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The search for new mechanisms and tools allowing us to tackle the famous P versus NP
problem from new perspectives is an important task, due to the relevance of that problem.
The concept of efficiency of computing models is associated with the ability to solve
intractable (in a classical sense) problems in polynomial time. Assuming that P �= NP, that 
concept is equivalent to the capability to solve NP-complete problems in an efficient way.
Different frontiers of the efficiency have been given in Membrane Computing in terms of
syntactical or semantic ingredients of the models. In particular, in the framework of tissue
P systems with cell division using symport/antiport rules, the length of communication
rules (passing from length 1 to length 2) provides an optimal borderline of the efficiency.
Cell-like P systems with symport/antiport rules and membrane division is a restricted
variant of such tissue P systems in both its structure (rooted tree versus undirected graph)
and in the way membranes communicate with each other and with the environment. The
limitations of efficient computations in such kind of P systems which use non-cooperative
communication rules have been previously established. In this paper, a uniform polynomial
time solution for the Hamiltonian cycle problem, a well known NP-complete problem,
by means of cell-like P systems with membrane division using minimal cooperation in
communication rules (at most two objects are involved), is provided. Hence, a new optimal
boundary between tractability and NP-hardness, is provided: passing from non-cooperative
rules to cooperative rules in cell-like P systems with symport/antiport rules and membrane
division amounts to passing from non-efficiency to efficiency.

1. Introduction

The P versus NP problem is one of the most important open problems that have been formulated in theoretical computer 
science. This is the first problem of the famous list of the Millenium Prize Problems, including the seven greatest unsolved 
mathematical problems. Solving this problem might produce a huge economic impact. In an informal way, we can say that 
this problem analyzes whether or not finding solutions is harder than checking the correctness of possible solutions. It is 
widely believed that it is harder to solve a problem than to check that a solution is valid/good; that is, it is conjectured that
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P �= NP. The classical approach to solve this conjecture consists of considering a single NP-complete problem and trying 
to prove whether that problem belongs to the class P or not. In computing models, new tools to tackle the P versus NP
problem can be provided in terms of syntactical or semantic ingredients in the model. In this context, it is interesting to 
determine ingredients that allow us to efficiently solve computationally hard problems, and then investigate which ones 
should be removed in order to reduce the power so that only problems from P can be efficiently solved. The use (or not) of 
such ingredients provides a frontier between tractability and NP-hardness.

Membrane computing is a flexible and versatile branch of natural computing, which arises as an abstraction of the 
compartmentalized structure of living cells, and the way biochemical substances are processed in (or moved between) 
membrane-bounded regions [18]. Inspired by the structure of living cells, two main classes of membrane systems have been 
investigated: a hierarchical (cell-like) arrangement of membranes, inspired from the structure of the cell [18] and a network 
of membranes (placed in the nodes of a directed graph), inspired from the cell-interconnection in tissues [13] or inspired 
from the way that neurons communicate with each other by means of short electrical impulses (spikes), emitted at precise 
moments of time [6]. All classes of computing devices considered in the field of membrane computing are generally called 
P systems, which are parallel and distributed computational models based on processing multisets of objects in cell-like or 
tissue-like structures by means of rewriting rules. A P system is cooperative if it contains rules that need more than one 
object to be triggered. A comprehensive information in membrane computing can be found in [20] and [22], and for the 
most up-to-date source of this area, please refer to [30].

Cell-like P systems with symport/antiport rules were introduced in [16], aiming to abstract the biological phenomenon of 
trans-membrane transport of pairs of chemical substances, in the same or in opposite directions. On the other hand, tissue 
P systems with symport/antiport rules were introduced in [17] by abstracting networks of elementary cells such that some 
of them are linked by “communication channels”.

In eukaryotic cells, there are two relevant processes: mitosis and membrane fission. The first one is a process of nuclear 
division in eukaryotic cells during which one cell gives rise to two genetically identical children cells. Membrane fission oc-
curs when a membrane leads to two separated membranes; that is, whenever a vesicle is produced or a larger subcellular 
compartment is divided into smaller discrete units. These processes have been a source of inspiration to incorporate new 
syntactical ingredients in membrane computing in order to be able to produce exponential workspace (by means of com-
partments) in polynomial — often linear — time. Specifically, inspired by the mitosis process, membrane division rules were 
defined in the framework of cell-like P systems providing computing devices called P systems with active membranes [19]. 
With respect to the membrane fission process, P systems with membrane separation were introduced in [14]. These concepts 
were also considered in the framework of tissue-like P systems: tissue P systems with cell division [21] and tissue P systems 
with cell separation [15].

In previous works [4,5,8,7,15,23,25,26], new tools to tackle the P versus NP problem are given in the framework of 
Membrane Computing. Let us recall that using families of non-cooperative tissue P systems with symport rules involving only 
one object and cell division, only problems in the complexity class P can be solved in polynomial time; that is P = PMCTDC(1)

[3]. Nevertheless, families of tissue P systems with cell division and symport/antiport rules involving at most two objects 
(minimal cooperation) can solve NP-complete problems in polynomial time, which implies NP ∪ co − NP ⊆ PMCTDC(2) [29]. 
Hence, cooperation in communication rules provide a frontier of the efficiency in the framework of tissue P systems with 
symport/antiport rules and cell division, assuming that P �= NP.

This paper deals with cell-like P systems with symport/antiport rules and membrane division whose processor units are 
called membranes. This kind of P systems have important differences with respect to the tissue-like approach, where proces-
sor units are called cells: (a) the underlying structure is a rooted tree instead of a directed graph; (b) the rules are associated 
with the membranes instead of with the whole system; (c) the communication is only produced between a parent mem-
brane and one of its child membranes instead of any two arbitrary cells; (d) only the skin membrane, the most external one, 
can communicate with the environment instead of each cell; and (e) only elementary membranes can be divided instead 
of each arbitrary cell. By using families of recognizer cell-like P systems with membrane division which use communication 
rules with length at most 3, uniform polynomial-time solutions to NP-complete problems have been provided [12]. In this 
paper, the previous result is improved showing that minimal cooperation (at most two objects involved in communication 
rules) is enough in order to solve NP-complete problems in uniform polynomial-time. Besides, it is known that with non-
cooperative rules, only problems in the class P can be solved efficiently [10]. In this manner, similar complexity results 
that in tissue-like P systems with symport/antiport rules and cell division have been obtained, but in a more restrictive 
syntactical context.

