ROMANIAN JOURNAL OF INFORMATION
SCIENCE AND TECHNOLOGY
Volume 20, Number 1, 2016, 71-84

A Simulation Software Tool for
Cell-like Spiking Neural P Systems

Luis Valencia-Cabreral, Tingfang Wu?, Zhiqiang Zhang?,
Lingiang Pan®3*, Mario J. Pérez-Jiménez!

1. Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Sevilla, Spain
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
2. Key Laboratory of Image Information Processing and Intelligent Control of
Education Ministry of China
School of Automation
Huazhong University of Science and Technology
Wuhan 430074, Hubei, China
3. School of Electric and Information Engineering
Zhengzhou University of Light Industry
Zhengzhou 450002, Henan, China
E-mail: 1gpan@mail.hust.edu.cn

Abstract. Spiking neural P systems (SN P systems, for short) constitute
a class of computing models in the research field of membrane computing. In-
spired by the interactions among neurons in the brain, they have attracted much
attention since their appearance in 2006. Many variants have emerged, present-
ing a graph-based structure, and several software simulators were developed
for them. Recently, a different approach was proposed by introducing cell-like
spiking neural P systems. Unlike previous SN P systems, this new model in-
cludes a tree-based structure, taking elements from traditional rewriting rules
in the original P systems. In this work, a software tool within the framework
of P-Lingua and MeCoSim is presented. This software may play an important
role assisting in tasks of design, simulation and experimental validation.

Key-words: Bio-inspired computing, Membrane computing, Spiking neu-
ral P system, Cell-like P system, P-Lingua

1. Introduction

Membrane computing, a branch of natural computing taking inspiration from the
structure and functioning of living cells, proved from the very beginning to be a very

*Corresponding author

2 L. Valencia-Cabrera, T. Wu, Z. Zhang, L. Pan and M. J. Pérez-Jiménez

active discipline in the search for proper computing models, with a bunch of variants
of devices, P systems, proved to be Turing universal in most cases [20,23,27], as well
as capable to solve hard problems in an efficient way [18,22,28].

Since the first P systems were introduced in [21], many types have emerged, falling
into three main categories that could be placed in two groups: cell-like systems, pre-
senting a hierarchical membrane structure inspired in eukaryotic cells internal struc-
ture; and tissue P systems and spiking neural P systems, both with a graph structure,
the former ones inspired by the way in which cells organize and communicate in tis-
sues [9,19,26,30], and the latter ones inspired by the way in which neurons in the
brain exchange information by means of the propagation of spikes [12,13,29].

A significant number of works have been published along the last decade concern-
ing SN P systems [1, 14, 24, 33, 34|, receiving much attention in the last few years.
Variants of SN P systems have the common feature of the existence of the graph
structure mentioned, unlike cell-like P systems. However, this clear separation be-
tween cell-like P systems with a hierarchical membrane structure, on the one hand,
and SN P systems with a graph structure, on the other hand, has suffered a change
with the proposal of a new computing model, the so-called cell-like spiking neural P
systems (cSN P systems, for short), presented in [31,32]. Thus, this novel model takes
elements from both cell-like P systems, given its hierarchical structure, and spiking
neural P systems, preserving the existence of a singleton alphabet for spikes and the
presence of spiking and forgetting rules, among other features.

As with several other kinds of P systems, when defining new computing models
with their own syntactic features and semantic constraints, a number of studies could
be conducted. These would range from their computational power and computational
efficiency to the possible properties emerging from restricted variants of the proposed
models or the solutions to well-known problems based on them. In this context, the
possibility of having proper software tools to help in some of the related tasks, is
more than interesting and definitely valuable. The variety of functionalities offered
may vary depending on the needs detected and the availability of a software team
to work in the development. Some of the main tasks where the software tools can
aid in the definition of new models are the following: (1) design of solutions based
on P system families to efficiently solve computationally hard problems, (2) formal
verification of such solutions, (3) simulation of the computational devices, exploring
the implications of the addition or removal of certain elements on the evolution of the
corresponding systems.

In membrane computing, the idea of automating the evolution of P systems is
an important research line. The way to get computational devices for a mechanical
application of the rules in P systems is to develop software tools, which are able to run
on computers and capable of simulating computations of P systems. A wide range of
software simulators have been developed, such as Membrane Simulator for catalytic
hierarchical cell systems and active membrane systems [7], SNUPS Simulator for nu-
merical P systems [2], P-Lingua framework for offering a general syntactic framework
that defines a unified standard for P systems [8,10], MeCoSim software for simulating
biological phenomena by means of P systems [25,36], SN P systems simulator for
generating the transition diagram of an SN P system in an automatic way [11], and
some hardware simulators based on highly parallel platforms GPU and CUDA [3,4].

