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Abstract Some multiple-criteria decision making methods rank actions by associ-
ating weights to the different criteria or actions, which are pairwise compared via
a positive reciprocal matrix A. There is a vast literature on proposals of different
mathematical-programming methods to infer weights from such matrix A. However,
it is seldom observed that such optimization problems may be multimodal, thus the
standard local-search resolution techniques suggested may be trapped in local optima,
yielding a wrong ranking of alternatives. In this note we show that standard tools of
global optimization based on interval analysis, lead to globally optimal weights in
reasonable time.

Keywords Branch and bound - Interval analysis - Multiple-criteria
decision making - Pairwise comparison matrices
1 Introduction

In order to rank a set of n given decisions, a possible strategy consists of associating

with them weights x1, ..., x, through a nonlinear regression model of the form
X
=g, ij=12,...,n, 1)
Xj

where the elements a;;, representing the relative preference of the ith action over the
jth action, are positive constant assumed to be given.
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Different numerical procedures, not absent of controversy, have been proposed
in the literature to infer x from model (1) (see e.g. [1, 2, 8, 12, 14, 16-18] and the
references therein).

A broad class of such procedures yields as x an optimal solution of a problem of
the form

min y ((Ixi/x]' - aifDZ/':l) ) (2)

n
xeRY |

where R, denotes the set of strictly positive reals, and y is a monotonic norm in the
non-negative orthant R, i.e.,

yw <y, VYu,v,0<u<v (3)

such as any (weighted) ¢, norm, 1 < p < 4o0. This approach has been proposed,
amon others, in [2, 5, 9, 11]. In particular, in [5] it is claimed that “such methods
are more appealing because it is undisputable that the matrix (x;/x;) associated
to the solution vector x must be close to the judgment matrix A.” Three particu-
lar instances of (2) are included in [5, 11], namely the unweighted ¢1,¢> and £,
under the names of Least Absolute Error, Least Square and Least Worst Absolute
Error (see e.g. [16-18]) for a different strategy to infer weights from A which is not
based on optimization techniques and may lead, as shown in [2], to non-efficient
weights.

In spite of the fact that (2) may be multimodal, local-search methods seem to
be the only proposal so far, the exception being the recent works [3, 4, 7], where
different global-optimization strategies for solving (2) for the Euclidean norm y are
analysed. The methods in these references exploit extensively the properties of the
Euclidean norm, and thus cannot be easily extended to more general settings, as the
one considered in this paper.

For choices of y different of the Eculidean norm, the literature is rather scarce.
In [5], for the particular instances of (2) addressed, (¢; and £+, norm together with
the £;), the problems are considered to be “difficult to solve”, although no attempt to
solving them is given. These three problems are later addressed in [11] via “a simple
genetic algorithm”, which may yield solutions far from optimality.

From a practical viewpoint, it has been observed that it is not so easy to provide
precise values for the scalar a;;, which are thus replaced by intervals A;; = [af;,ais.] ]
(see e.g. [6, 10, 19, 20] and the references therein). In this case, the regression model
(1) is replaced by the more general model

YeAy ij=12....n (4)
Xj ’

and (2) is replaced by the problem of finding strictly positive weights x; minimizing
a norm y of the distances between the ratios x;/x; and the corresponding intervals
Ajjs

min £ = 7 ((e (xi/%7.45)) 7, ©

n
xeRY
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with &(s, [al,aV]) defined as the distance between s and the closest point in [a,a"],

0, ifs € [aL,aY],
e(s,[a",a¥)) = { ab —s, ifs <a, (6)
s—a¥, ifs>a¥
U, L U_ L
:max[O,s—a —2|—a ¢ Za ] (7)

Obviously (5) coincides with (2) in what we call the degenerate case in which all
intervals Aj;; are degenerate, A;; = {a;}.

The aim of this paper is to show that well-known strategies of deterministic global
optimization, namely, branch and bound algorithms with bounds based on inter-
val analysis, provide in reasonable time globally optimal solutions to problem (5),
and thus, as particular case, to model (2), for different choices of y. Hence, if a
decision-maker infers weights from a pairwise comparison matrix following model
(5) for a given norm y, we show that, although, according to [5], the problems are
“difficult to solve”, they are solvable exactly by standard Global Optimization meth-
ods.

At the same time, uncertainties in the comparisons, modelled as intervals A;; for
the weights ratios, are included naturally. This is an interesting advantage of model
(5) against, for instance, the methods recommended in [5, 11, 16].

In what follows y is an arbitrary norm monotonic in R’,", as defined in (3). We
stress that y is assumed to be given, thus we do not make any suggestion about the
choice of y. Instead, we refer to [5], where it is said that “no one method is expected
to outperform other methods at all situations.”

Fori,j=1,...,n,A; = [al%,ai[j]] is an interval satisfying 0 < al% < al.[].]. Again, this
interval matrix is assumed to be given.

