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Abstract. Goal Programming with fractional objectives can be reduced to mathematical program-
ming with a linear objective under linear and quadratic constraints, thus optimal solutions can be
obtained by using existing Global Optimization techniques. However, only heuristic procedures
are suggested in the literature on the field. In this note we explore the practical applicability of a
recent algorithm for nonconvex quadratic programming with quadratic constraints for this problem.
Encouraging computational experiences for randomly generated instances with up to 14 fractional
objectives are presented.
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Fractional Goal Programming [6, 11, 12] can be expressed as follows:
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where X⊂�n is a given bounded polyhedron, w+
j �w

−
j �tj ∈�+��j�	j ∈�n and

�j�
j ∈� are such that 0<	Tj x+
j for all x∈X, for all j=1�2�����m.
In words, one seeks a feasible solution x∈X which minimizes the weighted

sum of deviations of m fractional objectives ��Tj x+�j�/�	Tj x+
j� from their
target values jj . As pointed out in [8] this model has important applications in
areas such as finance, resource allocation, education and others. See also the
Appendix of [11] for several further references.
In some cases the optimal value of Problem (1) is 0; this indicates that all

fractional objectives are at their target value. This can be verified quickly by
finding a point (e.g., by solving a linear program) on the polyhedron

�x∈X ���Tj −tj	Tj �x= tj
j−�j for j=1�2�����m��

Problem (1) has a nonconvex objective. To the best of our knowledge, solution
methods proposed to date for the general case are all heuristic. They consist
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either of finding a local optimum with a nonlinear programming algorithm or of
enumerating implicitly vertices of X to find the best solution among them [7, 8].
However, (1) may have no optimal solution at such a vertex as shown by the
following example:

min
x

[
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x1
x2

−1�0
)
+max

(
1− x1

x2
�0
)]

subject to x∈X=��x1�x2� �x1+x2=4�x1�1�x2�1� where the unique optimal
solution x∗1=x∗2=2 is of value 0, and not at a vertex of X.
However, a weaker localization result can be obtained:

PROPOSITION 1. There exists an optimal solution x∗ to Problem (1) and a face
F of X, with dimension dim�F�, such that x∗ ∈F and the number of indices j
such that ��Tj x+�j�/�	Tj x+
j�= tj is at least dim�F�+1−m.

Proof. The strategy of the proof is similar to that given in [10] to obtain
localization results for a different nonlinear fractional problem.
Since the feasible region of Problem (1) is assumed to be bounded, and all the

fractions have strictly positive denominators on X, an optimal solution y exists.
The result is straightforward if dim�X��m−1, since we can take F =X�x∗=y.
Hence we assume that dim�X��m.
For any x∈X, define the index sets J��x�, J��x� as
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Consider the auxiliary problem
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Clearly, any optimal solution to the auxiliary problem (2) is also optimal for
Problem (1). In particular, y is one such optimal solution.
Then, by Corollary 23 of [2], there exists a face F0 of the polyhedron defined

by the constraints defining problem (2), containing an optimal solution x∗ to
Problem (2) – and also to Problem (1) – with dimension at most m−1.
Moreover, F0 can be expressed as the intersection of a face F of X and the

linear space{
�Tj x+�j
	Tj x+
j

= tj ∀j∈J��x∗�∩J��x∗�
}
�
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Hence, the cardinality of J��x∗�∩J��x∗� must be at least dim�F�−m+1, as
asserted. �

Problem (1) is a structured global optimization one that can easily be reduced
to another problem for which solution methods are readily available. Namely,
we will reduce it to an instance of a nonconvex quadratic programming problem
with quadratic constraints that has a linear objective, and will apply the recent
algorithm of [1] (we will refer to this algorithm by qp).
Let d+

j and d−
j represent the deviations from the targets tj from above

and below, and vj the denominators of the corresponding fractional objective
functions. Then easy manipulations show that (1) is equivalent to

min
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for j=1�����m� (3)

The complementarity constraints

d+
j d

−
j =0 �or �0� (4)

also hold, and will be automatically satisfied at the optimum, due to the
non-negativity of weights w+

j �w
−
j and deviations d+

j and d−
j . This is a

mathematical program with linear objective and with linear and nonconvex
quadratic constraints. Moreover, its feasible region is bounded since, by assump-
tion X is bounded, thus finite lower and upper bounds on each variable x and on
the denominators v can be obtained, and moreover the deviations satisfy
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Hence, upper bounds can be obtained after solving a series of linear programs.
The algorithm qp solves any quadratically constrained quadratic problem with

bounded variables through a branch and cut enumeration scheme. The algorithm
can be easily modified to take into account the complementarity information
presented above. We will denote by frac the same algorithm as qp except that
when branching forces d−

j �C (for some C>0), then the additional constraint
d+
j =0 is imposed, and similarly, when branching forces d+