The paper is structured as follows. In Section 2, some concepts needed for a more comprehensive reading of the paper 
are presented. The framework of recognizer cell-like P systems with symport/antiport rules and membrane division is in-
troduced at Section 3. A uniform polynomial-time solution of the HAM-CYCLE problem by means of a family of P systems 
with membrane division using symport/antiport rules of length at most 2, is described in Section 4. Conclusions and some 
open problems are formulated in the last section.

2. Preliminaries

In order to provide a self-contained paper, some basic concepts and notations are introduced in this section.



2.1. Languages and multisets

An alphabet � is a non-empty set and its elements are called symbols. A string u over � is a mapping from a natural 
number n ∈ N onto �. Number n is called length of the string u and it is denoted by |u|. The empty string (with length 0) 
is denoted by λ. A language over � is a set of strings over �.

A multiset over an alphabet � is an ordered pair (�, f ), where f is a mapping from � onto the set of natural numbers 
N. For each x ∈ � we say that f (x) is the multiplicity of x in that multiset. The support of a multiset m = (�, f ) is defined as
supp(m) = {x ∈ � | f (x) > 0}. A multiset is finite if its support is a finite set. We denote by ∅ the empty multiset. The size of
a finite multiset m = (�, f ) is 

∑
x∈� f (x), and it is denoted by |m|. Let m1 = (�, f1), m2 = (�, f2) be multisets over �, then 

the union of m1 and m2, denoted by m1 + m2, is the multiset (�, g), where g(x) = f1(x) + f2(x) for each x ∈ �. We say that 
m1 is contained in m2 and we denote it by m1 ⊆ m2, if f1(x) ≤ f2(x) for each x ∈ �. The relative complement of m2 in m1, 
denoted by m1 \ m2, is the multiset (�, g), where g(x) = f1(x) − f2(x) if f1(x) ≥ f2(x), and g(x) = 0 otherwise. Let us note 
that a set is a particular case of a multiset when each symbol of the support has multiplicity 1.

Notation: given a sequence x1, . . . , xn of symbols of an alphabet, we denote by x1, . . . , ̂xk, . . . , xn the sequence 
x1, . . . , xk−1, xk+1, . . . , xn; that is, the k-th term, xk , does not appear in that sequence.

2.2. Graphs and Hamiltonian cycles

We recall some concepts from graph theory that are used in this paper. For more details on graph theory, please refer to 
[1].

A rooted tree is a connected, acyclic, undirected graph in which one of the vertices (called the root of the tree) is distin-
guished from the others. Given a node x (different from the root) in a rooted tree, if the last edge on the (unique) path from 
the root to node x is {x, y} (so x �= y), then y is the parent of node x, and x is a child of node y. We denote it by y = p(x)
and x ∈ ch(y). The root is the only node in the tree with no parent. A node with no children is called a leaf.

Let G = (V , E) be a directed graph, where the set of nodes is V and the set of arcs is E ⊆ V × V . We say that a finite 
sequence γ = (xi1 , xi2 , . . . , xir , xir+1 ) of nodes of G is a simple path of G from xi1 to xir+1 of length r ≥ 1 if (xi j , xi j+1) ∈ E for 
each 1 ≤ j ≤ r, and xi j �= xi j′ for each pair 1 ≤ j < j′ ≤ r + 1. A finite sequence γ = (xi1 , xi2 , . . . , xir , xir+1 ) with xir+1 = xi1 is 
a simple cycle of length r, if the sequence (xi1 , xi2 , . . . , xir ) is a simple path and (xir , xir+1 ) ∈ E . A Hamiltonian cycle of G is a 
simple cycle γ = (uα1 , uα2 , . . . , uαr , uα1) of G such that V = {uα1 , uα2 , . . . , uαr }.

Let (xi1 , xi2 , . . . , xir , xir+1 ) be a simple path of a directed graph G = (V , E) with V = {1, . . . , n}. It is also denoted by the 
set {(xi1 , xi2 )1, . . . , (xir , xir+1 )r}. That is, the labelled arc (xik , xik+1 )k can be interpreted as the k-th arc of the path γ , for each 
k (1 ≤ k ≤ r). Throughout this work we denote

AG = {(i, j)k | 1 ≤ i, j,k ≤ n, (i, j) ∈ E};
A′

G = {(i, j)′k | 1 ≤ i, j,k ≤ n, (i, j) ∈ E};
A′′

G = {(i, j)′′k | 1 ≤ i, j,k ≤ n, (i, j) ∈ E}.
It is easy to prove the following result:

Proposition 2.1. Let G = (V , E) be a directed graph, V = {1, . . . , n} and AG = {(i, j)k | 1 ≤ i, j, k ≤ n, (i, j) ∈ E}. If B ⊆ AG , then the 
following assertions are equivalent:

(1) B is a Hamiltonian cycle.
(2) |B| = n and the following holds: for each i, i′, j, j′, k, k′ ∈ {1, . . . , n},

(a) if (i, j)k ∈ B, (i′, j′)k′ ∈ B, and (i, j)k �= (i′, j′)k′ , then k �= k′;
(b) if (i, j)k ∈ B, (i′, j′)k′ ∈ B, and (i, j)k �= (i′, j′)k′ , then i �= i′;
(c) if (i, j)k ∈ B, (i′, j′)k′ ∈ B, and (i, j)k �= (i′, j′)k′ , then j �= j′;
(d) if (i, j)k ∈ B, and (i′, j′)k+1 ∈ B, then j = i′ .

