantage that the hardware resources cannot be
released. The hardware implementation of creating new membranes is executed in the initializa-
tion process of the P system since all the information about new membrane is known from the
specification of the system. The created membranes are inactive until a membrane creating rules
invoke them.

Nguyen simulation [47] In this simulation, a parallel computing platform simulating mem-
brane computing based on FPGA named Reconfig-P is developed [43, 48]. Reconfig-P is fabri-
cated on the basis of the region-oriented idea that regions worked as the computational entities
communicating objects through message passing. The functionality of these regions is exhib-
ited by the set of evolution rules included. This transformation of the mentality is in line with
the intuitive conceptual understanding of a P system and the extensibility of the Reconfig-P is
enhanced. It can also simulate P systems in software to test and to verify the planned evolu-
tions configuration-by-configuration, then generates hardware circuits when needed. P Builder,
the software component of Reconfig-P, specifies the P system concerned in software, converts the
specification of P system written in Java to Handel-C source codes. Software simulation of the
circuits to be constructed in light of hardware source codes is supported by P Builder to test the
functionality of circuits before mapping the codes to hardware circuits.

The execution of a evolution step is divided into two phases: object assignment phase and
object production phase. The maximal instance of each rule in a region is determined in the
object assignment phase. The update of multiplicity of objects is accomplished in the object
production phase. The maximal instance of the rules with higher priorities is computed before the
rules with lower priorities. Note that the consumption of objects for rules with higher priorities



performed during the object assignment phase to save clock cycles. It is assumed that all rules
are assigned relative priorities. The priority status is interpreted as temporal order which the
region processing units should respect in the assignment phase. Specifically, region processing
units process rules in line with priorities (expressed as temporal order), rules with same priority
are executed concurrently. The temporal order is determined at compile-time. It should be noted
that the region-oriented hardware implementation is designed for the general case, there is no
derivation mode to restrict the evolution. What applied is just a rule not a multiset of applicable
rules. The rules are applied according to their priorities in rounds until no rules are applicable
(using the indirect iterative approach). Under this circumstance, the applicability of each rule is
non-stationary because of the existence of priorities. To avoid processing inapplicable rules, the
applicability status of each rule is checked at the outset of the assignment phase and immediate
after a applicable is applied to consume some objects.

The membrane traversing behavior of objects is the origin of communication between re-
gions. The update of multiplicity of objects caused by rules with and without traversing behavior
is completed in the object production phase. When different region processing units update the
multiplicity value of the same object at the same time a conflict occurs. To handle this conflict,
two solution strategies, the space-oriented strategy and the time-oriented strategy are proposed.
For the space-oriented strategy, the register storing the object causing the conflict is replicated to
the same number of parallel process so that the respective processing unit updates the value in
the assigned copy register. For the time-oriented strategy, time delays are interleaved among the
conflicting parallel processes so that the updating is performed in different time. In fact in the
rule-oriented design which will be detailed hereinafter, the solution for the conflict is basically
the same. The object production phase is completed in two clock cycles when the space-oriented
strategy is adopted. In the time-oriented strategy, considering the traversing behavior of objects,
the objects causing conflict are partitioned as internal objects and external objects. The internal
objects refer to the objects generated by the rules without traversing behaviors, while the external
objects refer to the opposite. The amount of interleaving inserted to the updating process caused
by the internal objects is conformed at compile-time. The interleaving caused by the receiving
of external objects is determined at run-time for the region processing units work independently.
They cannot aware of the future transferring of objects. An method involves the semaphores is
adopted to determine the appropriate number of interleaving during the run-time.

