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Ecosystem modelling based on membrane computing is emerging as a powerful way to study the dynamics of (real) ecological
populations. These models, providing distributed parallel devices, have shown a great potential to imitate the rich features
observed in the behaviour of species and their interactions and key elements to understand and model ecosystems. Compared
with differential equations, membrane computing models, also known as P systems, can model more complex biological
phenomena due to their modularity and their ability to enclose the evolution of different environments and simulate, in
parallel, different interrelated processes. In this paper, a comprehensive survey of membrane computing models for ecosystems
is given, taking a giant panda ecosystem as an example to assess the model performance. This work aims at modelling a number
of species using P systems with different membrane structure types to predict the number of individuals depending on
parameters such as reproductive rate, mortality rate, and involving processes as rescue or release. Firstly, the computing models
are introduced conceptually, describing the main elements constituting the syntax of these systems and explaining the se-
mantics of the rules involved. Next, various modelled species (including endangered animals, plants, and bacteria) are
summarized, and some computer tools are presented. Then, a discussion follows on the use of P systems for ecosystem
modelling. Finally, a case study on giant pandas in Chengdu Base is analysed, concluding that the study in this field by using
PDP systems can provide a valuable tool to deepen into the knowledge about the evolution of the population. This could
ultimately help in the decision-making processes of the managers of the ecosystem to increase the species diversity and modify
the adaptability. Besides, the impacts of natural disasters on the population dynamics of the species should also be considered.
The analysis performed throughout the paper has taken into consideration this fact in order to increase the reliability of the
prospects making use of the models designed.

On the one hand, theoretical studies focus on how to

1. Introduction

Membrane computing is a fast-growing branch of natural
computing [1]. The computational devices within this
paradigm are called membrane systems or P systems, and
they have attracted major interest since their appearance.
Nowadays, membrane computing community is actively
combining deep theoretical research studies with practical
applications.

design membrane computing models according to the
compartmentalized structure and the functioning of bio-
logical membranes within living cells and how to evaluate
their computational power and computational complexity
[2], addressing efficiency aspects. Different types of mem-
brane structures abstracted from biological cells can be
distinguished in membrane systems. The most widely
studied are cell-like P systems [3-6] (inspired in the
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compartmentalized hierarchical structure inside a cell),
tissue-like P systems [7, 8] (with the focus on the inter-
connection among cells, not entering into details of the
internal compartments inside each cell), and spiking neural
P systems [9-12] (inspired from the transmission of elec-
trical pulses, also known as spikes, among neurons). Along
the last twenty years, plenty of research results have proved
that a number of variants of these computational models are
equivalent in computing power to Turing machines (com-
putationally complete), and many of them obtained efficient
solutions (polynomial solutions, even linear in some cases)
to a variety of computationally hard, NP-complete [13-15],
or PSPACE problems [16-18].

On the other hand, applied research of membrane
computing models aims to effectively apply the introduced
computational models to handle several practical problems,
from basic ones to the modelling of complex systems. For
automatic design of membrane computing models
(ADMCM), regarded as an automatic computation device,
the models can adaptively achieve basic arithmetic opera-
tions [19]. Thus, in [20], Huang et al. applied P systems with
the Q-bit representation to compute power n°, something
also achieved in [21] by Ou et al., who applied P systems to
calculate power n* with a different approach using an elitist
genetic algorithm (GA). Within this same research line, in
[22, 23], five types of automatic P systems were used to
compute addition, subtraction, product, division, and
power. In some studies, spiking-like P systems are used as a
computing device to solve several arithmetic problems; for
instance, the addition of # natural numbers and the product
of two arbitrary natural numbers with a given length of
binary bits [24, 25]. Of course, apart from providing au-
tomatic design and arithmetic operations, P systems are
applied to hard problems such as vertex cover [26, 27],
quadratic assignment [28], graph coloring problems
[29-31], and non-semilinear sets [32, 33]. Besides, they have
been applied to solve image processing problems [34-39],
complex optimization problems [40-42], complex market
interactions [43], and intelligent control problems for robots
[44-46]. Many applications have ultimately been imple-
mented by using simulation tools. For the state of the art of
such simulators and environments for the virtual experi-
mentation with P system-based models, refer to [47] and the
associated website (https://www.gcn.us.es/SimulationMC).

The applications summarized above plus some others
show that membrane computing models are useful tools to
solve many practical problems of very different nature. It
seems clear that each type of computationally hard problem
addressed by membrane computing models somehow im-
plies an extension of application fields, providing theoretical
and practical foundations, opening paths that can be worth
exploring, and widening the application space.

Regarding the contributions of membrane computing to
model complex systems, relevant achievements have been
made along the last decade, with a special attention to the
study of real ecosystems (focusing on endangered or invasive
species, among others) and population dynamics in general
[48]. Thus, endangered species in ecosystems present re-
production rates usually low, along with mortality rates
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abnormally high, due to reasons derived from the biology of
the species, the increased threats by other species, and the
effects of human activities or natural disasters. It is often the
case that these endangered species are not considered to be
free of danger even when the threat is vanishing because of
their scarcity in the undisturbed fragments so that isolated
populations sometimes cannot survive after destruction and
might become extinct. Hence, the qualitative and quanti-
tative understanding of the inherent laws or processes un-
derlying the disturbances in the population size and
distribution (i.e., the population dynamics) has become
critical for the successful management and conservation of
endangered species [49].

As briefly mentioned, apart from their natural mortality,
most species have suffered the effects of environmental di-
sasters. As certain studies point out, some types of such
natural disasters have caused or may potentially cause the risk
of species biodiversity collapse, or even some species ex-
tinction in certain regions [50-53]. For example, in [54-58],
the authors studied the impacts of climate change on parasite
biodiversity [54], the divergence of species responses [55],
information fusion of numerous natural or environmental
factors by using a combination of mathematical models [56],
the parameters related with the population dynamics of
songbirds [57], and the impact for agricultural welfare [58].

In order to accurately assess the impacts of these factors,
several mathematical models are used to analyse the effect of
these elements on population dynamics, e.g., differential
equations [59], generalized linear models (GLMs) [60],
generalized additive models (GAMs) [61], ecological niche
factor analysis (ENFA) [62], or machine-learning methods
such as Bayesian approaches [63], population viability
analysis [64, 65], agent-based models [66], maximum en-
tropy method (Maxent) [67], and neural networks [68].
According to the predicted results of these models, the
parameters related can affect the population change in
varying degrees. It is highlighted by the authors the fact that
it would be worth providing projections for endangered
species population dynamics under the influence of potential
natural disasters in order to protect them. Besides, it would
be advisable to address the research on the population
dynamics of the species following different approaches; there
is no single Swiss knife resulting in the most adequate tool to
apply in all situations.

This work focuses on membrane computing (MC) models
of species in certain ecosystems, thus involving mostly two
main fields: membrane computing and population dynamics.
Concerning the former one, MC has among its strengths the
availability of rigorous and complete, strongly founded the-
oretical-practical developments; in addition, it provides
parallel distributed devices in a framework with flexible
evolution rules. With respect to the latter one, the population
dynamics of species obviously involves several biological
processes, including some common ones (such as feeding,
reproduction, and mortality), and some more specific of
certain studies, such as rescue, release, and biochemical re-
actions of bacteria; besides, the dynamics of the species could
also be affected by the potential impacts of natural disasters on
the populations under study.
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Based on the characteristics of membrane systems and
the features of endangered species, the evolutionary be-
haviour of such species can be expressed by the rules of
membrane systems. Hence, along this paper, we recapitulate
ecosystem models using different types of P systems. Firstly,
we analyse between the elements related with the species and
their interactions in the ecosystem and those related with the
definition of P systems. So far, there are several references to
study the applications of P systems on different real eco-
systems. The common characteristics can be summarized as
follows: (a) each individual is represented by an object in the
P system; (b) different behaviours or processes affecting the
individuals of the species are abstracted as the rules in the P
systems; and (c) a certain living environment in the eco-
system is abstracted as a membrane structure.

Regarding the dynamics of these systems, at every moment,
all individuals will evolve synchronously. As these species
inhabit different geographical regions but are subject to the
same processes (with the values of certain parameters possibly
changing), this scenario can be represented by using multi-
environment P systems, where communication of individuals
is possible among different environments. For some species,
such as plants and bacteria, the evolutionary processes are also
modelled according to their characteristics and possibly dis-
tinguishing environments with different parameters.

Through the analysis above, we have depicted some of
the most relevant facts taken into account when modelling
ecosystems based on P systems in order to accurately predict
data about the biological evolution of the species, aiming to
capture in these models (i.e., to mimic) the relevant elements
of the real biological phenomena under study. The rest of
this paper is arranged as follows. Section 2 introduces
membrane computing models for ecosystems. After that,
Section 3 summarizes the applications of such models to the
population dynamics of certain ecosystems. Then, Section 4
lists several simulation software tools to perform virtual
experiments for P system models of ecosystems. Later on, in
Section 5, a case study on the population dynamics of giant
pandas is analysed. Finally, some conclusions and possible
further developments are discussed in Section 6.

2. Membrane Computing Models for
Ecosystem Modelling

As outlined in Section 1, different types of mathematical
models have been applied to ecosystems. These models are
representations imitating the real systems under study, using
a certain formalism. In particular, some of these approxi-
mations are computational models, which means they follow
the rules of some computing paradigms that regulate their
behaviour and can be computed directly in their compu-
tational devices or be simulated following the same exact
rules; on the contrary, noncomputational models (e.g.,
differential equations) require the use of approximated
methods in order to be computed by some computing
devices.

When membrane computing is used to create a repre-
sentation of an ecosystem, incorporating their main pa-
rameters, individuals, processes, etc., involved in their

dynamics, this is considered a computational model because
it is a model of the ecosystem that is based on a compu-
tational paradigm (in this case, membrane computing),
whose computation follows the exact rules of the formal
model, not requiring any approximate method to be com-
puted. These models of ecosystems are based on membrane
computing, so they are usually called membrane computing-
based models. Such models are represented by computa-
tional devices called membrane systems (commonly referred
to as P systems) (commonly referred to as P systems).