As a consequence, the following are true:

Remark 1. Let B ⊆ AG be a Hamiltonian cycle of G . For each i, i′, j, j′, k, k′ ∈ {1, . . . , n}, the following holds:

• if (i, j)k ∈ B and j �= j′ , then (i, j′)k′ /∈ B;
• if (i, j)k ∈ B and i �= i′ , then (i′, j)k′ /∈ B;
• if (i, j)k ∈ B and (i, j) �= (i′, j′), then (i′, j′)k /∈ B;
• if (i, j)k ∈ B and j �= i′ , then (i′, j′)k+1 /∈ B .

Remark 2. If (xi1 , xi2 , . . . , xin , xi1 ) is a Hamiltonian cycle of G , then we can describe it by the set B1 = {(xi1 , xi2 )1,

(xi2 , xi3 )2, . . . , (xin , xi1 )n} ⊆ AG . But (xi2 , xi3 , . . . , xin , xi1 , xi2 ) also represents the same Hamiltonian cycle and can be described 



as B2 = {(xi2 , xi3 )1, (xi3 , xi4 )2, . . . , (xi1 , xi2 )n}, and so on up to Bn . Thus, given a Hamiltonian cycle of G , there are exactly n
different subsets of AG codifying that cycle.

Remark 3. Let us suppose that the total number of Hamiltonian cycles of G is q. Then, the number of different subsets B of 
AG verifying conditions (a), (b), (c), and (d) from Proposition 2.1 is exactly n · q.

2.3. Decision problems and languages

Roughly speaking, a decision problem X is one whose solution/answer is either “yes” or “no”. This can be formally 
defined by an ordered pair (I X , θX ), where I X is a language over a finite alphabet �X and θX is a total Boolean function 
over I X . The elements of I X are called instances of the problem X . Each decision problem X has associated a language 
L X over the alphabet �X as follows: L X = {u ∈ I X | θX (u) = 1}; that is, L X is the set of inputs for which the answer is 
affirmative. Conversely, every language L over an alphabet � has associated a decision problem XL = (I XL , θXL ) as follows: 
I XL = �∗ and θXL (u) = 1 if and only if u ∈ L. Then, given a decision problem X we have XL X = X , and given a language L
over an alphabet � we have L XL = L.

The complement problem X of a decision problem X = (I X , θX ) is the decision problem (I X , ¬θX ); that is, L X = �∗
X \ L X : 

for each instance the answer of X is “yes” if and only if the answer of X is “no”.

2.4. The Cantor pairing function

The Cantor pairing function encodes pairs of natural numbers by single natural numbers and it is defined as follows: for 
each m, n ∈N

〈m,n〉 = (m + n)(m + n + 1)

2
+ m

The Cantor pairing function is a primitive recursive bijective function from N ×N onto N. Then, for each t ∈ N there exists 
a unique natural number m, n ∈ N such that t = 〈m, n〉.

3. P systems with symport/antiport rules and division rules

A kind of cell-like P systems that use communication rules capturing the biological phenomenon of trans-membrane
transport of several chemical substances was introduced in [16]. Specifically, two processes were considered. The first one 
allows a multiset of chemical substances to pass through a membrane in the same direction. In the second one, two 
multisets of chemical substances (located in different biological membranes) only pass with the help of each other (an 
exchange of objects between both membranes). This is the computing framework where this paper is developed. Next, 
recognizer P systems with symport/antiport rules and membrane division are briefly introduced (see [9] for more details).

Recognizer membrane systems were introduced in [28], and they provide a natural framework to solve decision prob-
lems by means of families of membrane systems. We adapt this definition to P systems with symport/antiport rules and 
membrane division in a natural way.

Definition 3.1. A recognizer P system with symport/antiport rules and membrane division of degree q ≥ 1 is a tuple

� = (�,E,�,μ,M1, . . . ,Mq,R1, . . . ,Rq, iin, iout)

where:

– �, E, � are finite alphabets such that � has two distinguished symbols yes and no, E � �, � � � and E ⊆ � \ �.
– μ is a rooted tree whose nodes are injectively labelled with 1, . . . , q (the root of the tree is labelled with 1).
– M1, . . . , Mq are finite multisets over � \ � such that at least one copy of yes and no is present in some of them.
– Ri , 1 ≤ i ≤ q, are finite sets of rules over � of the following forms:

∗ Communication rules:
	 Symport rules: (u, out) or (u, in), where u is a multiset over � such that |u| > 0.
	 Antiport rules: (u, out; v, in), where u, v are multisets over � such that |u| > 0 and |v| > 0.

∗ Division rules: [ a ]i → [ b ]i [ c ]i , where a, b, c ∈ �, i ∈ {2, . . . , q}, i �= iout , and i is the label of a leaf of the tree μ.
– iin ∈ {1, . . . , q} and iout = 0 (0 is the label of the environment).
– All computations halt.
– If C is a computation of �, then either symbol yes or symbol no (but not both) must have been released into the

environment, and only at the last step of the computation.

For each multiset m over �, the initial configuration of � with input multiset m is M1, . . . , Miin +m, . . . , Mq , that is, the
input multiset m is added to the contents of the input membrane. We denote by � +m the system � with input multiset m. 



A computation of � is a finite sequence of configurations such that the first term of the sequence is the initial configuration 
of the system and each non-first term of the sequence from the previous configuration by applying rules of the system in a 
non-deterministic maximally parallel manner; that is, no more rules could be applied to such configuration. If no rules can 
be applied to a configuration, we say that it is a halting configuration and the system finishes the computation. We say that 
a computation C of � is an accepting computation (respectively, rejecting computation) if object yes (respectively, object no) 
appears in the environment associated with the corresponding halting configuration of C , and neither object yes nor no
appears in the environment associated with any non-halting configuration of C .

For each natural number k ≥ 1, CDC(k) (respectively, CDA(k) or CDS(k)) denotes the class of all recognizer P systems 
with symport/antiport rules (respectively, only antiport rules or only symport rules) and membrane division such that the 
length of the communication rules is at most k.