As P-Lingua framework became popular in the context of P systems, its use in

A Simulation Software Tool for Cell-like SN P Systems 3

the community became more extended [16,17]. Moreover, some additional needs were
detected, in terms of usability, and delivery of end-user applications, thus leading to
the development of MeCoSim. The availability of this kind of pre-existing software
tools seems to make advisable to avoid re-inventing the wheel when trying to address
the development of similar assistants for new computing models. Hence, the devel-
opment presented in this work within the framework of P-Lingua and MeCoSim was
considered as the most appropriate approach. The work presented here have con-
ducted to provide a software tool to allow computer-aided design and simulation of
cell-like spiking neural P systems.

2. Cell-like Spiking Neural P Systems

This section presents some definitions providing the necessary background for the
context where the developed tools emerge.

As introduced in [31], cell-like spiking neural P systems are mainly influenced by
two kinds of systems: the cell-like P systems with rewriting rules and the classical SN
P systems, introduced in [12].

2.1 P systems with multisets rewriting rules

A (cell-like) P system (with multiset rewriting rules) of degree ¢ > 1 is a tuple of
the form IT = (O, pu, M1, ..., Mg, R1,...,Rq,), where O is a finite alphabet whose
elements are called objects; 11 is a rooted tree (the membrane structure) whose ¢ nodes
(called membranes) are injectively labelled by 1,...,q, respectively; M;, 1 < i < ¢,
is a multiset over O associated with membrane 7 at the beginning of a computation;
R;, 1 < i < g, is a finite set of evolution rules associated with membrane i, and
i, € {0,1,...,q} indicates the output region (a membrane in u, or the environment
labelled by 0). The rules of the system are of the form u — v, where u is a multiset
over O and v is a multiset over O x {here,in,out}. Thus, each element of v is of the
form (a,tar), where a € O and tar € {here,out,in}. As usual, the target indication
here can be omitted.

An extensive description of the semantics associated with this kind of systems
can be found in [24], but we will briefly recall some relevant aspects. First of all, let
us take a careful look at the target indication in. When a rule r associated with a
membrane i is applied and pair (a,in) belongs to its right hand side, then object a
will be sent to one of their children, non-deterministically chosen. Let us note that
the non-deterministic choice is done for each object individually, even if many of them
present that same target indicator. For example, if (a,in)(a,in) belongs to the right-
hand side of a rule r then two non-deterministic choices of children of membrane i
should be considered in order to send “the first” object a and “the second” object
a, respectively. As stated in [31], “one may also use the stronger indication in;”, so
that the object is sent to the specific child membrane with label j, provided that it
exists (otherwise the rule is not applicable).

In what follows, the semantics of these P systems is extended, in order to consider
multisets of objects as units associated with the target indicators specified. In the new
context, a rule (associated with membrane i) is of the form v — v, where u € M(O)
and v is a multiset over M (O) x {here, in, out}, where M (O) is the set of all multisets

4 L. Valencia-Cabrera, T. Wu, Z. Zhang, L. Pan and M. J. Pérez-Jiménez

over O. If such a rule is applied and pair (w, in), where w is a multiset over O, belongs
to the right-hand side of the rule, then multiset w will be sent to one of their children,
non-deterministically chosen.

Both in the original and the extended version described previously, the rules of
the whole systems are applied in the maximally parallel manner: a maximal multiset
of applicable rules is non-deterministically chosen and applied. Results are associated
only with halting computations, encoded by the contents of the output region in the
halting configuration.

2.2 Spiking neural P systems

Next, we briefly introduce spiking neural P systems in the extended form [6], but
without delay, as recalled in [31]. For a detailed description of these systems please
see [12].

An SN P system of degree ¢ > 1 is a tuple Il = (O, 01, ...,0,, syn, out), where
O = {a} is a singleton alphabet (a is called spike); o1, ..., 0, are neurons, of the form
o; = (n;, R;), 1 <i < g, such that n; > 0 is the initial number of spikes contained in
the neuron, and R; is a finite set of rules of the following two forms: (1) E/a® — a?,
where E is a regular expression over a and ¢ > p > 1; and (2) a® —), for some
s > 1, with the restriction that a® ¢ L(E) for any rule E/a® — a? of type (1) from
R;; syn C{1,2,...,q} x {1,2,...,q} with (¢,4) ¢ syn, for 1 < i < g (synapses); and
out € {1,2,...,q} indicates the output neuron.

The spiking rule r = E/a® — aP € R; is enabled at a moment of time t if neuron
o; contains k spikes at that moment, a* € L(F) and k > c. If rule 7 is applied then
c spikes are consumed from neuron o;, and p spikes are sent to its outgoing neurons
(each neuron o; such that (i,7) € syn).