As computational devices, membrane systems or P
systems are abstracted from the structure and functioning of
living cells. There are three main classes of P systems: (1) cell-
like P systems, inspired from living cells; (2) tissue-like P
systems, inspired from the interactions of cells in tissues; and
(3) SN P systems (spiking neural P systems), inspired from
the communication of electrical pulses (also known as
spikes) in biological neural networks.

Concerning the population dynamics of ecosystems,
both cell-like and tissue-like P systems have been useful to
inspire the appearance of a new class of P system, originally
called the multienvironment P system. Regarding the
membrane structures employed in the models built with
these devices, they define a structure combining the hier-
archical structure of cell-like P systems with an upper layer
of the so-called environments, each one containing a single
cell-like system and introducing the possibility of com-
munication among environments, similar to that in tissue-
like P systems. This structure, as we can observe, is richer
than the two previous models, thanks to the combination of
the two constituent parts: the internal hierarchical structure
present in cell-like P systems (which is not present in tissue-
like P systems, where only cells without the internal
structure are present); the existence of different regions with
cells inside and allowing communication among environ-
ments as a graph (which is not possible in cell-like systems).

Of course, with this new class given by the multi-
environment P systems, we can also model ecosystems with a
single environment involved, defining such environment as
the only node in the graph, with cell-like P systems inside, and
no other nodes to communicate with through edges of the
graph. In contrast, there are more interesting problems that
require additional environments. In such cases, a more
complex graph must be present to allow the movement of
certain elements among environments. In these scenarios,
such communication among environments will play a crucial
role. In addition, each environment will contain its own
hierarchical structure given by the cell-like P system it holds.

With respect to the dynamics of the systems involved in
these computational models, mostly two main paths have
been followed when dealing with multienvironment sys-
tems: a stochastic approach followed by the so-called
multicompartmental systems (there are zero or several cell-
like P systems inside each environment, which are able to
communicate with entire P systems from one environment
to another), with rules subject to chemical laws and kinetic
constants; a probabilistic approach (there is one and only
one cell-like P system in each environment and only single
object communicates among environments), with rules



subject with probabilities, whose values are typically based
on evidence; for further details, refer to [19]. Nowadays, the
stochastic approach is mostly associated with computational
models at a microlevel (e.g., involving molecular interac-
tions), not being widely used to model ecosystems at a
macrolevel. Consequently, in the following, we only consider
the computational models of P systems following the
probabilistic approach, termed as population dynamics P
systems (PDP systems) [69].

As just mentioned, PDP systems are a variant of P
systems introducing probability mechanisms into mem-
brane systems. The framework constituted by PDP systems
was conceived for multiple environments, and therefore
belongs to the class of multienvironment P systems, but can
obviously support the particular case of having the number
of environments which equals to 1 and consequently not
having communication among environments. Now, while
the framework is uniform, from a practical point of view, it is
easy to distinguish systems depending on the number of
environments m in the system; thus, if m =1, we may call
them as single-environment PDP systems (with a cell-like P
system inside a single environment, see Figure 1(a)); for
m> 1, we would talk strictly about multienvironment PDP
systems (with several environments, each one containing a
single P system inside, see Figure 1(b)). These two types of
PDP systems are introduced as follows, including syntactic
and semantic aspects.

Definition 1 (see [69]). A single-environment P system of
degree g, with g>1, is a tuple:

n:(I‘,y,Ml,...,Mq,R,{prIrGR}), (1)

where T is a finite alphabet constructed by all the objects in
the PDP systems and p is a membrane structure (MS),
consisting of ¢ membranes, labelled as 1, 2, .. ., g. The skin
membrane is marked as 1. We associate electrical charges
with membranes from the set {—, 0, +}, negative, neutral, and
positive. M, 1 <i< g, are finite multisets over T, representing
multisets of objects initially placed in the n regions delimited
by the membranes of the hierarchical structure y. R; (R; € R),
1<i<mn, are a finite set of rules of the following form:

uvlf — P’ [v']f, (2)

where u, v, 1/, and v/ are multisets over T (possibly empty,
except u and/or v) and pr is a real number between 0 and 1
associated with the rule, and « and f are electric charges,
with &, S €{-, 0, +}. Besides, in each computation step, the
same left-hand side of the rule can produce different evo-
lutionary states (e.g., surviving or not), and the sum of these
rules sharing their left-hand side (including the electrical
charge) must always be equal to 1.

2.1. Rule Analysis. In order to model real-life ecosystems, the
rules are abstracted from the behaviour of the species
considered, food distributions, natural disasters, bacterium
reactions, etc. From the point of view of the certainty of the
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application of the rules, two kinds of operational rules might
be somehow distinguished. The first type would be rules
without explicit probability written; this is equivalent to a
probability of 1; that is, these rules will be executed whenever
selected, which will happen whenever they are applicable,
and no rules are competing for the same objects involved (if
more than one rule is competing, they would be chosen
nondeterministically). The other type of rules, in this sense,
would be the rules with explicit probability lower than 1; that
is, rules which are once selected will be executed depending
on their probability.

Let us consider an example taking Figure 1(a) as an
example, involving two rules following the general schema
presented for any rule in R;

ro=ulls o V1

(3)

ry = ulvl; I [A]g.

The pattern transformation of the system above would be
as follows: let us suppose an object v has moved from region 1
into region delimited by membrane 2 and then starts evolving
by using some of the two rules in 2. Thus, if rule r; is selected
according to its probability pr, then object v is rewritten into
object v' in region 2 (of course, this could be any multiset),
with u simultaneously evolving to ' in region 1;if r, is selected
instead, then object v is removed from the skin membrane.

The system halts when reaching a given condition, typ-
ically a number of iterations or cycles of the evolution of the
system, because, usually, when modelling complex systems,
there is no beginning or end (different from P systems
generating numbers, computing functions, or solving com-
putationally hard problems); instead, in this case, the result of
the computation is indeed the observation of the system itself,
including whichever elements (individuals and other possible
variables involved) subject to study.

Definition 2 (see [70]). A multienvironment P system of
degree (m, q) with m>1 and g > 1, taking T'>1 time units, is
a tuple:

H=<G,F,Z,T, {Ej|1§jSm},RE,

{Hk =F,y,R,{Mi,j‘lgiSq,lstm}, (4)

i,

where G=(V, §) is a directed graph such that (x, x) € S, for
eachxe V.Let V={e}, e, .. ., e,,}, whose elements are called
environments. I' is the working alphabet, and £ ¢T is an
alphabet describing the objects that can be presented in
different environments. Ry is a finite set of communication
rules between two environments, which is of the form

reRistm},lskst,

Fope, = PP () (e (9)

where x, x|, ..., x,€Z, (e;5 e]-l) €S (I=1, ..., h), and
P, () €10, 1]. For the same left-hand side Xe s the



Complexity

0—> Skin membrane
“—» Objects
Charge

Rules
. Inner membrane
1-— Label

....-————» Environment

(a)

()

FIGURE 1: A portion of classified PDP systems used for modelling ecosystems. (a) A single-environment PDP system with two membranes.
(b) A multienvironment PDP system with four environments with the same P system skeleton placed inside each environment (their
internal structure being omitted). The system shows population activity of the four environments e, to e,.

sum of functions associated with the rules from Rg is equal
to 1.

(i) = (T, 4, R,AM; |, j, <i<g, 1< j<m}) isa P system
with a skeleton (T, 4, R) included in each one of the m
P systems placed inside the m environments (with the
same alphabet, membrane structure, and rules). Thus,
each environment e; contains exactly one P system
with the same skeleton given by (T, y, R). The only
difference among them will be derived from different
parameter values inside each environment, with these
different values potentially implying different initial
multisets M;; inside the P system of each environ-
ment and possibly different probabilities p; affecting
the skeleton rules R inside each ecosystem:

LENra (6)

ulvly i

(i) Ml-)j, 1<i<q,1<j<m, are the multisets of objects
initially present inside each of the g membranes of the
m environments

(ii) E;, 1< j<m, are the multisets of objects initially
present in the m environments

Taking Figure 1(b) as an example, in the system depicted,
there is a P system with a structure similar to the one in
Figure 1(a) inside each environment. There is an object x
from an environment e;, 1< j<4, which can move to an-
other environment e, (maybe to more than one at the same
time) using rule Tee;s during its transmission, object x from
environment e; can be rewritten as x;, 1<i<h, in envi-
ronments e; to e; .

When studying real-world ecosystems, the first type
(single environment) can be appropriate to study the
population dynamics of species in a region (it might cover
more regions with an enriched structure in y, but would not
be too intuitive nor adequate). On the contrary, the second
type (pure multienvironment P systems) is used to model

various species distributed in more than one environment,
subject to the same rules but possibly different conditions
given by parameters (possibly different values for envi-
ronmental factors, soil conditions, etc.). Thus, for the latter,
each environment e; contains one P system with the P
system skeleton (T,u,R) in the structure of I, (with k
aiming to identify different multisets and probability values
inside the P system of each environment). Besides, it is worth
emphasizing the important role played by the information
communication among environments (by sending one
object to one or more neighbouring environments, possibly
transforming this object into a different one inside each
target environment). At the same time, the m P systems
placed in different regions are executed synchronously (let
us also note that, inside each one of these m P systems, a
second level of parallelism is present through the parallel
execution of rules in the n internal membranes of each
system). As it can be shown, a single-environment PDP
system is a special restricted case of a multienvironment
PDP system.

In the following, the main uses of PDP systems to model
ecosystems are analysed. Thus, a synthesis of several papers
published since 2013 illustrates that different types of P
systems have been used for predicting population dynamics
of ecosystems. Well-known membrane systems can be used
for modelling ecosystems in order to assess the projected
number of individuals of certain species and their distri-
bution (in terms of ages and locations). So far, a number of
endangered species (listed in the literature in Section 1) have
been studied. They focus on different species and study
different processes and phenomena, and there are some
differences in the definition of rules such as counts or types
and subtly different membrane structures (e.g., single vs.
multienvironment or different number of membranes in the
P system skeleton). However, the general structure of the
systems and their dynamics can be extracted for a general
protocol, as explained in [71]. A simplified version of such a
protocol is outlined in the following steps, with a brief
explanation about the application of this protocol to the
particular scenario studied in this paper.