Next, the concept of efficient solvability for decision problems by means of families of recognizer membrane systems 
(see [24] for more details) is adapted to the new framework in a natural way.

Definition 3.2. A decision problem X is solvable in uniform polynomial-time by a family � = {�(n) | n ∈N} of recognizer P 
systems with symport/antiport rules and membrane division, if the following holds:

– the family � is polynomially uniform by Turing machines; that is, there exists a deterministic Turing machine working
in polynomial time which constructs the system �(n);

– there exists a pair (cod, s) of polynomial-time computable functions over I X such that:
	 for each instance u ∈ I X , s(u) is a natural number and cod(u) is an input multiset of the system �(s(u));
	 for each n ∈N, s−1(n) is a finite set;
	 the family � is polynomially bounded with regard to (X, cod, s);
	 the family � is sound and complete with regard to (X, cod, s)

The instance u ∈ I X will be processed by the system �(s(u)) with input multiset cod(u). Furthermore, from the sound-
ness and completeness is deduced that �(s(u)) + cod(u) is a confluent system, in the sense that all possible computations 
of �(s(u)) + cod(u) must give the same answer.

If R is a class of recognizer P systems with symport/antiport rules and membrane division, then we denote by PMCR the 
set of all decision problems which can be solved in uniform polynomial-time by means of recognizer P systems from R. The 
class PMCR is closed under complement and polynomial-time reductions (see [27] for details).

In [10], the limitations of efficient computations in recognizer P systems with symport/antiport rules and membrane 
division when communication rules are non-cooperative rules have been established. Specifically, in the cited paper it has 
been shown that PMCCDC(1) = P. This result has been obtained by applying the dependency graph technique (a directed 
graph is associated with each P system � verifying the following: there exists an accepting computation of � if and only if 
there exists a path between two distinguished nodes in the dependency graph associated with it). From a complexity point 
of view, what happens if minimal cooperation is considered in communication rules? Do these systems have the ability to 
solve computationally hard problems in uniform polynomial-time?

4. On the presumed efficiency of CDC(2)

This section is devoted to justifying the presumed efficiency of recognizer P systems with membrane division which 
use minimal cooperation in communication rules. In [12], an efficient solution to the SAT problem was given by using a 
family of systems from CDC(3). In this section, this result is improved by giving a uniform polynomial-time solution to 
the HAM-CYCLE problem (given a directed graph, to determine whether or not there exists a Hamiltonian cycle in the graph), a 
well-known NP-complete problem [2], by means of a family of systems from CDC(2).

4.1. A uniform polynomial-time solution of the HAM-CYCLE problem in CDC(2)

For each m, n ∈ N, being n the number of nodes and m the number of edges of a directed graph G , we consider the 
recognizer P system with symport/antiport rules and membrane division of degree 11 + 2n + n3

�(〈m,n〉) = (�,E,�,μ,Mr (1 ≤ r ≤ 11) , Ma1, j (1 ≤ j ≤ n),

Ma2, j (1 ≤ j ≤ n) , Mei, j,k (1 ≤ i, j,k ≤ n) , Rr (1 ≤ r ≤ 11),

Ra1, j (1 ≤ j ≤ n) , Ra2, j (1 ≤ j ≤ n) , Rei, j,k (1 ≤ i, j,k ≤ n),

iin, iout)

defined as follows (parameter m is involved in the definition of some rules):



– The working alphabet � is:

� ∪ E ∪ {b′
r,b′′

r ,b′′′
r , c′

r, c′′
r , c′′′

r , c′′′′
r | 1 ≤ r ≤ n3}∪

{βr | 0 ≤ r ≤ n3 + 7} ∪ {(i, j)′k , (i, j)′′k | 1 ≤ i, j,k ≤ n}∪
{(i, j)′′k,r | 1 ≤ i, j,k ≤ n ∧ 1 ≤ r ≤ n3}∪
{α0,a,a′,a′′,b,b′,b′′,b′′′, c, c′, c′′, c′′′, c′′′′,yes,no},

where the input alphabet is � = {(i, j)k | 1 ≤ i, j, k ≤ n}, and the alphabet of the environment is E = {αr | 1 ≤ r ≤ n3 + 6}
– Membrane structure μ: the set of nodes is

V = {1, . . . ,11} ∪ {a1, j,a2, j | 1 ≤ j ≤ n} ∪ {ei, j,k | 1 ≤ i, j,k ≤ n}
The root is labelled by 1 and the remaining nodes are its children.

– Initial multisets:

M1 = {α0} ∪ {βr | 1 ≤ r ≤ n3 + 7}∪
{b′

r,b′′
r ,b′′′

r , c′
r, c′′

r , c′′′
r , c′′′′

r | 1 ≤ r ≤ n3 − 1} ; M2 = {an,b, c};M3 = {b′
n3} ;

M4 = {b′′
n3} ; M5 = {b′′′

n3} ; M6 = {c′
n3} ; M7 = {c′′

n3} ; M8 = {c′′′
n3} ;

M9 = {c′′′′
n3 } ; M10 = {yes} ; M11 = {no, β0} ;

Ma1, j = {a′
n3} , Ma2, j = {a′′

n3}, for 1 ≤ j ≤ n;
Mei, j,k = {(i, j)′′

k,n3}, for 1 ≤ i, j,k ≤ n.