To avoid the disorder of two phases and execute operations in parallel, the synchroniza-
tion of object assignment phase is indispensable. This synchronization is implicitly achieved by
the communication of different region processing units on channels. To observe the evolution
transition-by-transition, a system coordination processing unit is designed to coordinate the pro-
cessing of region processing units. Each region processing unit gets connected to the system
coordination processing unit by specialized channels. When the system coordination processing
unit receives signals indicating the accomplishment of tasks from every region processing unit,
the configuration evolves to next one. It might also be noted that when a couple of processing
units are communicating with each other by passing objects, they cannot do any other jobs since
the communication channels work in a synchronous mode. In consequence, the communications
among different processing units must be arranged advance to prevent the deadlock caused by
the synchronous mode. In fact, the communication behaviors are executed in different parallel
branches to avoid the deadlock.

The extensibility of the region-oriented design is promoted on the basis of representing mem-
branes as processing units interact with two region processing units corresponding to inner and
outer regions. A composition of the three processing units can implement antiport rules. Partic-
ularly, the processing units stand for the inner and outer regions send objects to the membrane
processing unit. Once the membrane processing unit makes a pair according to the definition of
the antiport rule, it will send the coupled objects to the corresponding regions.



F.2 Rule-based simulations

Rule-based approaches consider evolution rules as processing units performing the update of
multiplicities and of the membrane structure.

Nguyen simulation [44] [46] Every rule in all regions of the P system is represented as a
processing unit synchronized by a global clock that implements the parallel processing. How-
ever, a processing unit does not correspond a concrete hardware component but corresponding to
a potential infinite while loop which includes codes related to the applying of the rules in Handel-
C code. The tags of information associated to execution and synchronization are contained in
processing units as well. Each rule processing unit in a region is linked to the array of registers
containing multisets of objects. The containment relationships can be described with the connec-
tions between processing units and arrays. Generally speaking, a rule processing unit in a region
is linked to the objects array that located in the same region with the rule processing unit. If there
are objects traversing rules which imply the containment, connecting the rule processing unit to
the object array to which the rule will send objects contained in different region. By this measure,
the containment is realized.

As the theoretical exhibition of parallelism, different rules can and must consume and pro-
duce the same kind of object simultaneously where necessary. However, for the hardware imple-
mentation, conflicts occur when different processing units in a same region alter the multiplicities
of the same objects at the same time. This fact prevents the realization of theoretical parallelism.
To handle this collision, the operation of executing a rule is split into preparation phase and up-
dating phase. In the preparation phase, each processing unit calculates the maximal number of
instance for a rule with a division operation that divides the multiplicity of each objects by the
number of corresponding object defined in left-hand side of a rule. A serial of quotients will ob-
tain. Apparently, the minimum of the quotients is the maximum number of instance of a rule in
terms of the Buckets Effect. In fact, the computations of maximal number of instances for rules
are performed in an order with respect to the relative priorities among rules. In detail, counting
the quantity of clock cycles consumed for computing the maximal instance number of rules with
higher priorities at first. After that, an number of delay statements that equivalent to the number
of clock cycles consumed previously are interposed above the statements for computing the max-
imum instance number of rules with lower priorities in the Handel-C codes. For rules with the
same priority, this calculation is executed in parallel.

In the updating phase, if the maximum number of instance of a certain rule is larger than zero,
then the rule is applicable. As stated before, when different processing units updates the same
multiplicity value of objects registers at the same time, the conflicts arise. In order to resolve the
conflict, P Builder construct a conflict matrix to detect the possibility of conflicts firstly. A row of
the matrix is a four-tuple (p, q, r, s) whose p stands for an object, q is a region of the P system, r
represents the set of rules gives rise to the generation or consumption of p in q, i.e. the set of rules
which conflicts. s is the conflict degree of (p, q), referring to the number of conflict rules included
in set r. P Builder prevents every processing unit from writing to the same register simultaneously
on the basis of the analyzing the conflict matrix. Likewise, the space-oriented strategy and the
time-oriented strategy are adopted to handle the conflict.

The synchronization is executed by three flags contained in the rule processing units. The
region-level parallelism means that applicable rules in a region can be executed in parallel and
system-level parallelism implies that performs the region-level parallelism concurrently. The sim-
ulation presented achieves region-level and system-level parallelism, while the non-determinism
and other features of membrane computing are left out.