Step 1: obtain biological data of the species studied. In
the present study, some pedigree data are available. The
information includes the number of female (male)
individuals, age, and birthday or death date. Depending
on the biology of the species (usually animals), we need
to further know other information which is not
recorded in datasets, typically related with processes of
interest, for example, their living habits or feeding
needs.

Step 2: define a conceptual model. According to the
evolutionary behaviour of the species, i.e., feeding,
reproduction, mortality, and so on, a preliminary
general model (conceptual model) is abstracted from
these basic processes, and then each module of this
model is given a certain priority and sequencing.

Step 3: define the computational model. Starting from
the conceptual model, the computational model is built
based on a mathematical framework, in our case, PDP
systems. Natural evolutionary behaviours from the
conceptual model are symbolized, representing the
underlying processes with the elements of the com-
putational model. The necessary mapping for this
model involves (a) designing the membrane structure
of the skeleton P systems (cell-like structure) to place
inside the environments, including the initial multisets
representing individual objects (e.g., an animal — an
object) and symbolic food; (b) designing the evolu-
tionary rule sets capturing the main processes affecting
the biology of the species under study, according to
their living behaviours. Eventually, a complete multi-
environment PDP system (or some other equivalent
complete model for the ecosystem) is established. This
model should be ready to analyse in terms of its
functioning under different scenarios.

Step 4: choose simulation software. The previous
model designed might be analysed with manual traces
to validate against real data and later use to formulate
hypothesis and check the behaviour of the system
under potential scenarios of interest. However, the
manual analysis of big complex systems is not only
tedious or error-prone but also impractical and directly
intractable in certain case studies. Thus, we need
simulation tools, where we can debug the models,
experimentally validate them, and finally use them for
intensive virtual experiments under different scenarios
of major interest for the ecosystems under study. In the
case of PDP systems and similar types of membrane
systems, the most widely used software has been the
framework provided by P-Lingua and MeCoSim. For
the introduction about this software, refer to Section 4.

Step 5: output predicted datasets. Taken the statistical
dataset of a certain year as the input, along with all the
parameters related with the biology of the species and the
conditions of the ecosystem, the system predicts a set of
experimental results by using the MeCoSim environment
and then running the model loaded for a certain number
of cycles (usually years) to get the output.
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The protocol briefly described above provides an orga-
nized generic sequence of steps to design a model based on
the PDP system and use it in a practical way to get new
insights from the study of the phenomena under study. This
not only provides a theoretical but also practical framework
for the use of size-based indicators to monitor the ecosystem
changes of species. From a conservation and management
viewpoint, a key advantage followed with these models based
on PDP systems and the tools available (where many po-
tential scenarios can be analysed by simply changing the
input data) is that predictions can be obtained according to
the evolutionary behaviour of species rather than relying
solely on historical baselines that may not be relevant under
the current or future environmental conditions. The ap-
plications of models in the context studied can also include
the analysis of how several parameters, including growth,
reproduction, and mortality ratios, or climatic factors,
among others, affect predicted changes in the number of
species.

3. Application of P Systems to the Study of the
Population Dynamics of Ecosystems

Concerns about endangered species arise because most of
these known species have smaller range, lower reproduction
rate, and higher extinction rate, thus causing the sharp
decline of population size or extinction. After some disaster
or difficult situation, even if the situation gets better later,
endangered species are often not considered to be free of
threat because the total population might recover but some
populations might be scarce even in the undisturbed frag-
ments, thus potentially causing that such populations may
not remain after destruction. The scenarios to consider
might be very complex to assess in order to incorporate
many parameters and processes affecting the species. In this
context, it is worth searching for new types of assessing
approaches aiming to capture crucial aspects summarizing
the change law of the population dynamics. Particularly,
based on the fact that P systems can incorporate and
quantify several biological behaviours of species (including
reproduction, mortality, and the direct and indirect inter-
actions over migration from one place to another one,
among others), such devices are applied to model the
population dynamics of complex ecosystems.

The use of P systems in ecosystem modelling concerns
mainly the prediction of population size of numerous en-
dangered species using P system devices such that a prospect
of the species population in the coming years can be ob-
tained based on the known processes and parameters and the
absence of data about such years. In most cases, multi-
environment P systems have been designed and simulated.
Numerous systems have been studied, with different pro-
cesses and factors involved. In every ecosystem analysed, the
elements to consider had distinct features based on input
parameters such as (1) membrane structures to capture
physical and abstract compartments and (2) rules about the
natural biological behaviour of the species under study,
related processes, human intervention, and so on. In Table 1,
we have listed relevant parameters of the P systems (rules,
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TaBLE 1: Summary of studies that have used a new frontier approach, termed PDP systems with different constraints, to assess the number of
endangered species under conditions of different types.

Case study Region/condition Comments

(2, 1) with two electrical charges (0 or +), where the

Colomer et al. [71] Region: the cliff-nesting and territorial mountains skin region is used to fix reproduction and mortality

in the Catalan Pyrenees (Northeastern Spain) and the inner one to fix feeding; five wild and
Bearded vulture o . . . - .
Condition: single-environment domestic ungulates are included as carrion (prey)
species.

The structure of this system is the same as that of [69].
The only difference is this system is a dynamic P

Cardona et al. [72] Reglopi Cata} an Pyrer}ees (NE) system with the probabilistic approach, while the
Bearded vulture Condition: single-environment .
former used stochastic constants (a rule can be used
when the reaction condition reaches a given constant).
(2, 1) with two charges. This system considers not-
nomadic species (also called invasion alien
Cardona et al. [73] Region: Catalan Pyrenees (NE) species—see part (b) in Section 3) and density
Scavenger birds Condition: single-environment regulation in order to coexist. Subsequently, this
model contains 13 species including two new
scavenger birds in competition.
(11, 4, 1) with three electrical charges (-, 0, +). The
. ] mainl i four infl ing f: :
Colomer et al. [70] Region: Catalan Pyrenees (NE) H.IOde matn Y.COHSIderS our influencing factors
. .. . introduced disease such as pestivirus infection,
Pyrenean chamois Condition: multienvironment

climate change (refer to part (a) in Section 3), hunting,
and migrations between areas.

The computational model of the probabilistic P
system is the same as that of [70] (refer to the third
case in this table for the detailed introduction about

the model of a P system).

Region: the cliff-nesting and territorial mountains
in the Catalan Pyrenees (Northeast, Spain).
Condition: multienvironment

Colomer et al. [74]
Bearded vulture

For the scavengers, the structure is the same as [69];
hence, many details have been skipped. For mussels,
the structure is (5, 17, 1) with tree electrical charges.
This model mainly focuses on factors such as water
temperature and its effect on reproduction (see part
(a) in Section 3 for impacts of the factor), fixation of
the mussel to the substrate, movement of larvae, and
density regulations.

Region: Catalan Pyrenees (NE Spain)/a fluvial
reservoir (Riba-roja-Ebro river, NE Spain)
Condition: multienvironment

Cardona et al. [75]
Scavengers/zebra mussel

(2, 2) with the environment change module, where
any of species will move to another area when the
capacity reaches a threshold. The model studied: (a) 13
species, including three avian scavengers (three types
of vultures) as predator species plus six wild ungulates
and four domestic ungulates as prey species; (b) the
interactions between species; (c) the communication
between two areas; and (d) load capacity regulation.

Region: Catalan Pyrenees (Spain)/Pyrenean and
pre-Pyrenean mountains
Condition: multienvironment

Colomer et al. [76]
Scavenger birds

(5, 5) with climatic variability (part (a) in Section 3)
and orographic factors (part (c)). More importantly,
Colomer et al. [77] Region: (sub) Alpine (NE Spain) the model first emphasizes on the impact of the plant
Plant communities Condition: multienvironment community module on population dynamics. The
remaining modules are similar to those in the
previous models.

Colomer et al. [78] (11, 2) with three electrical charges. This model mainly

. Region: Catalan Pyrenees (NE) considers the impacts of environment factors such as
A carnivore that predates on o - . . o .
Condition: single-environment weather, orography, and soil conditions on carnivore
ungulates and five ungulates size

The model only considers wild ungulates due to the
limitation of domestic carcasses. Undoubtedly, this
Margalida et al. [79] Region: Catalan Pyrenees (NE) causes an impact on the biomass. The model of the (2,
Scavenger birds Condition: multienvironment 2) structure verified that when considering only wild
ungulates, the ecosystem cannot offer enough food for

predators.
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TaBLE 1: Continued.

Case study Region/condition

Comments

Margalida and Colomer [80]
European vultures

(i) Bearded vulture

(ii) Egyptian vulture

(iii) Cinereous vulture

Spain

considered

Regions: 10 municipalities in Catalonia, Northern
Food source: the four scenarios of food availability

Condition: multienvironment

Taking 10 areas and 4 avian scavengers as the research
object, the model considers the impact of climate
variations, such as seasons (summer and winter) (part
(a) in Section 3), food shortage, density regulation,
and changes in species habitats (insufficient
resources), on population dynamics.

Colomer et al. [81]
Zebra mussel

Region: reservoir of Ribarroja
Condition: multienvironment

(40, 17), where the first 20 membranes are used for 20
weeks of reproductive cycle, 16 for the weeks of the
second reproductive cycle, and the last two
membranes are used to handle regulation and
mortality.

Two regions: Chengdu Research Base of Giant
Panda Breeding (GPBB)/China Conservation and
Research Centre for Giant Panda (CCRCGP)

Huang et al. [82]

Captive giant panda (Wolong)

Condition: single-environment

(2, 1), where two membranes are used to evolve and
store object information; the evolution process of the
species: RMF + rescue module, where RMF is also
modified as RFM, FMR, or other forms, showing the
robustness of the system independently on the order
of the modules.