The forgetting rule r = a® — X € R; is enabled at a moment of time t if neuron o;
contains exactly s spikes at that moment. By applying rule r, all s spikes are removed
from the neuron o;.

A configuration C; at an instant ¢ is a tuple (p1,...,pq), where p; > 0 is the
number of spikes contained in neuron o; at instant ¢. The initial configuration is
(n1,n2,...,n4). Wesay that configuration C yields configuration Cs in one transition
step if we can pass from C; to Cy by applying the rules from R; U---U R, in such
manner that inside each neuron at most one rule must be applied (in each neuron,
if some rule is enabled then exactly one rule should be applied). A global clock is
assumed, marking the time for the whole system.

In this way, starting from the initial configuration, a sequence of transitions among
configurations take place. Such a (maximal) sequence of configurations is called a
computation. A computation halts if it reaches a configuration where no rule is
enabled. With any computation (halting or not), a spike train can be associated,
consisting of a sequence of digits (0 and 1) indicating for each instant, if the output
neuron sends a spike out of the system (1) or not (0).

The result of a computation can belong to one of the following types:

e The spike train itself, that is, a string over the alphabet {0, 1}.

e A natural number, representing the amount of steps between the first two spikes
emitted to the output neuron by the system.

A Simulation Software Tool for Cell-like SN P Systems 5

The set of such numbers is denoted by N(II). By convention: (a) number 0 is
generated by a computation of IT which sends spikes out only once; and (b) if
no computation of II sends out any spikes then No(II) = ().

e The number of spikes present in the output neuron in the halting configuration.
The set of numbers generated in this way by II is denoted by N;, (IT).

Details about the universality of these systems considering the different types of
possible results can be found in [5,6,12].

Next, cell-like spiking neural P systems (cSN P systems, for short) are presented,
as appeared in [31].

2.3 Cell-like SN P Systems

A ¢SN P system of degree ¢ > 1, is a tuple Il = (O, u,n1,...,ng, R1,..., Ry, %0),
where:

— O = {a} is a singleton alphabet (a is called spike).
— w is a hierarchical membrane structure with ¢ membranes.

- n;, 1 <4 < g, is the number of spikes present in compartment ¢ of y at the
beginning of the computation.

- R;,1 <i<gq,is a finite set of rules from membrane 7 of the following form:

(1) E/a® — u, where E is a regular expression over O, ¢ > 1, and v is a
multiset of pairs (a?,tar), where p > 1 and tar € {here,out, in,in;,inq;}
(spiking rules).

(2) a® — A, where s > 1 (forgetting rules).

— i, € {1,...,q} U {env} indicates the output region (this is the environment if
1o, = env).

In spiking rules, taris a target indication specifying the destination of the associated
spikes. The meaning of targets in, in; and ingy is the following: by applying a rule
associated with membrane ¢ whose right-hand side contains the pair (a?,in), (a?,in;)
or (aP,ingy), respectively, p spikes are sent to: (a) a children of membrane i, selected
in a non-deterministic way; (b) the children j of membrane i; and (c) all children
of membrane i. It is worth highlighting that the pairs (aP,tar) are a particular case
of the definition in previous section when the extension of cell-like P systems with
rewriting rules was presented.

Computations in ¢cSN P systems are defined as usual in SN P systems: in each
membrane, at most one rule is applied, but the membranes work in parallel, syn-
chronously.

The result of a computation can be of the following types:

e The number of spikes present in the output region in the halting configuration.
If 4, is a membrane then we denote the set of numbers computed (generated)
by the system II as N;, (II) (the set computed in the internal mode).

6 L. Valencia-Cabrera, T. Wu, Z. Zhang, L. Pan and M. J. Pérez-Jiménez

e The time distance between the first two steps when the system sends spikes out.
This can be done by rules associated with the skin membrane whose right-hand
side contains pairs (a?, out). The set of numbers computed by II is denoted by
Ny (IT), with the same convention previously described.

As mentioned in [31], no restriction is imposed on the number of spikes produced, so
that it can be greater than the number of consumed spikes. More details about this
kind of systems and their universality are provided in [31].

3. A Unified Software Framework for P Systems

The appearance of P systems brought the emergence of new ideas, along with solid
theoretical foundations. Soon after that, a few software tools started exploring the
simulation of these systems, as ad-hoc solutions to specific problems.

As membrane computing grew, many types of P systems were defined, and the
availability of general tools to work with these novel solutions became advisable.

P-Lingua meant a significant milestone, providing a uniform framework to specify,
debug and simulate these computing devices. Its broad use in real applications led
to the need of additional tools for P systems designers. Besides, the delivery of end-
user applications based on this framework would widen the scope and visibility of
the underlying systems. This kind of apps should abstract internal details to the
end-users of the applications designed, as ecologists, economists, etc. The apps act as
black boxes for them, once the proper files are provided by the P systems designers.
These goals were achieved by MeCoSim [25].