– Rules of the system:
Rules in R1

– Rules to control the output of the computations by counters αr : {(αr , out ; αr+1 , in) | 0 ≤ r ≤ n3 + 5} (1.1)

– Rule to produce an affirmative answer: (yes , out) (1.2)

– Rule to produce a negative answer: (noαn3+6 , out) (1.3)

Rules in R2

– Rules to produce all possible subsets of A′
G in membranes labelled by 2 at configuration Cn3+1:

{[ (i, j)k ]2 → [ (i, j)′k ]2 [ # ]2 | 1 ≤ i, j, k ≤ n} (2.1)

– Rules to move objects a′ , a′′ , b′ , b′′ , c′′′ , c′ , c′′ , c′′′ and c′′′′ into membranes labelled by 2 at configurations Cn3+2, 
Cn3+3, Cn3+4 and Cn3+5, respectively.
(a, out ; a′, in); (a′, out ; a′′, in) (2.2)

(b , out ; b′ , in) ; (b′ , out ; b′′ , in); (b′′ , out ; b′′′ , in) (2.3)

(c, out; c′, in); (c′, out; c′′, in); (c′′, out; c′′′, in); (c′′′, out; c′′′′, in) (2.4)

(a′′ b′′′ , out); (b′′′ c′′′′ , out) (2.5)

– Rules to produce in each membrane labelled by 2 at configuration Cn3+2 a subset of A′′
G from a subset of A′

G at 
configuration Cn3+1:
{((i, j)′k , out ; (i, j)′′k , in) | 1 ≤ i, j, k ≤ n} (2.6)

– Rules to generate in each membrane labelled by 2 at configuration Cn3+1 a subset of A′′
G encoding a possible Hamil-

tonian cycle.

(2.7)

⎧⎪⎪⎨
⎪⎪⎩

{((i, j)′′k (i, j′)′′k′ , out) | 1 ≤ i, i′, j, j′,k,k′ ≤ n}∪
{((i, j)′′k (i′, j)′′k′ , out) | 1 ≤ i, i′, j, j′,k,k′ ≤ n}∪
{((i, j)′′k (i′, j′)′′k+1 , out) | 1 ≤ i, i′, j, j′,k,k′ ≤ n, j �= i′}∪
{((i, j)′′k (i′, j′)′′k , out) | 1 ≤ i, i′, j, j′,k,k′ ≤ n}

– Rules to check if the subset represented by each membrane with label 2 at configuration Cn3+3 encodes a Hamiltonian 
cycle of the input graph: {(a′′ (i, j)′′k , out) | 1 ≤ i, j, k ≤ n} (2.8)

Rules in R3

Rules to produce 2n·m copies of object b′ in the skin membrane of configuration Cn3+1:
{(b′

r , out ; b′
r−1 , in) | n ·m +1 ≤ r ≤ n3} (3.1)

{[ b′
r ]3 → [ b′

r−1 ]3 [ b′
r−1 ]3 | 2 ≤ r ≤ n ·m} (3.2)

[ b′
1 ]3 → [ b′ ]3 [ b′ ]3 (3.3)

(b′ , out) (3.4)

Rules in R4

Rules to produce 2n·m copies of object b′′ in the skin membrane at configuration Cn3+1:
{(b′′

r , out ; b′′
r−1 , in) | n ·m +1 ≤ r ≤ n3} (4.1)

{[ b′′
r ]4 → [ b′′

r−1 ]4 [ b′′
r−1 ]4 | 2 ≤ r ≤ n ·m} (4.2)

[ b′′
1 ]4 → [ b′′ ]4 [ b′′ ]4 (4.3)

(b′′ , out) (4.4)



Rules in R5

Rules to produce 2n·m copies of object b′′′ in the skin membrane at configuration Cn3+1:
{(b′′′

r , out ; b′′′
r−1 , in) | n ·m +1 ≤ r ≤ n3} (5.1)

{[ b′′′
r ]5 → [ b′′′

r−1 ]5 [ b′′′
r−1 ]5 | 2 ≤ r ≤ n ·m} (5.2)

[ b′′′
1 ]5 → [ b′′′ ]5 [ b′′′ ]5 (5.3)

(b′′′ , out) (5.4)

Rules in R6

Rules to produce 2n·m copies of object c′ in the skin membrane at configuration Cn3+1:
{(c′

r , out ; c′
r−1 , in) | n ·m +1 ≤ r ≤ n3} (6.1)

{[ c′
r ]6 → [ c′

r−1 ]6 [ c′
r−1 ]6 | 2 ≤ r ≤ n ·m} (6.2)

[ c′
1 ]6 → [ c′ ]6 [ c′ ]6 (6.3)

(c′ , out) (6.4)

Rules in R7

Rules to produce 2n·m copies of object c′′ in the skin membrane at configuration Cn3+1:
{(c′′

r , out ; c′′
r−1 , in) | n ·m +1 ≤ r ≤ n3} (7.1)

{[ c′′
r ]7 → [ c′′

r−1 ]7 [ c′′
r−1 ]7 | 2 ≤ r ≤ n ·m} (7.2)

[ c′′
1 ]7 → [ c′′ ]7 [ c′′ ]7; (7.3)

(c′′ , out) (7.4)

Rules in R8

Rules to produce 2n·m copies of object c′′′ in the skin membrane at configuration Cn3+1:
{(c′′′

r , out ; c′′′
r−1 , in) | n ·m +1 ≤ r ≤ n3} (8.1)

{[ c′′′
r ]8 → [ c′′′

r−1 ]8 [ c′′′
r−1 ]8 | 2 ≤ r ≤ n · m} (8.2)

[ c′′′
1 ]8 → [ c′′′ ]8 [ c′′′ ]8 (8.3)

(c′′′ , out) (8.4)

Rules in R9

Rules to produce 2n·m copies of object c′′′′ in the skin membrane at configuration Cn3+1:
{(c′′′′

r , out ; c′′′′
r−1 , in) | n ·m +1 ≤ r ≤ n3} (9.1)

{[ c′′′′
r ]9 → [ c′′′′

r−1 ]9 [ c′′′′
r−1 ]9 | 2 ≤ r ≤ n ·m} (9.2)

[ c′′′′
1 ]9 → [ c′′′′ ]9 [ c′′′′ ]9 (9.3)

(c′′′′ , out) (9.4)

Rules in R10

Rules to produce an affirmative answer:
(αn3+6 c′′′′ , in) ; (c′′′′ yes , out) (10.1)