Tian et al. [99]
Captive giant panda

Two regions: GPBB/CCRCGP
Condition: single-environment

The membrane structure is the same as in [82], and the
only difference is that the release module is added to
the previous module, that is, RMF + rescue
module + release module.

Bernardini and Gheorghe [7]
The quorum-sensing
regulatory networks of the
bacterium Vibrio fischeri

Region: marine

Condition: single-environment
Evolutionary rule choices: in the stochastic way

(9, 1), where multisets of objects are used to model
bags or soups of chemicals, whereas rules are used to
model generic biochemical processes.

Romero-Campero and Pérez-
Jiménez [83]

Quorum sensing in Vibrio
fischeri

Region: marine

Condition: multienvironment
Rule choices: stochastic approach

(N, 25), multicompartmental P system, where N
bacteria are randomly placed inside a
multienvironment with 25 different regions, that is,
there is an uncertain number of bacteria in each
region.

Valencia-Cabrera et al. [84]
Gene regulatory networks

Condition: single-environment

The first membrane computing model applied to
reconstruct the behaviour of logic networks of species
with PDP systems.

Valencia-Cabrera et al. [85]
Gene regulatory networks

Case study: Arabidopsis thaliana
Condition: single-environment

Based on [84], P systems are used to reproduce a logic
gene network of (real) Arabidopsis thaliana in order to
regulate the flowering processes.

membranes, initial configuration, etc.) used in a number of
models of ecosystems for different species modelled by using
P systems. The listed works are sorted chronologically, i.e.,
according to the time sequence of different papers studying
species (fourteen years from 2005 to 2018, where the first
paper in this list about modelling ecosystems using P systems
was published in 2005).

In the following section, we will mainly introduce the
modelling process of each species studied following the
basic sequence summarized in the table mentioned. We
will mostly focus on three types of animals (bearded
vulture, zebra mussel, and Pyrenean chamois) and two
additional not-animal species (Arabidopsis thaliana and
Vibrio fischeri). Two main aspects will be described for
each case study: (a) the information about the geo-
graphical environment of the ecosystems and their pro-
cesses involved; (b) the biological factors affecting the
population size in the ecosystem, analysing how to model
the biology of the species under study depending on their
features.

3.1. Endangered Species

3.1.1. Bearded Vulture. Bearded vulture, Gypaetus barbatus,
is a near-threatened species at a worldwide level but a most
severely endangered species at a local level in southern
Europe. In the ecosystem under study, bearded vultures are
generally living in the southern slope of the central Pyrenees
(Aragon region, Spain), a mountainous area belonging to the
Eurosiberian biogeographic region, which encompasses the
three geomorphological regions of the Pyrenees: Axial
Pyrenees, Internal Sierras, and External Sierras. Bearded
vultures are distributed in different regions within these
areas [86].

Bearded vulture is a cliff-nesting and territorial large
scavenger. This species is the only vertebrate that feeds
almost exclusively on bone remains of herbivores living in
the three habitats mentioned, i.e., animals such as red deer,
fallow deer, roe deer, and sheep. The remains of these
animals were predicted to be the major limiting factor for
the survival of avian scavengers during winter and summer
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[80]. Bearded vulture has a mean lifespan, in wild birds, of
21.4 years [87]. In general, the mean age of the successful
reproduction is 11.4 years [88]. With every spawning,
usually, only one chick survives due to the aggression,
although the species can produce (as frequently does) two
eggs. Recently, field technicians from the Conservation of
the Bearded Vulture have carried out annual breeding
surveys, indicating that the fertility ratio of the species in
the Pyrenees is around 30%, which makes this species
become one of the rarest raptors.

Taking into consideration all the evolutionary charac-
teristics and the core parameters affecting the changes in the
population size of bearded vulture, different types of P
systems were used to model ecosystems related to bearded
vulture. In the initial phase, a bearded vulture model was
presented by a single-environment P system, whereas, also,
different rule selection methods started to be explored. Thus,
in [80], based on the principle of biochemistry reactions, a P
system with stochastic constants is used to model bearded
vulture, that is, a rule will be executed if the condition of
intrinsic reactivity given a certain threshold is met. However,
this technique cannot exploit, in general, the full range of
rules of the system, involving a number of different processes
subject to different natural laws. In order to cope with the
problems of limiting the use of rules, a probability-based
population dynamic P system is proposed. In such systems,
the rules are applied in a probabilistic way, except for these
rules without probabilities (implicit probability 1). Experi-
mental results show that, in comparison with the previous P
system based on stochastic constants, this system can
simulate more precisely the trends of population dynamics
of bearded vultures, with a higher accuracy with respect to
the validation dataset.

According to the analysis for bearded vultures in a re-
gion, the reproduction of the vultures in a small area can
easily lead to the loss of genetic diversity of these vultures;
this phenomenon may happen not only during the founding
event but also during subsequent generations when the
population remains small and the exchange of individuals
with other populations is minimal. In order to modify the
breeding rate by increasing genetic diversity and enhance the
survival rate of individuals, there should exist different
communications among bearded vultures living in different
regions. Based on this idea, Colomer et al. [70] applied a
multienvironment P system to model bearded vultures of the
Catalan Pyrenees. In this system, each environment con-
tained 17 different types of animals corresponding to 13
species. Besides, there was communication between bearded
vultures of different regions, that is, individuals can migrate
from one region to another one, thus increasing genetic
diversity and modifying the survival rate of bearded vultures.
In order to properly predict the change in the population size
of the vultures, several nature disasters were added to a
multienvironment population dynamics P system [80].
Through experimental validation based on simulations and
contrast with real data, it was concluded that this model
presents good prediction results, regarding experimental
data. However, under certain conditions, a significant dif-
ference between model and real data was observed. For

bearded vultures, it was due to the fact that the initial models
did not consider any process to capture the regulation of the
populations, which was later incorporated to adequately
represent the carrying capacity of a region of a certain
ecosystem.

3.1.2. Zebra Mussel. Zebra mussel, Dreissena polymorpha, is
a freshwater mussel living in several of the major river
basins, including Ribarroja reservoir in the north of Spain.
This species is an invasive species, implying dramatic
changes in the ecosystems where they settle, in terms of
species distribution, water and soil conditions, etc. Its ap-
pearance in Spain and several European countries resulted in
adverse impacts on industry, economy, and ecology [89, 90].
Zebra mussel is a dioecious species with an r-selected re-
productive strategy, consisting in external fertilization and
planktonic larval stages. Its success colonizing new envi-
ronments may be attributed to high fecundity, efficient larval
dispersal, few natural controls, and its ability to adhere to
hard substrates [91].

Zebra mussel has become a dangerous threat by feeding
competition and alternation of river sediments to native
mussels. As these native mussels are threatened or endan-
gered, current control strategies in Spain water bodies are
therefore limited to avoid spreading of zebra mussel by
regulating boating and fishing activities. For these reasons,
different biochemical and histological biomarkers have been
undertaken to study the impacts on the population dynamics
of zebra mussel, thus aiming to control the dispersal of the
species over others. In general, traditional approaches ap-
plied logistic regression [92], classification and regression
tree model [93], rule-based genetic algorithms [94], and
maximum entropy method (Maxent) [95] to analyse the
alteration of population dynamics of zebra mussel, obtaining
a series of good results. However, the use of such equations
in the case of the zebra mussel ecosystem imposed some
restrictions on its ecological analysis. Hence, P systems were
applied to predict the changes in the population of larvae
and adult individuals of zebra mussel (i.e., the population
dynamics of the species).

The most relevant advantage derived from modelling
zebra mussel using P systems is that they make it possible not
only to mimic the evolutionary features of the population as
a whole, exploring the birth or mortality trend of such
population, but also add the traceability (at the level of
animals instead of populations) of each adult or larvae in-
dividual during the evolution of the system. In [75],
according to the categories of species and distribution of
their regions, a multienvironment population dynamics P
system with 5 cells and 17 areas is used to model zebra
mussel of the Ribarroja reservoir. Since zebra mussel must
breed at a strict temperature, this parameter is also con-
sidered in this P system. Comparing with statistical data, the
deviation rate is controlled within reasonable 10% of error.
Subsequently, Colomer et al. [81] used a PDP system with 40
membranes and 17 areas to model zebra mussel in the
reservoir or Ribarroja ecosystem with a more in-depth
analysis. This model included a total of 18 environments
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distinguishing areas (plus an additional control environ-
ment). Besides, within the environments, each corre-
sponding inner P system contained 40 cells, devoted to
handle different steps and processes related with the biology
of the species and different reproductive cycles (with more
regions to control the evolution of the first yearly repro-
ductive cycle, a smaller amount for the second cycle, and
different ones to control regulation processes).

The simulation results obtained showed that PDP
models provide very useful tools to model complex, partially
desynchronized, processes that work in a parallel way.
According to the analysis above, P system-based models
could predict better results when handling characteristics
such as the ones present in this species (with respect to the
previous approaches), thus increasing the confidence in the
effectiveness of the methodology proposed.

3.1.3. Pyrenean Chamois. Pyrenean chamois, Rupicapra
pyrenaica, belonging to genus Rupicapra, is a mountain
ungulate distributed over most of the medium- to high-
altitude mountain ranges of Andorra, France, and Spain
[96]. There are about 53,000 individuals of Pyrenean
chamois living in these places, and the status of the species
has not always been favorable. For example, in the late 60s,
the population decreased down to the edge of extinction due
to indiscriminate hunting [74].

In order to mimic the evolutionary behaviour of this
species and estimate the effects of introducing pestivirus
affecting the species, Colomer et al. [74] modelled Pyrenean
chamois using a multienvironment PDP system with
thresholds such as maximum density restrictions (i.e., car-
rying capacity was considered). In such a PDP system, there
were four environments (given the availability of data from 4
different areas in the Catalan Pyrenees). Each environment
included the same skeleton with 10 regions. According to the
requirements captured from ecologists studying Pyrenean
chamois, the processes mainly considered were those of
feeding, reproduction, and mortality, being these evolution-
ary behaviours properly abstracted as some rules in the PDP
system designed. In the following, we will introduce some key
factors that affect the population dynamics of this species.