This section outlines the main elements included in the framework provided by
P-Lingua and MeCoSim.

3.1 P-Lingua Framework

P-Lingua framework was introduced in [8], including a general language to define
P systems, P-Lingua, and a software library, pLinguaCore, supporting the specifi-
cation and simulation of a variety of computing models within Membrane Comput-
ing. P-Lingua language tezt files can be easily processed by pLinguaCore, directly or
through some client, both in console format or with the visual interface provided by
MeCoSim, as described in Section 3.2. Not only specific P systems can be specified,
but also families of them, with parameters accepting different values depending on
the instances to generate.

3.2 MeCoSim (Membrane Computing Simulator)

MeCoSim offers P systems designers and end users visual tools to handle their
solutions, either as white boxes to deepen in the study of P systems or as black boxes
to focus on the problems, abstracting from internal details. It supplies model designers
a graphic tool to design, simulate, analyse and verify their models. In addition, end
users are provided with applications, with interfaces adapted for each problem, to
enter the input data and check the results. MeCoSim is built on top of P-Lingua as
specification language and simulation engine.

A Simulation Software Tool for Cell-like SN P Systems 7

A number of features are available for debugging, visualization and customization.
Besides, it provides a plugins architecture to extend its functionalities, and options
related with invariants detection and connection with model checking software for the
formal verification of the models (see [36]).

4. A Language to Define Cell-like SN P Systems

The previous section outlined the main elements of our framework to define, debug
and simulate P systems. In the present work, a new type of P systems has been
defined, with genuine features, so the specific language for them must be set.

We will introduce the syntax for cSN P systems in the following subsections..

4.1 Reserved Words and Special Elements

Despite the variety of systems available in P-Lingua, some well-known ingredients
of P systems had not been incorporated so far. In particular, the general format for
rewriting rules described in [24] including tagert indicators (here, in, out, ingy, in;)
was not covered. However, ¢cSN P systems (see [31]) use these indicators. Conse-
quently, new elements were needed in our framework.

In fact, before defining the language for cSN P systems, a more general model has
been included in P-Lingua, for cell-like P systems including target indicators. They
are a generalized version of the systems in [24], considering the extension described in
Section 2. This model is now available within the framework, so that any P-Lingua
file using these systems starts with the sentence:

@model<rewriting_systems>

We will omit further details about this new development in the rest of the paper, so
that only aspects related with ¢cSN P systems will be explained. Concerning the new
target indicators, they are written as here, out, in, inall and in{j}.

4.2 Model Specification

Any P-Lingua file defining a ¢cSN P system must set cell_like_snp as its model,
thus beginning the file with the sentence:

O@model<cell_like_snp>

The rest of the file will then define the main elements describing the ¢cSN P system,
typically consisting of IT = (O, y,n1,...,nq, R1,...,Rq,i). The singleton alphabet
O = {a} is fixed, so it does not need to be made explicit. The rest of the elements

depend on the specific P system, so p, ni,...,nq, R1,..., R, and i, will be set as
explained in Subsections 4.3 to 4.7.

4.3 Membrane Structure

c¢SN P systems are a variant of spiking neural P systems based on a tree-structure.
Therefore, to specify the initial membrane structure
@mu is used:

@mu = [... 1°1;

8 L. Valencia-Cabrera, T. Wu, Z. Zhang, L. Pan and M. J. Pérez-Jiménez

where ... stands for the definition of the membrane structure as usual.

4.4 Definition of Initial Multisets

When defining ¢SN P systems, we need to specify the multisets of objects initially
placed in every membrane. Given a membrane ¢ containing n; spikes, the initial
number of spikes it contains can be specified as follows:

Oms (i) = ax*

For example, @ms (2) = a*2 (if only one spike is present, *1 is omitted). Alterna-
tively, the initial objects can be included directly with @mu:

6mu = [a*2 [a 1’2 [1’3 [ax5 1’4]1°1;

4.5 Definition of Rules

Two types of rules can be defined: forgetting rules and firing rules. The former
ones can be defined in P-Lingua in the traditional way:

[axc]l’h --> [#]°’h ;
[axc --> #]°’h ;

with % a label, ¢ an integer expression and e a regular expression over {a}.