Verlan and Quiros simulation [67] [54] From the most abstract point of view, a P sys-
tem can be regarded as a multiset rewriting system that objects and rules are contained by a
skin membrane. This abstraction is accomplished by encoding children membrane structures as
objects. The introduction of the notion multiset rewriting system can simplifies the membrane ar-
chitectures. As prevailed in membrane computing, the evolving of configuration is accomplished
by applying applicable rules simultaneously and non-deterministically. The successive transi-
tions of configurations define the computing process of P systems. Because there is only one
skin membrane, the solution collapses to complete solution and dynamic solution collapses to a
feasible solution. In this simulation, the complete solution defined in Section D.1 is in the form
of Applicable(Π,C, δ), where Π denotes the P system, C the configuration and δ indicates the
derivation mode.

The target model is a static P system whose structure does not change during the computation
process. Since the P system is regarded as multisets rewriting system with one skin membrane,
the static P system does not embody inner membranes. Namely, there is only one region. One
complete solution corresponds to one region under a certain configuration. The validity of a
complete solution persists during the “life time” of one configuration, once a randomly selected
solution is applied to evolve the present configuration to next one, the former complete solution
is no longer in force and the new complete solution generated implicitly. As remarked above,
computing the complete solution should be avoided. An elegant strategy was elaborated in order
not to compute the complete solution, i.e.Applicable(Π,C, δ) but the cardinality of its elements.
Then a random value between 1 and this cardinality is taken. Finally, this number is decoded to
the corresponding solution.

Devising an algorithm which carries out the computation of the cardinality and of the spe-
cific element of the complete solution in constant time on FPGA is the key issue of the approach.
A remarkable characteristic of FPGA is that if the time consumed for executions of functions
that do not exceed the cycle of the global clock is done in one cycle of FPGA, hence in con-
stant time. The computation of the cardinality and of the feasible solution is accomplished by
two functions hardwired into the circuit: NBV ariants(Π,C, δ), which gives the number of
solutions for the configuration C and V ariant(n,Π,C, δ), which returns the n-th element of
Applicable(Π,C, δ).

A concept named rules’ dependency graph is introduced to compute the two functions above.
The picture below depicts the rules’ dependency graph for rules r1 : ab → u and r2 : bc → v.
Assume that the derivation mode is maximal parallelism (max).

r1 r2

a b c

Suppose thatNa, Nb andNc represent the number of objects a, b and c inC. LetN1 = min(Na, Nb),
N2 = min(Nb, Nc), N = min(N1, N2), ki = Ni 	N ,1 ≤ i ≤ 2, where 	 denotes the pos-
itive subtraction. Let also p, q = 0, 1, 2, . . . , N . From the dependency graph we cn deduce the
following:

Applicable(Π,C,max) =
⋃

p+q=N

{
rp+k11 rq+k22

}
NBV ariants(Π,C,max) = N + 1

V ariant(n,Π,C,max) = rN−n+1+k1
1 rn−1+k2

2 .

To verify the conclusion, Consider a configuration where Na = 5, Nb = 5 and Nc = 3. It can
be easily verified that N1 = min(5, 5) = 5, N2 = min(5, 3) = 3, N = min(5, 3) = 3,
k1 = N1	N = 5−3 = 2, k2 = N2	N = 3−3 = 0. Hence, we can enumerate the elements



of Applicable(Π,C,max) as bellow:
Applicable(Π,C,max)1 = r3+2

1 r0+0
2 = r51, p = 3, q = 0

Applicable(Π,C,max)2 = r2+2
1 r1+0

2 = r41r2, p = 2, q = 1

Applicable(Π,C,max)3 = r1+2
1 r2+0

2 = r31r
2
2, p = 1, q = 2

Applicable(Π,C,max)4 = r0+2
1 r3+0

2 = r21r
3
2, p = 0, q = 3.