In this P system, the model designed considered the im-
pacts of diseases caused by border disease virus (BDV, dan-
gerous pestivirus) on the population dynamics of chamois
under study, given that the evolution of this species was highly
influenced by an infection of BDV [97] in a significant part of
certain regions of the Catalan Pyrenees. In addition to this
pestivirus, a number of relevant environmental conditions
(e.g., weather, soil, and vegetation) were added to this model
because these factors can affect the biology of the species,
specifically in processes such as reproduction. Besides, human
activities (such as hunting and changes in land use) could be
added to this model because of the influence they may have on
the population dynamics in the ecosystem considered. In the
design of the PDP system, these conditions would be incor-
porated through certain parameters and rules making use of
them. Again, this model involved several processes simulta-
neously taking place during the evolution of the population.

Complexity

According to the simulation results obtained with the
model designed, belonging to ecological data of 22 years,
some differences were observed with respect to the real data
available to validate the model. It was concluded after a
deeper study that these differences between the values ob-
tained with the model and the statistical data could be
turther reduced by introducing more nature conditions into
P systems. The modular, flexible, and extensible nature of
membrane systems made it possible to introduce new ele-
ments without major changes in the existing model. Dif-
ferently from other modelling techniques, the modularity of
P system enables the reusability of existing structures and
rules in the construction of increasingly complex models
where new processes are incorporated iteratively.

Due to the fact that monitoring data including weather
change varies continuously and due to the existing relations
among different natural conditions (e.g., climate change can
increase or decrease the spread of diseases and invasions of
alien species may also bring new diseases), it is likely that, for
assessing population dynamics, we should focus on multi-
index fusion, not just single-index study. A few potential
examples can enlighten this thought.

3.1.4. Giant Pandas. Giant pandas, Ailuropoda melanoleuca,
are listed as endangered species by the IUCN Red Data Book
(recently updated to class VU—vulnerable—in the last as-
sessment, 2016). According to the fourth giant panda survey
by the National Forestry Administration (NFA), only 1864
wildlife giant pandas and 375 captive giant pandas existed by
the end of 2013. It is a sharply debated question whether
panda populations are just beginning to regain lost ground
or are already healthier than they have been for many years
[98]. Recent studies have clarified that giant pandas in more
than 200 countries and regions around the world are extinct,
or almost extinct, given that present survival rates are ex-
ceptionally low.

Facing the survival status of giant pandas, approaches on
assessing population size are built. As P systems can in-
corporate and quantify several behaviours of species (i.e.,
reproduction, feeding, mortality, etc.), along with direct or
indirect species interactions implying communication, P
systems are being used to model giant pandas. In [82], based
on the ecological data of giant pandas in Chengdu Research
Base of Giant Panda Breeding, a probabilistic membrane
system was designed. This PDP system included a single
environment, with an internal membrane structure con-
sisting of two nested regions. The model included a series of
objects (representing giant panda individuals with indexes
representing ages and genders plus sources of food and
control objects) and evolution rules to represent the main
giant panda biological processes. The experimental results
obtained showed that the model can approximately simulate
the trends of population dynamics of giant pandas. In order
to properly mimic the natural behaviours and lifestyles of
giant pandas in the real natural environment, based on the
ecological data of giant pandas in the China Giant Panda
Conservation Research Centre, in [99], a release module was
added to the previous population dynamics P system. The
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simulation results indicated that the maximum deviation
rate between the prediction results and the actual data was
basically controlled within +4.13%, which improved the
accuracy of solutions using the P system compared with [82].
Although these systems have already been dedicated to
further improve the quality of the simulation results men-
tioned, they are still limited to single-environment condi-
tions, with no clear-cut studying for multienvironment P
systems so far. Besides, natural disasters are also not con-
sidered in the studied systems to this day, leaving room for
an important open research line being explored.

3.2. Other Biological Systems. In this section, we survey
ecosystem modelling for other biological systems including
the quorum-sensing regulatory networks of the bacterium
Vibrio fischeri and those of Arabidopsis thaliana. We will
shortly outline the contributions of P systems to studies
about the behaviour of populations of other ecosystems. For
such ecosystems, P systems were used to model the bio-
logical phenomena rather than being interested in the
particular behaviour of each individual. In the following,
model designs and experiment assays applied are briefly
described, along with some conclusions about their study.

3.2.1. Vibrio fischeri. Quorum sensing is a cell density-de-
pendent gene regulation system that can manage the ex-
pression of specific sets of genes. Certain pathogenic bacteria
use quorum sensing to regulate genes encoding extracellular
virulence factors [100]. The cell density control of lumi-
nescence in the symbiotic marine bacterium Vibrio fischeri is
the best-studied quorum-sensing system. Hence, several
references used P systems to model this bacterium, con-
cluding that these systems can really simulate the overall
effect of the colony.

In [7], Bernardini and Gheorghe used a single-envi-
ronment P system with membrane structure (9, 1) to model
the quorum-sensing regulatory networks of Vibrio fischeri.
In this model, there are 9 compartments, each one repre-
senting a bacterium. Inside each of the compartment, rules
are used to regulate the reactions of the luminescence genes.
Besides, objects can move between a compartment and the
environment. Single-environment techniques limited the
communication between different types of bacteria. In [83],
Romero-Campero and Pérez-Jiménez presented a multi-
environment P system with stochastic constants in order to
allow the individuals of bacterial cells to communicate with
each other. Through experimental results, this multi-
environment computational model of quorum sensing in
Vibrio fischeri was shown to predict efficiently the change of
bacterial density.

3.2.2. Arabidopsis thaliana. Gene regulatory networks are
useful models based on versatile frameworks for biologists to
understand the interactions among genes in living organ-
isms. In order to better reproduce the behaviour and the
dynamics of gene networks, a PDP system was provided to
accurately simulate the behaviour of different types of gene
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networks of species. Thus, in [84], Valencia-Cabrera et al.
first used membrane computing models to reproduce the
behaviour of a gene network constructed by the improved
LAPP method. In this model, the state of each gene in the
network, at every moment, is needed to be coded by a series
of binary numbers in the existing environments. Then,
through interactions (regulated by the rules defined), the
next state of the genes will be produced. The contribution of
each interaction is calculated from the previously generated
objects in order to assess the global influence. Once the
global clock equals to 0, the system can stop, obtaining the
optimal gene networks.

Subsequently, Valencia-Cabrera et al. [85] applied the
defined LN DP systems to reconstruct Boolean gene net-
works and gene dynamics of Arabidopsis thaliana in order to
regulate the flowering processes associated with Arabidopsis
thaliana on a long-day scenario. By simulating using soft-
ware MeCoSim, the designed model proved to match the
output data obtained by the improved LAPP method.

4. Simulation Software

P system simulators have become important computational
tools in the processes of model debugging, validation, and
later virtual experimentation, among other purposes. In this
section, we introduce some simulation software products to
design models for ecosystems by means of P systems.

The primitive simulators were mostly ad hoc simulation
tools devoted to very specific problems or pedagogical aids in
the understanding of computations based on the first var-
iants of P systems. However, very relevant achievements
were made with these tools, in the first decade of membrane
computing, as extensively explored in [47]. This initial ex-
citing period led to the need of simulation assistants with a
broader scope, thus providing general-purpose tools. A
milestone in this evolution was the P-Lingua framework,
providing a standard language, along with the corre-
sponding software framework applied to specify and sim-
ulate a number of classes of P systems [101]. Since its
appearance, P-Lingua has been successfully used to cope
with ecosystem modelling problems [76], formal model
checking, and several computationally hard problems [101],
among others. Each model displays characteristic semantic
constraints that determine the way in which the rules are
selected. Hence, it is necessary for simulation software to
take into account different scenarios when the computa-
tional tools of P systems come to the fore. Nowadays, many
types of P system models can be specified and simulated with
this framework (e.g., P systems with active membranes [100],
tissue P system models [102], and spiking neural P systems
(SN P) systems [103], among others). As it will also be
recalled later, this framework provides the core engine used
by MeCoSim.

With the development of simulators, in recent years,
different software applications have been applied to the
simulation and validation of biological systems. Here, we
will introduce several developed software tools in the fol-
lowing sections.
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4.1. MetaPlab (Italy, 2008). The simulator called MetaPlab
(MP for short), designed by Verona University, is used for
modelling biological phenomena related to metabolism. It is a
computational framework for metabolic P systems. This
framework consists of the following four layers: (i) MP graph,
which takes MP systems as inputs and visualizes them; (i) MP
store data structure, applied to store all the elements of MP in
a suitable Java object form,; (iii) data processing, plugin-based
module, dealing with biological data; and (iv) MP vistas,
coping mainly with the graphical representation of MP
structures and dynamics. For more details, refer to the website
[104]. Through experiment verification, MetaPlab can deal
with dynamic computation problems, flux discovery, and
regulation discovery problems.

4.2. BioSimWare (Italy, 2010). In [105], Besozzi et al. de-
veloped simulation software called BioSimWare. This product
provided a user-friendly framework for complex biological
systems, ranging from cellular processes to population
change. BioSimWare implemented several stochastic algo-
rithms to simulate the dynamics of single- or multi-
environment models, as well as automatic tools to analyse the
effect of variation of the system parameters. BioSimWare
supports the SBML format and can automatically convert
stochastic models into the corresponding deterministic for-
mulation. Prediction data showed that this software can offer
a better comprehension for complex biological systems.