Regarding spiking rules, they must support the extended form E/a® — u, with E a
regular expression over O, ¢ > 1, as described in Section 2. They can be defined in
the following ways:

[a*c]’h --> LIST_OF_PAIRS ;
[a*c --> LIST_OF_PAIRS]’h ;

For any rule, e is optional. When e is not present in the rule, it defaults to the
left hand side of the rule. The LIST_OF_PAIRS, as defined in Section 2, can present
pairs of the form (a?, tar). In P-Lingua, its syntax would be:

(axp ; TAR)

with TAR expressed as described in Section 4.1 Concerning the interpretation of the
rules, it is important to take into account the extension of P systems with rewriting
rules presented in Section 2. Let us consider a rule in a region 1 such as: a2bc*ba’c —
(da, out)(ca, in).

This rule could be expressed in P-Lingua in the following ways:

[a*2,b,c*3]°’1 --> (b,a*2,c;here) (d,a;out) (c,a;in);
[a*2,b,c*3]’1 --> b,a*2,c (d,a;out) (c,a;in);
[a*2,b,c*3 --> b,a*2,c (d,a;out) (c,a;in)]’1;

Thus, ca will be sent to the same region, non-deterministically chosen.
4.6 Regular Expressions

Regarding the syntax for regular expressions in P-Lingua, for backwards compati-
bility with other systems as the classical SN P systems, we adopted the same policies

A Simulation Software Tool for Cell-like SN P Systems 9

implemented yet. As extensively explained in [15, 16], the mechanism to define and
evaluate regular expressions is based on the regex Java package (details at [35]).
As detailed in [15], the following subset of symbols can be used:

)a)’)(),))7’)[7’)]7’ 7{7’ 7}7’ 7’;’ 7*;’ 7*;’)+),7?7’ 7|7

4.7 Output Region

The last syntactic element present in the definition of a ¢SN P system is the output
region. It can be specified in P-Lingua in a natural way as:

@mout = REGION;

This REGION should match the label of a region in p, or refer to the environ-
ment (by setting the region to environment, or simply env or e).

4.8 General Features Derived from the Integration

The tools created for ¢SN P systems have been integrated in P-Lingua framework.
Concerning the specification language, it will imply a clear advantage: the traditional
mechanisms present in the general description of the language will be available. This
includes features as modules/functions definition as in structured programming, use
of variables, parameters, blocks or iterators, among others (see [8]).

In addition, through its integration in MeCoSim, these files may also make use of
parameters generated from the input given by the user.

4.9 A New Simulator for Cell-like SN P Systems

A new simulator has been developed within P-Lingua framework to capture the
dynamics of cSN P systems. The general idea is clear: once a P system is generated
from a P-Lingua file, the simulator performs a possible computation from the initial
configuration, producing the corresponding “non-deterministic” transitions until a
halting configuration is reached. The simulation algorithm follows the general schema
found in most of the simulators in the platform:

1. Initialization
2. For each computation step, while some rules are applicable:

(a) Selection of rules

(b) Execution of rules

The initialization stage will set the initial structures needed by the algorithm.
Then, the main loop will run until a halting configuration is reached; that is, until no
rule is applicable at a given computation step.

The selection phase will check which rules can be applied. Unlike other cell-like
P systems simulators, cSN P systems cannot execute more than one rule at a given
compartment in the same computation step, so the selection stage will choose, for
each membrane in the system, at most one applicable rule, “non-deterministically”
chosen.

The applicability of a rule is determined by the presence of at least the number
of spikes in the left hand side of the rule. In addition, the contents of the membrane

10 L. Valencia-Cabrera, T. Wu, Z. Zhang, L. Pan and M. J. Pérez-Jiménez

where the rule is present must match the regular expression of the rule. Finally, if
some target indicators of types in, ingy or in; appear in the right hand side of a
spiking rule, then the membrane must have child membranes, and in the latter case
a child membrane labelled by j must exist.

As a result of this selection phase, a set of rules will have been selected, verifying
that every membrane with applicable rules has selected exactly one.

Then, the execution phase applies the change in the configuration, passing from
C; to Ciq1, removing the objects consumed by the selected rules, and adding the
objects produced by the rules to the corresponding target indicators, with the seman-
tics specified in Section 2; that is, choosing non-deterministically the child membrane
receiving the objects in the case of in, and with the corresponding deterministic result
for the other target indicators.

4.10 Availability of the Software Tools Developed

The tools described in the previous sections, concerning the language, parsing
and simulation have made publicly available in the current version of MeCoSim, that
can be downloaded from [36]. Once downloaded, whenever the software runs, if an
Internet connection is active, it checks the presence of new versions of any of the
files involved, thus guaranteeing it always provides the user with the last version of
MeCoSim (that includes in its installation pLinguaCore).

5. Case Studies

This section recalls some examples from [31], illustrating the behaviour of ¢cSN P
systems and showing the corresponding P-Lingua files.
The first system considered is given formally in [31] as:

= ({a},[];,2,R1,1), where

Ry ={(a®)"/a® = (a*, here), (a®)*/a® — (a,here)}.