Apparently, the results are in line with the conclusions. The same results can be easily obtained
using formal powers associated to context-free languages. In this case, the language LN =
rp1r

q
2 | p+ q = N is regular and the generation function for LN is q0 = 1/(1 − x)2. By ex-

panding q0 to acquire the n-th coefficient we obtain that [xn]q0 = n+ 1, which is the function to
computeNBV ariants(Π,C,max) = N + 1. The V ariant(n,Π, c,max) is computed using
an algorithm that performs a weighted breadth-first search of the decomposition of n with respect
to the number of variants found on each branch of the automata execution.

Communications among different processing units do harmful to improve the computing
speed. For pursuing a better speed performance, modularity is adopted to minimize the intercon-
nections of configurable logic blocks. A layer structure which just communicates with previous
one is constructed to execute the algorithm. Have in mind that P system is abstracted as a multi-
sets rewriting system with a skin membrane, the compartment is simplified. In consequence, the
rules and multisets of objects are the key materials for the implementation. As usual processing
scheme for multisets of objects, registers are employed to store them in terms of configurations.
While for the treatment of rules in this implementation, there is no explicit mapping from rules to
hardware components, on account of the fact that not a single rule, but the dependency graph of
rules is fabricated for the construction of Applicable(Π,C,max) which can be represented as a
regular language. The entire process of the implementation is split into several consecutive stages
detailed bellow, which take charge of different operations associated to phases of evolutions of
configurations.

Persistence stage stores the states that the hardware system goes through. A independent
stage computes the maximal instance of each rule by means of the dividing operation and MIN
logic operation. Assignment stage in charge of selecting a rule to be applied non-deterministically,
and determines its instances. Updating stage is responsible for updating the current configuration
with the values from the previous stage. During Halting stage, the system inspects whether the
halting condition is reached, and once reached, stops the system.

The hardware system is separated into six blocks detailed as follows. controlBlock takes
charge of supplying communications and control actions, including logic related to halting con-
ditions. Given a configuration, if Applicable(Π,C,max) is empty, or the configuration stops to
evolve, then the system halts. inoutBlock links to the software which provides the communication
with host computer. persistenceBlock is used for saving and updating the current configuration
and partially examining the halting condition. independentBlock, which is independent of the
derivation mode, receives the multisets of objects of the current configuration from persistence-
Block and carries out division and multiplication operations. The functionality of assignBlock
corresponds to assignment stage. A maximum instances of an applicable rule is sent to this unit
to computes NBV ariants(Π,C,max) and V ariant(n,Π,C,max). Each rule corresponds
to a sub-block executing the logic of the automaton which recognizes the regular language in
terms of the dependency graph of rules. appBlock executes V ariant(n,Π,C,max) to modify
the multiplicity of objects to evolve the configuration to next one.

The implementation of the concerned P system is achieved by the last four blocks. The four
blocks consume one clock cycle to execute their work except AssignBlock, which demand two
clock cycles. Consequently, five clock cycles are required to compute theNBV ariants(Π,C,max),
V ariant(n,Π,C,max) and to apply the generated solution. In this simulation, a new strategy



implementing non-determinism is proposed. This strategy based on representing the complete
solution as a regular language. The obtained performance speed is about 2× 107 computational
steps per second. As a disadvantage, this simulation is limitd to the classes of P systems whose
complete solutions can be represented as regular languages.

G An Overview of Existing CUDA simulations

In [38], it is concluded that the GPU is a suitable platform to accelerate the simulation of P
systems because of the following features:

– Good performance: for example, the NVIDIA Tesla K40 delivers 1.43 TeraFLOPS double-
precision peak floating point performance, 4.29 TeraFLOPS of single-precision, and 288
GBytes/s of global memory bandwidth;

– An efficiently synchronized platform: GPU implements a shared memory system, avoiding
communication overload;

– A medium scalability degree: the amount of resources depend on the GPU model, e.g. a K40
includes 2880 cores and 12 GBytes of memory. If the resources of a GPU is not enough, there
are more scalable solutions such as multi-GPU systems, but they then require communication
among nodes;

– Low-medium flexibility: although CUDA programming is based on C++, and hence program-
mers are free to use the same data structures than in CPU, both the algorithm and the data
structure have to be adapted for best performance on GPUs.