j �C (for some C>0),
then the additional constraint d−

j =0 is imposed.
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We solve a series of randomly generated instances of increasing size with
both algorithms qp and frac. They are generated as follows. The variables xi
are constrained to be in the interval [0,1] (for i=1�2�����n). Every coefficient
is rounded to the second decimal. The components of the weights vectors w−

and w+ are randomly chosen between 0 and 1. For the denominator, 	j is a
random vector with components between −1 and 1; if 	ji is nonnegative, then

j is a random number between 1/100 and 1 and if 	ji is negative then 
j is
the sum of 	ji with a random number between 1/100 and 1 (for j=1�2�����m
and i=1�2�����n). For the numerator, the following steps are repeated until the
target vector t is positive: let �j and � be random vectors with components
between −1 and 1, let xj be a random vector with components between 0 and
1; set tj=��Tj xj+�j�/�	Tj xj+
j� (for j=1�2�����m). Only instances for which
the optimal objective value is non-zero are kept.
This way of generating the instances ensures that there exists an x∈X that meets

each target (of course, the x varies for each target). Moreover, this construction
ensures that the assumption that 0<	Tj x+
j for all x∈X is satisfied.
Numerical experiments are done using the qp implementation of [1], and

slightly modified for frac (the code is designed for instances where the number
of variables is small and is written in C++ with cplex 7.5 and executed on a
sparc sun-blade-100 under Solaris 2.8). The entries in the following tables are
the means �
� and standard deviations � � of the computational times in seconds
for thirty randomly generated problems.
Table 1 presents the statistics for eight different runs for each combination of

m∈�6�10�14� and n∈�5�10�15�. The columns are partitioned in instances where
the redundant constraint appearing in Equation (4) does not explicitly appear in
the model formulation, and those where it appears (the rationale for including
this complementarity constraint is that its presence reduces the feasible region of
the domain of the continuous relaxation used by the algorithm). Given a solution
produced by a heuristic method, the algorithm can be used to either confirm its
global optimality or to show that it is not optimal by finding the true global
solution. In order to simulate the use of a good heuristic method, the algorithm
was executed twice: Once to obtain the optimal solution, and a second time
only to show that the solution in indeed optimal. The columns of the table are
also partitioned into runs without and with a heuristic solution. Finally, the rows
indicate which of the two algorithms was used.
Table 1 indicates that whenm=10 or 14, the use of an heuristic method reduces

significantly the computational time required by the algorithm. The table also
suggests that when using the heuristic, the presence of the constraint in Equation
(4) slightly increases the computational times. Moreover, when the heuristic is
used, and when Equation (4) is used, then computing times of both algorithms are
comparable. Computational times do not vary significantly when m=6. Table 2
displays more computational results based on these observations.
Table 2 suggests that the computational time increases with the number of

targets m, and that it decreases with the number of variables. This is probably due
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Table 1. Computationals results with or without Equation (4), with or without a simulated
heuristic solution, for two versions of the algorithm.

Without Equation (4) With Equation (4)

Without heuristic With heuristic Without heuristic With heuristic


  
  
  
  

m=6

n=5 QP 11�2 17�7 4�4 3�3 9�0 14�3 5�7 4�4
FRAC 13�2 24�8 4�2 2�5 8�6 13�0 6�1 5�3

n=10 QP 6�7 5�5 6�0 4�6 6�6 5�2 7�1 5�1
FRAC 6�6 5�3 6�0 4�4 6�5 5�2 7�0 5�1

n=15 QP 5�4 5�8 6�3 1�3 5�2 4�5 7�3 2�0
FRAC 5�4 5�8 6�2 1�2 5�2 4�4 7�3 2�0

m=10

n=5 QP 930�5 1499�3 360�7 966�5 865�5 1353�9 380�6 1046�8
FRAC 936�1 1461�5 349�6 950�1 818�1 1189�0 400�0 1087�7

n=10 QP 239�4 487�1 137�9 649�7 204�5 365�8 102�8 434�2
FRAC 234�1 461�3 89�1 380�6 212�3 417�4 108�7 466�1

n=15 QP 21�8 45�2 18�4 9�9 22�7 54�8 22�9 17�6
FRAC 22�0 46�2 19�0 10�4 23�3 55�7 23�9 19�8

m=14

n=5 QP 13033�7 15343�6 2711�3 3946�8 12171�7 13375�6 2777�6 4101�4
FRAC 13228�4 14627�4 2751�7 4074�6 12004�3 13513�0 2758�6 4175�4

n=10 QP 5470�6 7331�6 505�9 698�6 5012�2 7056�4 496�4 656�9
FRAC 5243�0 6614�8 513�9 736�8 4801�2 6379�4 497�0 660�7

n=15 QP 1131�7 3032�7 87�0 120�5 863�6 1887�6 94�1 102�6
FRAC 1049�2 2816�9 83�5 118�6 873�0 2020�6 88�8 97�9

Table 2. Computational results of FRAC with Equation (4), with or without a simulated
heuristic solution.