The initial multiset in membrane 1, as specified in II, is a2. The behaviour of the
system is as follows: the first rule adds two spikes, repeatedly, but when the second
rule is used (this may also in any step) the number of spikes becomes odd, so no
further rule can be used. Therefore, N;,(II) = {2n + 1 | n > 0}.

This system is introduced in the simulator developed as follows:

Omodel<cell_like_snp>
def main ()

{
@mu = [a*x2]°1;
[a*x2] 1 --> ax4 ;
[ax2] 1 --> a ;
@mout = 1;

}

As it can be seen, the initial spikes can be introduced in a compact way in the
definition of @mu, and indicator here can be omitted.

A Simulation Software Tool for Cell-like SN P Systems 11

Another example, also proposed in [31], involves the use of the target indication
Mgy, as indicated in Figure 1.

1

a2

(a)+/a — (a?,inau)
(a®)*/a — (a,out)

a out a out

Figure 1: A ¢SN P system avoiding ¢ < p.

In this example, the same set is obtained, but this time one spike is finally sent out
to the environment. However, the output membrane is still membrane 1, as specified
in the corresponding P-Lingua file.

Omodel<cell_like_snp>
def main ()

{
@mu = [ax*2 []1°2 []1°3]1°1;
[ax2] 1 --> (a*2;inall) ;
[al’1 --> (aj;out) ;
[ax2] 2 --> (a*x2;out);
[ax2] 3 --> (ax2;out);
@mout = 1;

}

Figure 2 shows this last example loaded in MeCoSim, including step by step infor-
mation, P-Lingua file editor and multisets viewer.

6. Conclusions and Future Work

Over the last decades, membrane computing has kept very active in its search for
models showing interesting properties from their computational power and complexity.
Particularly, SN P systems have attracted much attention, with a significant amount
of variants emerged, all of them with a graph-based structure.

However, recently conceived and published [31], cell-like spiking neural P systems
have set a bridge between cell-like P systems, based on a hierarchical structure, and
spiking neural P systems, with spiking and forgetting rules. They proved to be com-
putationally universal when no constraints are set over the generation of more spikes
than those consumed in spiking rules. It is worth adding efforts in this research, and
software tools can play a relevant role as assistants for new computing models and
solutions based on such models. The framework given by P-Lingua and MeCoSim
provides a common infrastructure with facilities for design, analysis and simulation,
among other tasks.

12 L. Valencia-Cabrera, T. Wu, Z. Zhang, L. Pan and M. J. Pérez-Jiménez

MeCoSim (Membrane Computing Simulator) _ox
Application Settings Help

5] General - O X
Scenario Edit Model Smulation View Plugins Help

[N Debug console
parsinginto [ERTIECREY erors | warnings

Internal membranes count: 2

3 Multisets - OXx

) Environment

STEP: 3 [=}) Multiset of objects
Rules selected for SKIN MEMBRANE ID: 0, Label: 1, Charge: 0 a1
1% (a{23)+/ [al'l --> (a;0ut) =13 1 -- <<skin membrane>>

[=1C)] Multiset of objects

a3

CONFIGURATION: 3 | 2 -~ <<membrane>> <label: 2; id: 1> (This membrane has no objects inside)
s 1 B G0] 3~ <<membrane>> <label: 3; id: 2> (This membrane has no objects inside)
Multiset: #

Parent membrane ID: 0 clsnp_fig2.pli - OXx

MEMBRANE ID: 2, Label: 3, Charge: 0 File Edit Format

Multiset: # - =

Parent membrane ID: 0 @model<cell_like_snp>

SKIN MEMBRANE ID: 0, Label: 1, Charge: 0 .
Multiset: a*3 def main()

Internal membranes count: 2 (
@mu=[a2[2[3]1;

ENVIRONMENT: a

Halting configuration (No rule can be selected to be executed in the next step) [@* 211 —> (@*2inall) "(a{2})+"
[a]'1 —> (ajout) "(af2})+"

Set Model | (Init Model | (Step | [Run steps

[a*2]2 —> (a"2;out);
P SYSTEM USER
Scenario Data: C:\Users\Luis\mecosim-rgnc\data\example1_1.ec2 [@*2]'3 —> (a*2;out);
Model: C:\00-RESEARCH\Papers\ACMC2016\clsnp._fig2.pli
Selected simulator: cell_like_snp _
Simulate until a halting condition @mout = 1;

Jic) 2011 Research Group on Natural Computing. http://www.gcn.us.es

Figure 2: ¢SN P systems simulation in MeCoSim

All in all, a set of tools has been developed to incorporate ¢SN P systems within
this framework. They include a language based on P-Lingua to define its syntactic
ingredients, including target indicators for rewriting rules, combined with elements
from classical SN P systems. In addition, parsing and debugging facilities have been
provided, to check correctness and alert about possible errors. A simulation algo-
rithm has been designed and developed to perform the corresponding computations.
Besides, the integration in the framework allows the use of the existing visualization,
analysis, customization and validation features. The tools developed have proved their
ability to validate the solutions for ¢SN P systems, allowing the parsing, debugging
and “non-deterministic” simulation of the different examples, and helping detecting
some subtle details not considered in previous works.