4.3. MeCoSim (Spain, 2010). The simulation environment
MeCoSim [106] was designed by Natural Computing Research
Group of the University of Seville, Spain, and it is currently
available [107]. In the context of this paper, it is worth
mentioning that this software is used to run experiments to
estimate the biological phenomena of the species under study
in the coming years under different conditions, performing the
simulation from the P system and the initial data provided by
the user. To sum up the process, MeCoSim contains three files:
(a) a config file, where we can define the custom app including
the setting of how many simulations and cycles to run, which
input tables and output fields/charts we want to have in our
interface, and other input/output information and parameter-
related data (more info at [106, 107]); (b) data file, whose
purpose is to record experimental data sets, i.e., concrete input
data, output data, and all the parameters corresponding to a
specific experiment; and (c) model file, where the specification
of the P system itself is given, including the membrane
structure, initial multisets received from the scenario, and
grammatical rules capturing the rules of the P systems (both
skeleton and environment rules). In summary, this software
provided a multifunction application for the study, analysis,
modelling, visual simulation, model checking, and optimiza-
tion of all the possible variants of P systems covered by the
P-Lingua framework plus some linked external simulators. In
this software, some plugins have been developed to provide
some analysis and model monitoring capabilities. Based on the
powerful programming function of software and mostly its
ability to allow the definition of custom applications with
interfaces adapted to each particular problem, it has been
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successfully applied as an assistant tool for the iterative design
of ecosystem models such as literature studies mentioned.
In summary, all software analysed mainly focus on
different types of ecological systems: MetaPlab is used for
modelling the internal mechanisms of biologic systems by
means of metabolic P systems, and BioSimWare is used for
modelling the multicompartmental complex biological
systems. While they achieved great results when applied to
different systems, to the best of our knowledge, it is out of the
scope of these products to provide the requirements for data
verification, model checking, model optimization, and
mostly the definition of custom interfaces for the particular
end-user applications for ecologists or managers to perform
virtual experiments based on validated models. Therefore,
due to the need of providing not only a research result by us
as model designers but also a final tool for the experts in the
giant panda ecosystem not familiar with P systems,
MeCoSim has been used to simulate the evolutionary be-
haviour of many species in nature and has been chosen by
this team. Thus, in this work, we will predict giant panda
individuals in the coming years by means of MeCoSim.

5. A Case Study: Population Dynamics of
Giant Pandas

This section analyses a particular case study where the
methodology and tools explained in the previous sections
are applied. Specifically, the species of interest is giant panda,
and the following sections will describe in further detail the
purpose, process, and conclusions derived from our study.

5.1. Data Source. Biological data concern mainly on pop-
ulations (with distributions of age and gender), input pa-
rameters (birth rate, mortality rate, etc.), and rules governing
the biology of the species, in this case, giant pandas and its
evolutionary behaviours. These elements are indeed most of
the crucial parts taken into account when modelling ecosys-
tems making use of P systems (more specifically, PDP systems).
In this section, we describe the study of the related data about
giant pandas in the context of the specific ecosystem con-
sidered. Giant pandas studied are from Chengdu Research
Base of Giant Panda Breeding (GPBB, for short). Giant panda
population of GPBB consists of individuals currently living in
GPBB, those in Chengdu Zoological Garden, and those who
were born in GPBB but are living outside of GPBB. The
reference basis for our research is giant panda pedigree data
compiled by the Chinese Association of Zoological Gardens,
including data belonging to 13 years (from 2005 to 2017).
Adequate processing of these data sets could lead to the ex-
traction of relevant statistical data referred to the number of
female and male giant pandas per year, including the age of
each individual, being these data the basis and driving force,
along with the deep study of the processes involved in the
biological evolution of the species, to model the ecosystem.

5.2. Model Design. Since we only study giant pandas in a
region, based on the features of giant pandas, we choose as
our modelling framework a single-environment
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population dynamics P system (PDP system, for short), as
introduced in Section 2. Typically, the modelling process
based on PDP systems (as well as other with frameworks)
involves two stages: the design of a conceptual model
followed by that of a computational model; the former one
is used to build the building blocks or modules capturing
different behaviours and processes related with the species
in the ecosystem (such as giant pandas in GPBB) and to
give several key parameters required by the model; sub-
sequently, the latter phase is applied, based on the schema
obtained by the previous model, aiming to design the
specific PDP system detailing the structure and objects
involved and setting the computation rules governing the
processes analysed in the biology of the species in the
ecosystem and its evolution.

5.2.1. Conceptual Model of PDPs. The main goal of this
stage, in our case study, is the design of a novel population
dynamics P system-based model for captive giant pandas in
the regions described at the beginning of this section. The
processes of interest in the evolution of the ecosystem
include the biological aspects related with their life cycle
and other possible phenomena happening in the envi-
ronment; these processes should be simulated by com-
puters according to the model designed and the input data
about giant panda populations and related parameters.
PDP prediction focuses on the changes in the female or
male population size and distribution of ages. In the fol-
lowing, design of the conceptual model is described,
starting with the definition of the modules composing the
computational model.

In order to define the modules, we must first describe the
life cycle of giant panda, the classification of age groups, and
types of food required. In this simplified case study, the
whole evolution behaviour of giant panda considered
consists of four processes: reproduction, mortality, feeding,
and rescue. Thus, the ecosystem model to design should also
contain modules for these four processes involved.

In this model, according to the specialists’ understanding
of giant panda life habits, age groups are classified into six
ranges; a detailed introduction is given in Table 2, where the
classification standards of the female and male may have a
little difference. For food required, we mainly consider three
kinds of food as the necessary feeding sources: bamboo,
bamboo shoots, and other sources of food (possibly in-
cluding milk, fruits, and others).

The whole setup (an entire year) of this conceptual
model mainly consists of the four models depicted in Fig-
ure 2, where the first three models are executed sequentially,
while the rescue module runs in parallel with respect to
them. It involves a series of rules inside each module, ab-
stracted from different behaviours. At every instant, each
individual will evolve according to the rules in a parallel way
with the other individuals. The model graph of this con-
ceptual model is illustrated in Figure 2.

In the following, the description of the four modules is
given: reproduction module, mortality module, feeding
module, and rescue module.
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(1) Reproduction Module. Many new individuals are born
every year. Depending on the birth rate, the number of new
individuals will emerge depending on the number of female
individuals in the reproductive age, with certain variations
due to the probabilistic nature of the rules, capturing the
inherent randomness present in the nature up to a certain
degree. In further extensions of this model, we could de-
termine the number of new individuals also depending on
additional or alternative direct or indirect factors.

(2) Feeding Module. During each cycle (in our case, a year),
plenty of food is provided to captive giant pandas, where the
main types of food are bamboo, bamboo shoots, and others
(mostly, fruits or milk). In the captive environment, all re-
quired food can be satistied. However, it is worth incorpo-
rating this process in our models in order to also track the
food consumption, and, more importantly, we can also
consider analysing scenarios with certain damage producing
scarcity of food sources due to some natural disasters such as
earthquakes or climatic anomalies.

(3) Mortality Module. Some individuals of the population
can die with a certain mortality rate in this phase, also
subject to probabilistic rules. In comparison with wild
giant pandas, the fundamental results showed that the
mortality of captive giant pandas is significantly lower,
and the longevity of captive individuals is clearly higher,
given the improved life conditions and medical technol-
ogies of the captive population, also subject to improve-
ments along the years. In this model, both parameters
about mortality and longevity can be adjusted on the basis
of available statistical data.

(4) Rescue Module. In nature, in the ecosystem under study,
the population size is affected not only by the birth and death
of individuals but also by the addition of new rescue in-
dividuals to the ecosystem. The rescue module mainly
captures the change in the information about yearly rescued
individuals, including not only the number of giant pandas
rescued from the wild each year but also their gender and
age. Historically, the number of rescued individuals ranges
from zero or one panda rescued in a year to at most two
rescued individuals. In addition, each individual has a
certain probability of being rescued. This is based on the past
evidence but could be refined to include the possibility of
more rescued individuals, what despite being unlikely is not
completely impossible. On the contrary, it is worth noting
that the maximum life span of rescued giant pandas is the
same as that of wild giant pandas, until the moment of their
rescue. Consequently, the probability of rescuing very old
pandas (for captive giant panda standards, let us say beyond
30 years old) is almost negligible because this could con-
tradict the previous statement. Consequently, it is difficult to
find and rescue very old giant pandas because of their weak
mobility, and the same generally happens with very young
individuals, which are too week to survive enough if they are
in danger and still lack mobility. Therefore, the rescue sit-
uation of giant pandas at these age ranges is not considered.
In simulation, the number of rescued giant pandas of each
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TABLE 2: Age structure of captive giant pandas in 0-33 years.

Infancy Subadulthood Adulthood Middle-aged Early old stage Old stage
Age (female) [0, 1] (2, 4] (5, 8] [9, 17] [18, 27] (28, 334]
Ratio (%) 20.75 17.92 21.69 26.41 11.32 1.89
Age (male) [0, 1] (2, 4] (5, 6] [7,17] [18, 27] [28, 33]
Ratio (%) 17.98 21.34 15.73 41.57 2.247 1.123

Initialization

Reproduction
module

!

Mortality module

|

Feeding module

Rescue module

Update module

FIGURE 2: A conceptual model graph.

gender and age is pseudo-random, always between the
limits given by their lifespan and subject to the consid-
erations just made. The rescued giant pandas, once cal-
culated their number, gender, and age, will be added to the
current population at the end of a cycle. Because the rescue
module only simulates the phenomenon that rescued in-
dividuals may occur every year, the steps of performing this
module are not affected by other modules, and in the
following cycle, they will be regular members of the captive
population.

Before designing this model, which we have just
presented, it was necessary to obtain data and qualitative
information about different processes and behavioural
facts related with the giant panda life cycle. The model had
to consider natural factors such as reproduction habits,
mortality rates, specific evolutionary behaviour, and
conduct patterns, determined according to the actual
situation observed. Concerning the rescue module, the
data about rescued individuals per age and gender were
collected from the past experience, and the causes for these
rescues were analysed with the experts in charge of
managing the ecosystem. Some decisions were made
concerning the estimation of rescued individuals per year,
and some increase in the comparative age of these indi-
viduals when incorporated into captive life was applied to
simulate aging produced by the past wild life in such
rescued individuals depending on the amount of years
spent in wild conditions.