Rules in R11

Rules to control the negative answer of the computations by counters βr :
{(βr out ; βr+1 , in) | 0 ≤ r ≤ n3 + 6} (11.1)

(βn3+7 no , out) (11.2)

Rules in Ra1, j , 1 ≤ j ≤ n

Rules to produce 2n3
copies of object a′ in the skin membrane at configuration Cn3+1:

{[ a′
r ]a1, j → [ a′

r−1 ]a1, j [ a′
r−1 ]a1, j | 2 ≤ r ≤ n3} (a1,j.1)

[ a′
1 ]a1, j → [ a′ ]a1, j [ a′ ]a1, j (a1,j.2)

(a′ , out) (a1,j.3)

Rules in Ra2, j , 1 ≤ j ≤ n

Rules to produce 2n3
copies of object a′′ in the skin membrane at configuration Cn3+1:

{[ a′′
r ]a2, j → [ a′′

r−1 ]a2, j [ a′′
r−1 ]a2, j | 2 ≤ r ≤ n3} (a2,j.1)

[ a′′
1 ]a2, j → [ a′′ ]a2, j [ a′′ ]a2, j (a2,j.2)

(a′′ , out) (a2,j.3)

Rules in Rei, j,k , 1 ≤ i, j,k ≤ n

Rules to produce 2n3
copies of object (i, j)′′k in the skin membrane at configuration Cn3+1:

{[(i, j)′′k,r]ei, j,k → [(i, j)′′k,r−1]ei, j,k [(i, j)′′k,r−1]ei, j,k | 2 ≤ r ≤ n3} (ei,j,k.1)

[ (i, j)′′k,1 ]ei, j,k → [ (i, j)′′k ]ei, j,k [ (i, j)′′k ]ei, j,k (ei,j,k.2)

((i, j)′′k , out) (ei,j,k.3)

(5) The input membrane is the membrane labelled by 2 and the output region is the environment of the system (labelled
by 0).



According with the previous description, for each m, n ∈ N the recognizer P system �(〈m, n〉) is in the class CDC(2). In 
the next subsection, we will give an overview how each system �(〈m, n〉) will process all directed graphs with n nodes and 
m arcs.

4.2. An overview of the computations

We consider the polynomial encoding (cod, s) from HAM-CYCLE to � defined as follows: cod(G) = {(i, j)k | (i, j) ∈ E, 1 ≤
k ≤ n} and s(G) = 〈m, n〉, for each instance G = ({1, . . . , n}, {(i1, j1), . . . , (im, jm)}). The expression (i, j)k in cod(G) can be 
interpreted as follows: arc (i, j) is “placed” in “position k” in a potential path of G . According to this encoding, graph G will 
be processed by system �(s(G)) + cod(G). In what follows, we informally describe how system �(s(G)) + cod(G) works. 
The solution proposed implements the following stages:

• Generation Stage: All possible combinations of arcs from the input graph, including a code of their position in potential
paths, are generated by using cell division in an adequate way.

• Checking Stage: It is checked whether or not the different combinations of arcs generated in the previous stage encode
Hamiltonian cycles of the input graph.

• Output Stage: The system sends the right answer to the environment according to the results obtained in the previous
stage.

Generation stage
At this stage, the system generates all the possible subsets of arcs of the graph (in fact, subsets of A′

G ) which contain 
their potential positions in a path according to the notations introduced in Subsection 2.2. In this way, by applying rules 
of type 2.1 at configuration Cn3 , there will be 2n·m membranes labelled by 2 such that each of them encodes a different 
combination of arcs from the input graph. For this, rules from R2 produce two new membranes for each object (i, j)k: one 
containing its primed version, and other one not containing it. It produces that each membrane labelled by 2 will contain 
a different subset of A′

G , and therefore a different path if it is correct. Simultaneously, by applying rules of types 1, 2 and 
3 from R3, R4, R5, R6, R7, R8 and R9, 2n·m copies of objects b′, b′′, b′′′, c′, c′′, c′′′ and c′′′′ are produced in membranes 
labelled by 3, 4, 5, 6, 7, 8, 9, respectively, and 2n3

copies of objects a′, a′′ and (i, j)′′k are produced in membranes labelled by 
a1, j, a2, j , and ei, j,k , respectively. The generation stage takes n3 steps.

Proposition 4.1. Let C = (C0, C1, . . . , Cq) be a computation of the system �(s(G)) + cod(G). Then at configuration Cn3 , the following 
holds:

1. There are 2n·m membranes labelled by 2 such that each of them contains a different subset of A′
G = {(i, j)′k | 1 ≤ i, j, k ≤ n, (i, j) ∈

E} as well as object b, object c and n copies of object a.
2. There are 2n·m membranes labelled by 3 (respectively, by 4, 5, 6, 7, 8, 9) such each of them only contains object b′ (respectively,

b′′, b′′′, c′, c′′, c′′′ and c′′′′).
3. For each i, j, k (1 ≤ i, j, k ≤ n) there are 2n3

membranes labelled by ei, j,k, each of them only containing object (i, j)′′k .

4. For each j (1 ≤ j ≤ n) there are 2n3
membranes labelled by a1, j , each of them only containing object a′ , and there are 2n3

membranes labelled by a2, j , each of them only containing object a′′.
5. There is a membrane labelled by 10 and a membrane labelled by 11 such that Cn3(10) = {yes}, Cn3(11) = {no , βn3 }.
6. The contents of the skin membrane, labelled by 1, is

Cn3 (1) = {αn3 , β0, . . . , β̂n3 , . . . , βn3+7,b′
1, . . .b′

n3−1
,b′′

1, . . .b′′
n3−1

,b′′′
1 , . . .b′′′

n3−1
,

c′
1, . . . c′

n3−1
, c′′

1, . . . c′′
n3−1

, c′′′
1 , . . . c′′′

n3−1
, c′′′′

1 , . . . c′′′′
n3−1

}.