It would be worth deepening into the study of the computational properties of
c¢SN P systems, and complementary tools to aid in the design and validation tasks
can definitely provide a value, specially when studying solutions to complex problems
by P systems with a significant amount of elements interacting, whose evolution is
not easy to analyse without the help of these software assistants.

Acknowledgements

The work of Luis Valencia-Cabrera, Tingfang Wu, Zhiqiang Zhang and Lingiang
Pan was supported by National Natural Science Foundation of China (Grants no.
61320106005 and 61033003). In addition, we would like to thank Dr Luis Felipe
Macias-Ramos, for his valuable contributions within the field of the simulation of
“classical” spiking neural P systems and supportive explanations about the previous
developments.

A Simulation Software Tool for Cell-like SN P Systems 13

References

1]

[10]

11]
12
13)
[14]
[15]

[16]

Adorna, H.A., Cabarle, F.G.C., Macifas-Ramos, L.F., Pan, L., Pérez-Jiménez, M.J.,
Song, B., Song, T., Valencia-Cabrera, L.: Taking the pulse of SN P systems: A Quick
Survey. Multidisciplinary Creativity, Spandugino, Bucharest, 1-16 (2015).

Buiu, C., Arsene, O., Cipu, C., Patrascu, M.: A software tool for modeling and simu-
lation of numerical P systems. BioSystems, 103(3), 442-447 (2011).

Cabarle, F.G.C., Adorna, H., Martinez-del-Amor, M. A.: A spiking neural P system
simulator based on CUDA. In: Gheorghe, M., Paun, Gh., Rozenberg, G., Salomaa, A.,
Verlan, S. (eds.) LNCS, vol. 7184, pp. 87-103. Springer, Heidelberg (2012).

Cabarle, F.G.C., Adorna, H., Martinez-del-Amor, M. A., Pérez-Jiménez, M.J.: Spiking
neural P system simulations on a high performance GPU platform. In: Xiang, Y.,
Cuzzocrea, A., Hobbs, M., Zhou, W. (eds.) LNCS, vol. 7017, pp. 99-108. Springer,
Heidelberg (2011).

Cavaliere, M., Ibarra, O.H., Paun, Gh., Egecioglu, O., Ionescu, M., Woodworth S.:
Asynchronous spiking neural P systems. Theor. Comput. Sci., 410(24-25), 2352-2364
(2009).

Chen, H., Ishdorj, T.O., Paun, Gh., Pérez-Jiménez, M.J.: Spiking neural P systems
with extended rules. In: Proceedings of the Fourth Brainstorming Week on Membrane
Computing, pp. 241-265. Fénix Editora, Sevilla (2006).

Ciobanu, G., Paraschiv, D.: P system software simulator. Fund. Inform., 49, 61-66
(2002).

Diaz-Pernil, D., Pérez-Hurtado, 1., Pérez-Jiménez, M.J., Riscos-Nufiez, A.: A P-Lingua
programming environment for membrane computing. In: Corne, D.W., Frisco, P., Paun,
Gh., Rozenberg, G., Salomaa, A.(eds.) LNCS, vol. 5391, pp. 187-203. Springer, Heidel-
berg (2009).

Freund, R., Paun, Gh., Pérez-Jiménez, M.J.: Tissue P systems with channel states.
Theor. Comput. Sci., 330, 101-116 (2005).

Garcia-Quismondo, M., Gutiérrez-Escudero, R., Martinez-del-Amor, M.A., Orejuela-
Pinedo, E., Pérez-Hurtado, I.: P-Lingua 2.0: A software framework for cell-like P
systems. Int. J. Comput. Commun., 4(3), 234-243 (2009).

Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Ramirez-Martinez, D.: A software tool
for verification of spiking neural P systems. Natural Computing, 7(4), 485-497 (2008).

Tonescu, M., Pdun, Gh., Yokomori, T.: Spiking neural P systems. Fund. Inform., 71(2),
279-308 (2006).

Jiang, K., Chen, W., Zhang, Y., Pan, L.: Spiking neural P systems with homogeneous
neurons and synapses. Neurocomputing, 171, 1548-1555 (2016).