5.2.2. Computational (Mathematical) Model Based on PDP
Systems. The main goals of the research conducted on the
population of giant pandas in GPBB were to assess the
evolution in the population size along the years under certain
given conditions and initial populations by using a model
based on P systems. The target model involved a number of
processes and parameters related with the biology of the
species and the ecosystem that should be translated into the
concepts belonging to the formal model used: P systems (that
is, elements such as environments, membranes, objects,
evolution rules, and so on). Besides, the proper semantic
constraints and considerations inherent to P systems had to
be taken into account, along with the accuracy of these
conditions (like the application of certain probabilities as-
sociated with the rules) in mimicking the natural processes
involved. For PDP systems, once the P system skeleton to be
placed inside the environment was defined, we mainly fo-
cused on designing the evolutionary rules to capture the
processes taking place in our subject ecosystem.

Due to the fact that only one species was the subject of
our study and no movement among regions was considered
as part of the initial design, no complex environment in-
teractions were required. Therefore, a single environment
was enough for this case study. Inside such environment, the
P system skeleton was designed with two membranes: the
external membrane, denoted as a skin membrane (directly
contained inside the single environment) and labelled as 1;
the inner membrane (used to perform most of the evolution
operations), labelled as 2. Then, inside these two membranes,
all processes occur, sequencing the proper operations of
three of the modules and simultaneously performing the
actions related with the other one: the rescue. In every
module, all the individuals subject to the rules of the module
evolve in parallel. A trace of a simulation of the model along
a cycle (a year in this case) is illustrated in Figure 3. In the
following, the model will be described in a semiformal way
through its main constituent parts.

While PDP systems are defined by a more complex
structure, given the fact that a single-environment system is
defined, in our case, the definition of the PDP system II
modelling our case study can be simplified as the tuple:

(T {M}, My} R, {p, | r € R}), (7)
where

() T={X,,Y,,Z
O} A {F, A}, where

W

1<i<2,1<j<k;s} A {S,B,
(1) In the individuals in the population, with in-
dexes i and j, i = 1 represents female and i = 2
male, while j stands for the age of the individual.
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(2) Initially, each giant panda individual is ab-
stracted as an object X;; that will evolve
according to different modules capturing the
biological processes, transitioning among states
as follows: X; <—>Yj—> Zij— Wi;
— X j- Ob)ect X ; is abstracted as aj- year—
old male or female ( ) panda individual before
reproduction modules, object Y; ; is abstracted
as a j-year-old male or female (1) panda indi-
vidual in mortality modules, object Z; ; is ab-
stracted as a j-year-old male or female (i)
survival panda individual, and object W, . is
abstracted as a j-year-old male or female (i)
panda individual after feeding.

(3) Symbol C,; ; stands for the j-year-old male or
female (i) rescued panda individuals. After
getting incorporated into the population, they
also transition to regular giant pandas for the
next cycle: C;; — X, ;..

(4) Symbols S, B, and O denote different food ob-
jects such as bamboos, bamboo shoots, and
others (fruits or milk).

(5) Symbols F and A are auxiliary objects, being
used to trigger food production and A to start
the rescue process.

(ii)) # = [[1,], (e, it is a hierarchical membrane
structure with membranes labelled as 1 and 2, where
the skin membrane is labelled as 1).

(iii) The rules in R will be described later.

(iv) With respect to the initial multisets, M, and M, are
associated with regions 1 and 2, respectively, where

1M, = {Xq’/ 1<i<2,1<j<k;sf, with g; ; being
the number of all the j-year-old male or female
(gender given by i) pandas

(2) M, = {F, A}

In this system, the rewriting rules (including all the
modules) consist of rules for initialization, reproduction,
rescue, mortality, feeding, food removal, and update. The
rule set R includes the rules introduced in the following,
grouped by modules:

(1) Initialization rules: food supply:
r, = [F]) — F[$B%0%];. (8)

(2) Reproduction rules:

(i) Panda individuals in the pre-reproductive age:

nEx 08— [l 15is2.08 5k,

il

(9)

(ii) Female individuals in the reproductive period who
actually reproduce:

ry= X, 119 25 = [YY,;],, 1<e<2,k,,<j<k, ;s

(10)

]

(iii) Female individuals in the reproductive period who
are not reproducing:

_ 0 1-g,— - .
ry =X, 15 z[yz,j]z, kyi,<j<ky (1)

(iv) Male panda individuals:

”s—Xl][ [Y1]]2> ki <j<ky s (12)

(v) Aged panda individuals (postreproductive):
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re= X[ 15— [Vi],, 1<i<2,k3<j<ks.

(13)

(vi) Neonatal individuals (gender determination: female
or male):

rp= Y], — [Y],, 1sis2 (14)

(3) Rescue rules:

(i) Number of giant pandas rescued from the wild
field:

rg = [Al, £9AC°[];, cmin<c<cmax. (15)

(ii) Sex for rescued giant pandas:
ro=[C 25C)), 1<i<2 (16)

(iii) Age for rescued giant pandas:

”105[Ci L%C. 1<i<2,0< j<cmaxage.

144
ij+1+3 1’

(17)

(4) Mortality rules:

(i) Survival individuals of infancy giant pandas:

+
Ty = [Yi’]. Q—ki,é Zi’j]z’ 1<i<2,0<j<k;,.

(18)
(if) Mortality individuals of infancy giant pandas:
ke ]
T = [Y,-)j — /1] , 1<i<2,0<j<k;,.
2
(19)

(iii) Survival individuals of young giant pandas:

rs = i

.
Yi,j—l’-kiy Z,;j] , 1<i<2k; <j<k;,.
2
(20)

(iv) Mortality individuals of young giant pandas:
ko |
T4 = [Y,-,j — A] s 1<i<2,k <j<k,.
2
(21)

(v) Survival individuals of adult giant pandas:
+

ris = [Yi,j —1>—ki,8 Zi,j] , 1<i<2, ki, <j<ks.
2

(22)

Complexity

(vi) Mortality individuals of adult giant pandas:

T = [Y,.,j S, A]+, 1<i<2,k;) <j<k;s.
2 (23)
(vii) Survival individuals of middle-age giant pandas:
ry; = [Y,»)j - ~ki; o Z,.,j]:, 1<i<2,kj3<j<k;y.
(24)
(viii) Mortality individuals of middle-age giant pandas:

ki,9 " . .
rg = [Yi’j — Ay, 1<i<2,k3<j<ky,.

(25)
(ix) Survival individuals of middle-aged and old giant
pandas:
o= Y, P02 )L 1<i<2kiy <j<kig

(26)

(x) Mortality individuals of middle-aged and old giant

pandas:
+

ki- . .
Tao = [Yi,j - A] , 1<i<2 ki, <j<kig.

2
(27)
(xi) Survival individuals of old giant pandas:
r = Y, ez )L 1<i<2ky,<j<ks
(28)
(xii) Mortality individuals of old giant pandas:
k; *
Ty = [YU -4 A] , 1<i<2,ky,,<j<kis
2
(29)
(xiii) Longevity giant pandas:
+
T3 = [Yi’ki5 — /1]2, 1<i<2.
(30)

(5) Feeding rules: giant pandas in different periods need
to acquire different quantities of food; therefore, we
divide feeding rules into three periods such as in-
fancy, young, and other periods.

(i) Feeding rules for infancy giant pandas:

ry = (2,8 B0/ ] — (W, ], 1<i<2,0<j<k;,.
(31)
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(ii) Feeding rules for young giant pandas:

rps= [Zi,jsmefi.sofxzs]; _ [Wi,j]; 1<i<2, k‘)11 <j< ki,2'

(32)
(iii) Feeding rules for giant pandas during other periods:

roe= [Zi,jsfw Bfi,sofi,s ];r _ [Wi,j];’

1

(33)
(6) Update rules:
(i) Food removal rules:
Yy = [S]; — [Mg,
g = [B]; — [A]g;
ry = [0, — [A](z)-
(34)

(ii) Cycle update rules:

_ - 0 . .
T30 = [W,.)j]2 — X;jally 1<i<2,k;,<j<ks,

3 = F[]; — [F]g,
r3, = All, — [A](z).
(35)

(1) Parameters’ Description. In the following, some relevant
parameters related with the life stages of giant pandas in our
model are explained. Thus, symbol k; ; indicates that captive
giant pandas are in subadulthood (i.e., this parameter defines the
age at which subadult condition is reached); symbol k; , sets the
boundary age when these pandas reach adulthood; symbol k; ;
represents the age when pandas become middle-aged; k;,
represents the initial age when the giant pandas can be con-
sidered that some pandas are a bit old (passing from middle-
aged to the initial phase of old stage); and finally, symbol k; , ,
stands for clearly the old age stage. Additionally, symbol k; 5
denotes the longevity age (lifespan) of giant pandas. Symbols
k;¢—k; 1, denote the mortality of giant pandas for their different
age groups, where k;¢ stands for the infancy stage, k;, for
subadulthood, k; ¢ for adulthood, k; o middle-aged, k; ,, early old
stage, and k; |, for old-age stage. Symbols k;,, and k; ;5 set the
range of fertile age of giant pandas for breeding purposes (i.e.,
they indicate the beginning and the end of the reproductive age,
respectively). These ranges are usually coupled with data related
with the previous parameters determining the age groups, but in
this refined model, they have been considered separately in order
to allow different boundaries in ranges used for mortality and
the ages affecting the reproduction module, which makes the
model more flexible in terms of the possible scenarios to define.

Regarding the parameters related with fertility, symbol
g, denotes the probability of a fertile female giant panda to
give birth to one single giant panda in the reproductive
period of a cycle (a year), while g, denotes the probability for
this individual to give birth to twins.

1<i<2,k;, < j<ks.
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With respect to feeding parameters, g5 is the number of
supplied bamboos within a year, while g, and g5 represent
the corresponding amount of bamboo shoots and other
sources of food (fruits, etc.) per year, respectively. This
information is related with the total provision of the centres.
However, other parameters regulate the amount of actual
food required per individual a year. Thus, symbol f;, is the
amount of bamboo shoots consumed by an infant giant
panda individual a year (similarly, f;, and f;; refer to the
needs of bamboo and others, respectively). The same applies
to fi4 fis and f;4 for subadults, and the corresponding
symbols f;, f;g and f;g refer to the needs of adults.