Checking stage
This stage takes 5 steps. At this stage, the system checks whether or not there exists a membrane labelled by 2 at 

configuration Cn3+5 which contains a subset of A′′
G that encodes a Hamiltonian cycle of G .

At step n3 + 1, the contents of membranes labelled by 3, 4, 5, 6, 7, 8, 9, a1, j (1 ≤ j ≤ n), a2, j (1 ≤ j ≤ n) and ei, j,k (1 ≤
i, j, k ≤ n) are sent to the skin membrane by applying rules 3.4, 4.4, 5.4, 6.4, 7.4, 8.4, 9.4, a1, j .2, a2, j .2, ei, j,k.3. From this 
moment on, these membranes do not participate in the evolution of the configurations.

Proposition 4.2. Let C = (C0, C1, . . . , Cq) be a computation of the system �(s(G)) + cod(G). Then, omitting the empty membranes, 
at configuration in Cn3+1 we have the following:

1. There are 2n·m membranes labelled by 2 such that each of them contains a different subset of A′
G = {(i, j)′k | 1 ≤ i, j ≤ m, 1 ≤ k ≤

n, (i, j) ∈ E} as well as object b, object c and n copies of object a.
2. There is a membrane labelled by 10 and a membrane labelled by 11 such that Cn3+1(10) = {yes}, Cn3+1(11) = {no , βn3+1}.

3. The skin membrane, labelled by 1, contains 2n3
copies of each of the following objects: (i, j)′k, (i, j)′′k (1 ≤ i, j, k ≤ n), a′, a′′, b′, b′′,

b′′′, c′, c′′, c′′′, c′′′′; also, it contains the following set of objects:



{αn3 , β0, . . . , β̂n3+1, . . . , βn3+7,b′
1, . . .b′

n3−1
,b′′

1, . . .b′′
n3−1

,b′′′
1 , . . .b′′′

n3−1
,

c′
1, . . . c′

n3−1
, c′′

1, . . . c′′
n3−1

, c′′′
1 , . . . c′′′

n3−1
, c′′′′

1 , . . . c′′′′
n3−1

}.

At step n3 + 2, objects a, b, c in membrane labelled by 2 at configuration Cn3+1 are substituted by objects a′, b′, c′ from 
the skin membrane by applying rules 2.2, 2.3, and 2.4. Simultaneously, by applying rules 2.6, each subset of A′

G contained 
in a membrane labelled by 2 at configuration Cn3+1 produces the “corresponding” subset of A′′

G . Besides, Cn3+2(10) = {yes}
and Cn3+2(11) = {βn3+2 , no}.

At step n3 + 3, by applying rules 2.3 and 2.4, objects a′, b′, c′ in membranes labelled by 2 at configuration Cn3+2 are 
substituted by objects a′′, b′′, c′′ from the skin membrane, and simultaneously by applying rules of type 2.7 each subset 
contained in a membrane labelled by 2 at configuration Cn3+2 is transformed into a subset encoding all possible paths in 
the input graph. In this manner, according to Proposition 2.1, we have that the input graph (with n nodes and m arcs) has 
a Hamiltonian cycle if and only if at configuration Cn3+3, there exists some membrane labelled by 2 at configuration Cn3+3
such that the subset of A′′

G contained in it has size equal to n. Besides, Cn3+3(10) = {yes} and Cn3+3(11) = {βn3+3 , no}.
At step n3 + 4, by applying rules 2.3 and 2.4, objects b′′, c′′ in membranes labelled by 2 are substituted by objects b′′′, c′′′

from the skin membrane, and simultaneously by applying rules 2.8 each object contained in the subset associated to each 
membrane labelled by 2 at configuration Cn3+3, is sent to the skin membrane cooperating with object a′′ . Then, the number 
of copies of object a′′ appearing in a membrane labelled by 2 at configuration Cn3+4 is equal to n −γ , where γ is the size of 
the path in the input graph encoded by that membrane. Then, the input graph (with n nodes and m arcs) has a Hamiltonian 
cycle if and only if there exists a membrane labelled by 2 at configuration Cn3+4 such that it does not contain any object a′′ .

At step n3 + 5, by applying rules of type 2.5, objects a′′ and b′′′ in membrane labelled by 2 at configuration Cn3+5 are 
sent to the skin membrane and, simultaneously, rule (c′′′ , out ; c′′′′ , in) produces an object c′′′′ in each membrane labelled 
by 2 at configuration Cn3+5. Hence, we can deduce the following proposition.

Proposition 4.3. Let C = (C0, C1, . . . , Cq) be a computation of the system �(s(G)) + cod(G). Then, the input graph has a Hamiltonian 
cycle if and only if there exists a membrane labelled by 2 at configuration Cn3+5 such that it contains an object b′′′. Besides, Cn3+5(10) =
{yes} and Cn3+5(11) = {βn3+5 , no}.

Output stage
Finally, the output stage takes 3 steps. Only membranes labelled by 2 at configuration Cn3+5 which contain some object 

b′′′ (that is, membrane encoding a Hamiltonian cycle) can evolve and only rule (c′′′ , out ; c′′′′ , in) ∈R2 is applicable to that 
membrane. In this case, an object c′′′′ will appear in each membrane labelled by 2 at that configuration. Furthermore, if 
a membrane with label 2 at the mentioned configuration does not encode a Hamiltonian cycle of the input graph, then it 
contains objects b′′ , so the rule (a′′ b′′′ , out) ∈ R2 will be applied. That is, the input graph has a Hamiltonian cycle if and 
only if some object c′′′′ appears in the skin membrane at configuration Cn3+6. Besides, Cn3+6(10) = {yes} and Cn3+6(11) =
{βn3+6 , no}.