Jiang, K., Pan, L.: Spiking neural P systems with anti-spikes working in sequential
mode induced by maximum spike number. Neurocomputing, 171, 1674-1683 (2016).

Macias-Ramos, L.F.: Developing Efficient Simulators for Cell Machines. PhD thesis.
University of Seville (2016).

Macias-Ramos, L.F., Pérez-Hurtado, I., Garcia-Quismondo, M., Valencia-Cabrera, L.,
Pérez-Jiménez, M.J., Riscos-Niifiez, A.: A P-Lingua based simulator for spiking neural
P systems. In: Gheorghe, M., Pdun, Gh., Rozenberg, G., Salomaa, A., Verlan, S. (eds.)
LNCS, vol. 7184, pp. 257-281. Springer, Heidelberg (2012).

14

[17]

[18]

[19]
[20]

21]
22]

[23]
[24]

[25]

[26]
[27]

28]

[29]
[30]
[31]
[32]

[33]

[34]
[35]

[36]
37]

L. Valencia-Cabrera, T. Wu, Z. Zhang, L. Pan and M. J. Pérez-Jiménez

Macias-Ramos, L.F., Pérez-Jiménez, M.J., Song, T., Pan, L.: Extending simulation of
asynchronous spiking neural P systems in P-Lingua. Fundam. Inform. 136(3), 253-267
(2015).

Macias-Ramos, L.F., Song, B., Valencia-Cabrera, L., Pan, L., Pérez-Jiménez, M.J.:
Membrane fission: A computational complexity perspective. Complexity, 21(6), 321—
334 (2016).

Martin-Vide, C., Paun, Gh., Pazos, J., Rodriguez-Patén, A.: Tissue P Systems, Theor.
Comput. Sci. 296(2), 295-326 (2003).

Pan, L., Paun, Gh., Song, B.: Flat maximal parallelism in P systems with promoters.
Theor. Comput. Sci., 623, 83-91 (2016).

Paun, Gh.: Computing with membranes. J. Comput. Syst. Sci. 61(1), 108-143 (2000).

Paun, Gh.: P systems with active membranes: attacking NP-complete problems. J.
Automata Lang. Combinatorics, 6(1), 75-90 (2001).

Paun, A., Pdun, Gh.: The power of communication: P systems with symport/antiport.
New Generat. Comput., 20(3), 295-305 (2002).

Paun, Gh., Rozenberg, G., Salomaa, A.(eds.): The Oxford Handbook of Membrane
Computing. Oxford University Press, New York (2010).

Pérez-Hurtado, 1., Valencia-Cabrera, L., Pérez-Jiménez, M.J., Colomer, M.A., Riscos-
Ntfez, A.: Mecosim: A general purpose software tool for simulating biological phe-
nomena by means of P systems. In: The Fifth International Conference on Bio-inspired
Computing: Theories and Applications (BIC-TA 2010), pp. 637-643. Changsha (2010).

Song, B., Pan, L.: The computational power of tissue-like P systems with promoters.
Theor. Comput. Sci., 641, 43-52 (2016).

Song, B., Pan, L., Pérez-Jiménez, M.J.: Cell-like P systems with channel states and
symport/antiport rules. IEEE T. NanoBiosci., 15(6), 555-566 (2016).

Song, B., Pérez-Jiménez, M.J., Pan, L.: An efficient time-free solution to SAT problem
by P systems with proteins on membranes. J. Comput. Syst. Sci., 82(6), 1090-1099
(2016).

Song, T., Xu, J., Pan, L.: On the universality and non-universality of spiking neural P
systems with rules on synapses. IEEE T. on NanoBiosci., 14(8), 960-966 (2016).

Song, B., Zhang, C., Pan, L.: Tissue-like P systems with evolutional symport/antiport
rules. Inf. Sci., 378, 177-193 (2017).

Wu, T., Zhang, Z., Paun, Gh., Pan, L.: Cell-like spiking neural P systems. Theor.
Comput. Sci. 623, 180-189 (2016).

Wu, T., Zhang, Z., Pan, L.: On languages generated by cell-like spiking neural P
systems. IEEE T. on NanoBiosci., 15(5), 455-467 (2016).

Zhang, G., Rong, H., Neri, F., Pérez-Jiménez, M.J.: An optimization spiking neural P
system for approximately solving combinatorial optimization problems. Int. J. Neural
Syst., 24(5), Article No. 1440006 (2014).

Zhang, X., Pan, L., Paun, A.: On the universality of axon P systems, IEEE T. on Neur.
Net. Lear., 26(11), 2816-2829 (2015).

Java regular expressions lesson by Oracle.
https://docs.oracle.com/javase/tutorial/essential/regex/

MeCoSim Website. http://www.p-lingua.org/mecosim/
P-Lingua Website. http://www.p-lingua.org/