In the following subsections, the existing CUDA simulations are summarized, by organizing
into P system models.

G.1 Cell-like P systems

The first test of concept for simulating P systems on GPUs was applied to P systems with
active membranes using CUDA [10]. This simulator performs only one computation out of the
whole tree, in order to avoid non-determinism, by requiring the confluence property to the sim-
ulated P systems. Bearing this in mind, the “lowest-cost computation path” is selected: the one
in which least membranes and communication are required. This is achieved by giving prefer-
ences to rules that lead to least membranes (e.g. dissolution over division rules). The simulation
algorithm is composed of two main stages: selection and execution of rules. Selection is where
the semantics of the model is actually simulated. Rules are chosen by following the defined con-
strains, altogether with a number of applications. The result of this stage is used for the next one,
which is the execution of the rules; that is, updating the P system configuration. This two-staged
strategy allows to synchronize the application of rules within and among membranes.

Both P systems and GPUs have a double-parallel nature [10], and this is harnessed for im-
plementing a mapping: (elementary) membranes are assigned to thread blocks, and a subset of
rules to threads. Each thread is in charge of selecting rules for a portion of the defined objects
in the alphabet. Note that this is enough given that in P systems with active membranes, rules
have no cooperation. However, this mapping of parallelism is naive, since it assumes that all the
objects in the alphabet can be present within each membrane. This require allocating memory
space and assigning resources (threads) to all of them. This, in fact, does not take place in the
majority of P systems to be simulated, but turns out to be the smallest worst case to handle. Thus,
the performance of the simulator completely depends on the simulated P system, and drops as
long as the variety of different objects appearing in membranes decreases.



The performance of the simulator was analysed on a GPU Tesla C1060 (240 cores, 4GB
memory) by using two benchmarks [38]: a simple test P system designed to stress the simulator
(up to 7x of speedup), and a family of P systems solving the SAT problem (1.67x of speedup).

Improvements to this design have followed [38], reporting up to 38x of acceleration when tak-
ing advantage of shared memory and data transfer minimization. By constructing a dependency
graph, the set of rules of the input model are arranged so that those having common objects in
the left-hand side and in the right-hand side (respectively) are more likely to be in a node. This
reduces communication given that thread blocks are assigned to nodes.

Another approach was to implement ad-hoc simulators for a specific family of P system with
active membranes solving SAT in linear time [11]. In this way, the worst case assumed before (all
objects defined can appear in every membrane) is further reduced by analysing the upper bound to
the number of existing objects in membranes. In this way, the work done by threads is maximized,
and the design remains similar: a thread block is assigned to each elementary membrane, and each
thread to each object of the input multiset. The experiments carried out on a NVIDIA Tesla C1060
GPU reported up to 63x of speedup. Further developments took place focusing on this family of
simulators, with the aim at being better tailored to newer GPU architectures, and also to enable
multi-GPU systems and supercomputers [11].

A related work was to explore which P system ingredients are better suited to be handled by
GPUs. To this aim, another solution to SAT based on a family of tissue P systems with cell divi-
sion was simulated [38]. The design is similar to the one for cell-like models: each thread block
is assigned to each cell, but the number of objects to be placed inside each cell in the memory
representation is increased, respecting to the solution in active membranes. On the contrary, this
simulator does not need to store nor handle charges associated to membranes. Experiments on a
NVIDIA Tesla C1060 GPU leaded to speedup by 10x. This showed that using charges associated
to membranes helped to save instantiation of objects, and so, they entail a lightweight ingredient
to be processed by threads.