If the input graph has a Hamiltonian cycle, then only rules (αn3+6 c′′′′ , in) ∈ R10 and (βn3+6 , out ; βn3+7 , in) ∈ R11 are 
applicable to configuration Cn3+6. Otherwise, only rule (βn3+6 out ; βn3+7 , in) is applicable to that configuration. So, the an-
swer to the problem is affirmative if and only if Cn3+7(10) = {αn3+6 c′′′′ , yes}. Besides, in any case, Cn3+7(11) = {βn3+7 , no}. 
Then, if there exists a Hamiltonian path then rules (c′′′′ yes , out) ∈ R10 and (βn3+7 no , out) ∈ R11 are applicable to con-
figuration Cn3+7. Otherwise, only rule (βn3+7 no , out) ∈ R11 is applicable to that configuration. Hence, the answer to the 
problem is affirmative if and only if the skin membrane at configuration Cn3+8 contains object yes (together with objects 
c′′′′, βn3+7, no) but no object αn3+6. Otherwise, the skin membrane at configuration Cn3+8 contains objects βn3+7, no, αn3+6
but no object yes.

At the last step, in case of an affirmative answer, rule (yes , out) is applied to configuration Cn3+8 producing an ob-
ject yes in the environment and the computation halts. Otherwise, rule (noαn3+6 , out) is applied to that configuration 
producing a negative answer.

Remark. When we provide a polynomial-time solution for an NP-hard problem by means of a family of recognizer mem-
brane system, we are trading space for time, that is, an exponential number of membranes and/or objects are used along 
the computations. Let us notice that in the solution for the HAM-CYCLE problem, the maximum number of membranes 
used in any configuration is (2n + n3) · 2n3 + 8 · 2n·m + 3, and the maximum number of objects used in any configuration is 
(2n + n3) · 2n3 + (n + 10) · 2n·m + 8n3 + 3.

4.3. Main result

Theorem 4.4. HAM-CYCLE ∈ PMCCDC(2) .



Proof. The family of recognizer P systems designed in Section 4.1 verifies the following:

(a) Every system of the family � is in the class CDC(2).
(b) The family � is polynomially uniform by Turing machines. Indeed, for each m, n ∈ N, the rules of �(〈m, n〉) of the

family are recursively defined from m, n ∈N, and the amount of resources needed to build �(〈m, n〉) is of a polynomial
order in n.
– Size of the alphabet: n6 + 12n3 + 29 ∈ �(n6);
– Initial number of membranes: n3 + 2n + 11 ∈ �(n3);
– Initial number of objects: 9n3 + 3n + 13 ∈ �(n3);
– Number of rules: n6 + 4n5 + n4 + 13n3 + 2n + 30 ∈ �(n6);
– Maximal length of a rule: 2 ∈ �(1).

(c) The pair (cod, s) of polynomial-time computable functions defined in Subsection 4.2 has the following property: for
each instance G of HAM-CYCLE, s(G) is a natural number, cod(G) is an input multiset of the system �(s(G)), and for
each t ∈ N, s−1(t) is a finite set.

(d) The family � is polynomially bounded, sound and complete with regard to (HAM-CYCLE, cod, s) (see Subsection 4.2).

Therefore, according to Definition 3.2, the family � of P systems constructed in subsection 4.1 solves the HAM-CYCLE
problem in polynomial-time with respect to the number of nodes. �

Corollary 4.5. NP ∪ co-NP ⊆ PMCCDC(2) .

Proof. It suffices to notice that the HAM-CYCLE problem is an NP-complete problem, HAM-CYCLE∈ PMCCDC(2) , and the 
complexity class PMCCDC(2) is closed under polynomial-time reduction and under complement. �

5. Conclusions and open problems

This work should be considered as a contribution to the development of new mechanisms and tools in the framework 
of Membrane Computing to address the P versus NP problem.

In previous works, the computational efficiency of tissue-like P systems with symport/antiport rules and cell division has 
been studied in terms of cooperation among objects to apply a rule. It is worth pointing out that, in such framework, the 
use of cooperative rules (needing at least two objects to be triggered) is needed to solve NP-complete problems in uniform 
polynomial-time, assuming that P �= NP [29].

Cell-like P systems with symport/antiport rules and membrane division (only for elementary membranes) are a restrictive 
variant of such kind of tissue P systems. Recently, a uniform linear-time solution to the SAT problem has been provided by 
means of a family of this sort of cell-like P systems allowing communication rules involving at most three objects [12]. In 
this paper, this result has been improved by showing that minimal cooperation (two objects involved in the communication 
rules) is enough in order to solve efficiently computationally hard problems. Specifically, a uniform polynomial-time solution 
to the HAM-CYCLE problem by a family of P systems with membrane division which uses communication rules with length 
at most two, has been provided. Consequently, bearing in mind that PMCCDC(1) = P, a new optimal tractability frontier has 
been obtained in terms of the length of communication rules (total number of objects involved in them): in the framework 
of P systems with symport/antiport rules and membrane division (for elementary membranes), passing from 1 to 2 amounts 
to passing from non-efficiency to efficiency, assuming that P �= NP.

By using membrane separation rules instead of membrane division rules in the framework of cell-like P systems with 
symport/antiport rules, a boundary of the efficiency is obtained passing from 2 to 3 in the length of communication rules 
[11]. Then, we have highlighted an interesting difference between replication of objects (abstracted by means of division 
rules) and distribution of objects (abstracted by means of separation rules) with respect to a frontier of the efficiency.

We conclude by proposing some open problems related to the role of the direction in communication rules (only symport 
or only antiport rules are allowed) in this kind of cell-like P systems from a complexity view.

(a) The solution given of the HAM-CYCLE problem can be adapted in such manner that only antiport rules are consid-
ered but then their length is at most three. So, NP ∪ co-NP ⊆ PMCCDA(3) . What can be said about the computational
complexity class PMCCDA(2)?

(b) Concerning the efficiency of cell-like P systems with membrane division, what happens if the communication rules
allowed can only be of the symport type?

(c) At the initial configuration of a P system with symport/antiport rules, the symbols of the distinguished alphabet E
appear in the environment in an arbitrary number of copies. What about the efficiency of recognizer P systems from CDA
and CDS when the alphabet of the environment is an empty set?
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