Concerning the rescue module, symbols ¢ min and ¢ max
define, respectively, the minimum and maximum number of
rescued wild giant pandas per year, with ¢ max age standing for
the maximum age of the rescued wild individuals; additionally,
pc, is the probability of rescuing ¢ wild individuals in a year,
while pg; is the probability of such rescued one to have gender i
and pa; the probability of such giant panda to have age ;.

The values of all these constants have been obtained
experimentally after cleaning the data and extracting infor-
mation through statistical measures from the raw data.
However, we must be cautious about the scope of the study
and the later applicability to other scenarios, given the var-
iability observed and the relatively reduced size of the sam-
ples, in terms of the number of years and specificity of the
population. For each probabilistic parameter, a significantly
large fluctuation was observed in big values, whereas in small
ones, there was no obvious change observed in size. In both
cases, it became impossible to obtain truly reliable estimates
that can be extrapolated for scenarios apart from the one
considered or if significantly different conditions or pop-
ulation distributions appear. That being said, some param-
eters included in the model show the severe effects derived
from the natural stochasticity present in the ecosystem. More
specifically, there are very fluctuating factors, such as the
number of giant pandas rescued in a year, which can influence
the evolution of the population and ultimately depends,
among other things, on the presence of natural disasters. For
sure, these parameters considered have considerable signifi-
cance in population and conservation biology [108].

(2) Method Recap. This section ended with the definition of
the PDP system providing a computational model of the
ecosystem subject to study followed by a detailed explana-
tion about the parameters involved. This would be the last
step before starting the process to experimentally validate
the model against the real data available and according to the
judgment of the experts and managers of the giant panda
base. However, before getting to this point, several steps
were needed as we summarized in the following:

Step 1: obtain the data set. Data sets about captive giant
pandas come mainly from GPBB.

Step 2: initialization: designing a successful membrane
system can require plenty of parameters such as
mortality, reproduction rate, and rescue rate. In order
to provide a proper setup for the model design, these
parameters should be initialized first.
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FIGURE 4: Population size of endangered giant pandas published in the last 13 years, where all the used data are shown through three
histograms. (a) Ecological data: the total number of real giant pandas in each year. (b) Female data: the number of female individuals in a
selected year. (c) Male data: the number of male individuals in a selected year. (That is, N, = Ny + N; N presents the number of giant
pandas.). Such datasets are called statistical datasets which are generally used as the input for prediction.

Step 3: design of a basic conceptual model: some
behavioural packages such as mortality module are ab-
stracted from the observed daily behaviour of the species.
According to its evolutionary cycle, certain sequencing is
performed in order for the system to evolve successfully.
The model described by the whole picture including
different building blocks is called a conceptual model.

Step 4: design of a computational model: it consists in
applying a formal framework through a mathematical
model capturing the details of the conceptual model
from the previous given step. More specifically, our
model must be computational so that it can be directly
computed by an abstract machine, not approximated.

Step 5: output: simulate and obtain a predicted number
of giant pandas.

In summary, for our given example—a giant panda
population prediction method based on membrane sys-
tems—, the detailed introduction of this method is as
follows: we first need to count the basic information of
giant pandas in the researched region (i.e., counts, age, sex,
and so on); then, we design a conceptual model with the
execution sequence according to the fragmented habits
(reproduction, feeding, death, and rescue) of all researched
pandas; next, we can also design a computational model

containing the elements set by the formal model, including
the proper structure, alphabets, initial multisets, and a set
of rules abstracted from the evolutionary habits of the
species according to the conceptual model given and the
detailed observation and study from the expert on the
problem domain; and finally, we will obtain a series of
computational results by running simulation software,
performing plenty of virtual experiments, and processing
the data obtained. The theoretical analysis indicates that, in
the absence of real data as a reference, this method can
effectively help in analysing potential variation trends in
the population size and distribution (in age and gender) so
that the evolution of the population of giant pandas can be
projected under many possible scenarios given different
plausible conditions.

5.3. Experiments. This section is devoted to the detailed
description of the experiments conducted on the model
designed. Along this work, the framework provided by
P-Lingua and MeCoSim [106] was used to debug the model
and run our virtual experiments. P-Lingua provides a stan-
dard specification language to define P systems of different
types, including the probabilistic framework mentioned in
this paper. Subsequently, we translate the model presented
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(10.11% and 9.9%)}, 2012-2013 {input 2008 (14.41% and 6.98%), 2011 (10.11% and 9.48%)}, and 2015-2016{input 2011 (17.19% and 6.98%),
2014 (4.46% and 2.69%)}, indicate the input data of different years can predict different results for the same year. In this graph, “No value”

means no deviation rate due to the lack of statistical data in reality.

into P-Lingua language and prepare the setup for the software
application based on MeCoSim; then, the model and the data
are loaded, the virtual experiments are performed by running
the simulations, and finally, the results obtained are processed
and analysed. In the following, we highlight the main facts
related with a summary of these processes, where we (a) first
introduce experimental design and simulation and (b) then
analyse the experimental results.

5.3.1. Experimental Design and Simulation. Asintroduced at
the beginning of this paper, PDP systems scale individual-
level processes up to ecosystem structure and dynamics.
Here, we present in three steps how pedigree data about
giant panda can be used to inform the model, where pop-
ulation size of giant pandas in each year is shown in Figure 4.

First, the individual pedigree data of captive giant pandas
that can be used to parameterize the model include food
consumption; number of rescued individuals; gender and
age; and division of individuals in age groups ranging from
offspring and subadults to elderly. Once parameterized, the
PDP model can be used to simulate the ecosystem under
certain scenarios, aiming to predict the number of indi-
viduals along the years. This process requires setting of
certain biological parameters. Thus, first, we need to cal-
culate the number of births observed and the mortality of the
individuals, among others. These data are used to calculate
the fixed size-specific survival, reproductive, and mortality
rates (see Figure 5).

Naturally, reproductive and mortality rates definitely
influence the degree of change (increasing or decreasing)
on the population size and distribution, in and out of the

studied species. As each individual goes through each
module of the model changing its status depending on the
application of probabilistic rules, at each time step, the
number of individuals varies, and this evolution is subject
to natural variability among repetitions of the experiment.
The predicted changes in the population size through time
are uncertain numerically, but by performing a number of
experiments, they are controlled within a given confi-
dence interval. The numerical density of species is sum-
med across all individuals at different age groups to get the
final results (but of course, also the details per age and
gender remain available for possible later studies). These
summarized population sizes are outputted at each time
step along with predicted changes. The variation in the
population size can be described by fitting, at each time
step, a straight line (see Figure 6), with the parameters
being used in the PDP-based model which are derived
from the data shown in Table 3. The predicted evolution of
the population and the corresponding resulting changes
in its number of individuals can then be confronted with
empirical data for comparison or repeating the above
process in conjunction with a statistical procedure to
formally estimate parameters and their uncertainty (see
Figure 7).

5.3.2. Analysis of the Experimental Results. In Figure 6, by
comparing varying trajectories of the number of predicted
individuals in the species with the trends in the real data,
statistically obtained, we identified the changing regulation
of population size across the GPBB. In the five subcharts
given by this figure, we observe strong evidence that the
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average rate of changes in giant panda populations is 1.86%
(data from 2005 as the input) per year, as shown in
Figure 6(a), almost consistent with the real statistical data,
and similar rates of changes occur across other four groups
of experiments we provided, i.e., 10.26% (2008 as the in-
put), 12.84% (2011 as the input), and 3.41% (2014 as the
input) (see four other figures in Figure 6). These rates
obtained suggest that, on average, the number of giant
pandas will be predicted with a small error rate within
several years. According to these results, we find that the
deviation in the number of individuals per year is con-
trolled within 10% except for the special point (Figure 6)
although different inputs can also lead to different pre-
diction results in terms of the number of population sizes
per year (Figure 7). These deviation results from the model
show that there is no single, fully integrated model that can
simulate with the same precision all possible scenarios, and
the variation in the numbers emerges from the combina-
tion of uncertainty in parameters including growth rate,
birth rate, and mortality rate rather than caused by a single
fact and taking into account the difficulty of parameterizing
interactions.

6. Conclusions and Future Work

In this article, we provided an overview of membrane
computing models for complex ecosystems and a case study
on a complex giant panda ecosystem. Membrane computing
models used for modelling ecosystems are very promising,
yielding truly distributed and parallel implementations.
Distribution is mainly manifested in that the living space of
each species is closed, and parallelism is mainly manifested
in the simultaneous evolution of different species in different
regions at the same time, which are in line with the de-
velopment trend of ecosystems [109-111].

Various P system models have been used to model a large
number of species. The differences between these P systems
are mainly reflected in the structures and rules of the sys-
tems. For the four species most intensively studied, the
differences are mainly reflected in the types of species and
the types of environment in which species live; in terms of
types of rules present in the systems, the distinction gets
mainly reflected in the evolutionary behaviours of species
and the types of natural disasters they suffer. Most of the
ecosystems, described in more detail within the overview,
were referred to a variety of models simulated within the
framework provided by P-Lingua and MeCoSim. The ex-
perimental results show that P systems can approximately
predict the trend of population size by mimicking the
evolution state of species. As a case study, a single-envi-
ronment PDP system is used to model giant pandas. It can be
seen from the experiment results that the deviation rates in
many years between predicted data and statistical data are
controlled within 10% expect for those in several years. As P
systems can be used to try to predict the number of species in
the next few decades based on the current evolutionary
behaviours of species, the datasets obtained through the
virtual experiments based on the PDP system models pro-
vided can assist the decision makers with further prospects
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enriching the information available in order to make more
informed decisions in the future.

Finally, as a future research direction, we may consider
the following points: (a) designing a multienvironment P
system to model captive or wild giant pandas in different
regions, significantly increasing the complexity of the model
with respect to the previous model presented in this work.
(b) Including potential impacts due to natural or not so
natural factors (e.g., climate change influence, introduction
of invasive species, and habit destruction produced by en-
vironmental disasters such as earthquakes); these elements
might be considered in the designed models, possibly having
a great influence on the number of individuals of the species,
especially on wild species, given a certain setup of conditions
for different parameters involved and given a certain pop-
ulation inside each area, including the detailed information
or estimation of the distribution of gender and age.
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