G.2 Population Dynamics P systems

Population Dynamics P (PDP) systems are multienvironment, where in each environment, a
cell-like P system is placed. They have been successfully used as a modelling framework for real
ecosystems. Thus, their efficient simulation is critical for virtual experimentation and experimen-
tal validation. Simulators for PDP systems typically run several simulations in order to extract
statistical information from the models.

A CUDA simulator for PDP systems was presented in [39]. The selected simulation algorithm
was the DCBA [40], since it provides better accuracy in the simulation results. The selection of
rules in DCBA consists of three phases: phase 1 (distribution of objects), phase 2 (maximality)
and phase 3 (probability). This algorithm uses a distribution table in order to distribute the objects
in a proportional way between competing rules, i.e. with overlapping left-hand sides. Moreover,
rules are grouped into rule blocks, when having the same left-hand side.

The CUDA simulator for PDP systems [38, 39] uses a design based on the following: envi-
ronments and simulations are distributed through thread blocks, and rule blocks among threads.
Phases 1, 3 and 4 are efficiently managed by the GPU, but Phase 2 can become a bottleneck.
For phase 3, a random binomial variate generation library was developed, so that binomial and
multinominal distributions were supported for random number generation. In a first benchmark
using a set of randomly generated PDP systems (without biological meaning), speedups of up
to 7x were achieved on a Tesla C1060 with respect to a multi-core version. The simulator was
validated and tested by using a known ecosystem model of the Bearded Vulture in the Catalan
Pyrenees, leading to speedups of up to 4.9x with a C1060, and 18.1x using a Tesla K40 GPU
(2880 cores).



G.3 Spiking Neural P systems

Parallel simulation of Spiking Neural P (SNP) systems has been based on a matrix represen-
tation so far [71]. The simulation algorithm uses the following vectors and matrices:

– Spiking transition matrix: stores information about rules, and is employed for computing
transitions. It assigns a row per rule and a column per neuron.

– Spiking vector: defines a selection of rules to be fired in a transition step, using a position per
rule. Given the non-deterministic nature of SNP systems, there are more than one spiking
vector.

– Configuration vector: defines the number of spikes per neuron, that is, the configuration in a
given time.

CuSNP is a simulator for SNP systems which is written in Python and the CUDA kernels
were launched by using the binding library PyCUDA. For the first approach, SNP systems without
delays were simulated by covering each computation path in parallel, leading to speedups of up
to 2.31x [38]. Further extensions have followed, enabling delays, support of more types of regular
expressions and input of P-Lingua files [9]. These leaded to up 50x of acceleration on a GTX750
GPU.

Furthermore, the simulation of Fuzzy Reasoning Spiking Neural (FRSN) P systems on the
GPU was explored [31]. FRSNP systems allows modeling fuzzy diagnosis knowledge and rea-
soning for fault diagnosis applications. The simulation algorithm is also based on a matrix repre-
sentation and vector-matrix operations. The employed simulation framework was pLinguaCore,
so the CUDA kernels were launched by using the binding library JCUDA.

G.4 Other models

Enzymatic Numerical P systems has been employed for modelling robot controllers, being
significant for the Artificial Intelligence. A CUDA simulator was developed [38], where the se-
lection of applicable programs was first applied, second, the calculation of production functions,
and third, distribution of production function results according to repartition protocols. Produc-
tion functions are computed using a recursive solution. Simulators were implemented in Java
(inside pLinguaCore) and C programming languages as standalone tools. On a GeForce GTX
460M, the achieved speedup was of up to 11x.

Evolution-Communication P systems with Energy (ECPE) [38] were also target for a CUDA
simulation. The employed simulation algorithm used a matrix representation and linear-algebra
based algorithm, similarly as for the spiking neural P systems simulator: a configuration vector,
a trigger matrix, an application vector and a transition vector.