m n=5 n=10 n=15

Without With heuristic Without With heuristic Without With heuristic


  
  
  
  
  
  

6 8�6 13�0 6�1 5�3 6�5 5�2 7�0 5�1 5�2 4�4 7�3 2�0
7 39�3 62�8 20�8 35�1 9�6 14�7 7�0 1�7 5�9 4�6 8�8 2�7
8 142�7 314�5 45�1 96�2 31�7 78�2 32�4 72�5 16�0 29�2 15�8 9�8

9 196�6 302�8 35�8 58�0 62�8 114�7 36�0 113�1 19�0 45�1 18�3 13�2
10 818�1 1189�0 400�0 1087�7 212�3 417�4 108�7 466�1 23�3 55�7 23�9 19�8
11 1196�8 1433�2 107�2 155�9 853�4 2395�8 655�4 1819�1 243�3 993�4 60�0 152�3

12 3962�4 5373�0 1291�2 2526�4 1786�3 3449�2 267�2 590�7 324�4 868�1 53�1 81�9
13 8126�9 7603�9 1427�6 2230�3 3292�2 6278�9 683�5 1807�0 323�1 638�7 65�9 65�7
14 12004�3 13513�0 2758�6 4175�4 4801�2 6379�4 497�0 660�7 873�0 2020�6 88�8 97�9
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to the fact that when there are much more variables than targets, there is more
flexibility in attaining several of the target values. Another evident observation
is that the standard deviations of the computational times are high. The reason is
that for each fixed values of n and m, some of the randomly generated instances
were solved very quickly by the algorithm, and others required a long time.

Remark 1. Ifm=1, separating the cases d+
1 =0 and d−

1 =0 reduces problem (1)
to two fractional linear programs and hence to two linear programs [3, 11]. The
case where there are several priority levels and one objective at each level can
be treated similarly [8].

Remark 2. If instead of weighting positive and negative deviations by single
values, one considers convex piecewise functions of these deviations models (1)
and (3)–(4) are readily extended, using more variables, as suggested in [11].

Remark 3. If the numerator of denominator of some or all fractional objectives
is quadratic instead of linear, but still satisfies non-negativity constraints, the
program generalizing (3) still has a linear objective and quadratic constraints. One
application is to chance-constrained goal programming (e.g., [9]). If higher-order
terms appear, thery can be reduced to quadratic terms by introducing additional
variables and quadratic constraints [5].

Remark 4. If instead of polynomials, the numerators and/or denominators of
some or all objectives are posynomials or signomials [4] with simple ratios as
powers, satisfying positivity constraints, similar reduction techniques apply [5],
at least in principle as the growth in number of quadratic terms may render the
resolution process lengthly.

For comparison purposes, we present the data of one instance with m=7 and
n=5 together with the optimal solution x∗�v∗�d+∗�d−∗, the optimal value z∗ and
the computational times in Table 3.

X = �x∈�5 �0�x�1�

Table 3. Computational results with or without Equation (4), with or without a
simulated heuristic solution, for two versions of the algorithm on an instance with
m=7 and n=5.

Equation (4) Without With Without With

Heuristic Without With Without With Without With Without With

QP 116 55 119 74 FRAC 123 51 120 60
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� =




−0�36 0�42 0�15 0�18 0�87
−0�29 0�72 0�72 −0�82 0�21
−0�43 0�68 −0�06 −0�01 −0�07
0�72 −0�82 0�84 −0�01 −0�33
0�17 0�78 −0�38 0�14 0�37
0�33 −0�64 0�02 0�23 0�23
−0�5 0�65 0�3 0�56 0�77



�

	 =




−0�2 −0�27 −0�22 −0�41 −0�04
−0�19 0�93 −0�99 0�99 0�45
0�82 −0�91 0�28 0�37 0�24
0�19 0�67 −0�72 −0�32 −0�84
−0�4 −0�55 −0�74 −0�76 0�83
0�91 0�89 −0�51 −0�94 −0�62

−0�16 −0�84 −0�25 0�86 0�15



�

w+ =




1�39
1�86
1�27
1�19
1�42
1�29
1�81



� w−=




1�13
1�66
1�12
1�28
1�45
1�37
1�42



� �=




0�66
0�33
0�52
0�23
0�45
0�52
0�03



� 
=




1�18
1�32
1�23
1�91
3�4
2�88
1�87



� t=




7�24
0�27
0�21
0�06
0�39
0�34
0�52



�

x∗ =




1
0�731215
0�430749

1
1


� v∗=




0�237807
2�823589
2�115204
1�119775
2�349077
2�661100
1�998092



� d+∗=




0
0
0�017582
0�272417
0�264156
0
0�212957



�

d−∗ =




0
0�175576

0
0
0

0�020344
0



� z∗=1�42638�
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