H Other Approaches

Besides FPGA based and CUDA-enabled GPU based hardware platforms developed for the
implementation (or simulation, the two terms are equivalent in the context) of P systems, the
micro-controller is another hardware device which is taken into account by the researchers. A
serial algorithms and their hardware circuits designs in terms of the exhaustive investigation
line focusing on implementing the transition of configurations of P systems are developed. The
nascent researches do not confine to concrete hardware devices, just designing the circuits aiming
at simulating certain operations of particular P systems with registers, logical gates, magnitude
comparators, and data buses.



In [19], a digital circuit is presented to select active rules in the current configuration. Each
evolution rule is represented by 2 hardware registers. The first register characterizes the left-hand
side (antecedent) of a rule, and the other specify the right-hand side of the rule, which determines
whether the rewritten objects go out from the current membrane or stay where they are, or go in
to inner membranes. By comparing the left-hand side of each rule with the multiset of objects in a
region, the applicability of every rule can be determined. In succession, an algorithm computing
the number of the application of active rules given the multiset of objects and evolution rules
[34]. The corresponding circuit is composed of registers, logical gates, multiplexer and sequential
elements. The computation process is bounded. In [27], a P system circuit is constructed by
means of a micro-processor PIC16F88 plus the storage component 24LC1025, which connected
by a I2C bus. The shortcoming of insufficient storage capacity of micro-processor is overcame
by the introduced external memory. The flexibility of the circuit is acceptable for modifying the
structure is not necessary. The circuit is depicted in Figure 7.

Fig. 7: A micro-processor based P system circuit from [27].

As the further research of [34], in [35], the improved algorithm and its circuit calculating
the application times of active rules are investigated. The computing process can be complete
in minor steps and the theoretical performance is optimized. In [3], a circuit tries to implement
the inherent parallelism of P system is drafted. Towards the parallelism, the treatment to rules is
similar with the thought regional solution defined in section 4, namely, what applied is a multiset
of rules instead of a single rule. An operating environment is elaborated in [8] which performs the
automatic transforming of tasks involved in the hardware simulation of P systems, including load-
ing, execution and interpretation, into a distributed framework constructed on micro-controllers.
The execution results of the circuit, which are in the form of binary data, can be interpreted to
a transparent form. What should be emphasized here is that all the hardware circuits introduced
are just on the blueprints which do not put into practice. They are theoretical analysis, the actual
functionality and performances are unknown, unlike the FPGA based and CUDA based hardware
implementations/simulations which are carried out practically.

As a new attempt for implementing neural P systems on different hardware, DRAM-based
CMOS circuits are adopted to construct elementary Spiking neural P systems, which had not



been implemented on FPGA but on CUDA hardware. We do not carry out an in-depth discussion
about this topic given the length of the article, interested people can refer to [70] for more details.

I Conclusions

In this article we gave an overview of different hardware implementations of P systems.
The FPGA approach is very promising, yielding truly parallel implementations, but it requires a
considerable amount of work as the corresponding hardware architecture should be created from
scratch. Moreover, the hardware description languages like VHDL are very low-level and the
programming in such languages tend to be extremely tedious.

By contrast, CUDA approach features a powerful unique hardware platform that can be pro-
grammed using standard C/C++ language. While it gives less freedom and accuracy, this ap-
proach gives a good trade-off between complexity, scalability and maintenance.

The central problem in both approaches – the object distribution problem – was tackled from
different points of view, the most fruitful attempts being the variations of the DND algorithm
and direct approaches using mathematical properties of the dependency relation between rules.
Future research can be done in this direction by providing new classes of P systems suitable
for the precomputation of possible rule applications. Another research direction is given by the
construction from Section E, which features a novel reduction of the object distribution problem
to ILP. This reduction handles well the maximal parallelism and allows to define criteria for the
choice of the solution. Then, it would be possible to use existing solvers and algorithms to quickly
obtain the desired solution.

Finally, as a future research interest we mention the implementation of different features of
P systems like membrane creation/dissolution, as well as non-classical variants of P systems like
numerical P systems.
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