With these elements at hand, we now show how to infer the weights from such
(interval) pairwise comparison matrix.

2 General results

According to its definition (5), f(Ax) = f(x) for any x € R’} , and any choice of 1 > 0.
Hence, a normalization constraint can be added to (5) without loss of generality. In
particular, we can fix xq to unity, and replace (5) by

min f(x) =y ((8 (xi/xj,Aij))ijl) ,
st. x1 =1, (8)
xeRY,.

Observe that this way, we lower in one the dimensionality of the problem, which may
be of great importance when deterministic global optimization techniques are to be
used.

Since norms are continuous, we have by (7) that the objective function (8) is contin-
uous in the feasible region. However, such feasible region is not closed, which makes
at first glance unclear whether the optimal value is attained. However, one can easily
construct a compact interval containing all optimal solutions of (8), which are shown
to exist. Indeed, one has
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Proposition 1 Let z be strictly greater than the optimal value of (8). Then, any optimal
solution x to (8) satisfies

xj € Xj = [x]-L,x]U], i=12,...,n,

where
{1}, ifj=1,
_ L
= max 5 minx! (a}{+ ¢ ) L =1 ©)
g+ iy v (eji)

and ejj is the n x n matrix with all elements null except the element (i, j), with value 1.
In particular, (8), and thus (5), always has optimal solutions.

Proof  We will show that for any x, feasible for (8), but not satisfying (9), f(x) is
at least as great as z, known to be strictly greater than the optimal value. Hence, x
cannot be optimal. Having shown this, we have in particular that (8) is equivalent to
the problem where the constraint x € R’} , is replaced by (9), and thus we are optimiz-
ing a continuous function over a compact domain, guaranteeing then the existence of
optimal solutions.

Since, by assumption, y is monotonic in R’*", one has

f) = y(e(xi/xj, Aipeij), Vi, j, Vx e R . (10)

Take x not satisfying (9), and let j be the smallest index for which x; ¢ X;. Then,
there must exist i < j such that either

xf
ajj + V(Zeij)
or
x‘>x-U(a-U+ ‘ ) (12)
R W)
If (11) holds, then,
g(xi/xﬁAij) = ;] —a;
Z
> .
v (eif)

By (10),
f(x) = y(e(xi/xj, Aipeij)

>y ( ad eij) =2z
- v (€if)

thus x cannot be optimal.
Analogously, if (12) holds then

i
i _ U
£0/xi Aji) = - — aj;
12
z
> .
v (€ji)
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Hence,
f0) = y(exj/xi, Ajeji)
>y ( < e--) =2z
- v (€ji) n ’
showing that such x cannot be optimal. O

Following Proposition 1, we can reformulate (8) as a nonlinear nonconvex box-
constrained problem of the form

min f(x) =y ((8 (xi/xj',A,'j))ijl) s (13)
st. xjekX;, j=12,...,n

Let us now discuss how to come up with a globally optimal solution to (13), first
in the particular case in which the norm y is the £, norm, and then for arbitrary
monotonic norms y.

2.1 The £, norm

For y equal the ¢, norm, we have by (7) that
f(x) = max e(xixj, Ajj)

1<ij<n
X; 115-/ +a§ ailjj - ag
= max {max430,|— — -
1<ij<n Xj 2 2
X ai(j] +a5 all]] - ail]f
= max {0, max |—
1<ij<n | Xj 2 2

It is then seen that f is quasiconvex and strictly quasiconvex on ]_[]- Xj, thus local
optima are global optima. Moreover, the search of (globally) optimal solutions can
be reduced to solving a series of linear programs. Indeed, a simple calculation shows
that, for § > Oand x € H]- Xj, the statement f(x) < B is equivalent to the statement

0 < minmin [x,-(a}jf + B) — xixi — xj(ak - ,3)} .
ij
Hence, for § > 0 given, a §-approximate optimal solution x will be obtained after

solving (via a binary search), O(log(1/8)) linear problems of the form

max ?
st. 1< xj(al-lj] +B) —xi, Vij,
tfxi_xj(ailjl_ﬂ)a Viaj7
xj e Xj, V]
Observe that this problem had been (erroneously) claimed to be “difficult” in
[5, 11].

2.2 Arbitrary monotonic norms

It is not hard to obtain (convergent) bounds in f within intervals using basic tools
of interval analysis [13]. Indeed, for intervals S = [sE, sV, T = [¢&,¢Y], it is easily
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shown, by enumeration of all possible cases, that the range te(s, ) := {e(s,T) : s € S}
is given by

fie(s,t) = [a(s, 1), B(s,1)]
with
o(s,1) = max {tL — sU,sL — tU,O} s
B(s,t) = max {SU - tU,tL - SL,O] .
Hence, by the monotonicity of y, we have that

F(X, X0 = [y (/X apiis, )y (X, apis)] - a4)

is an inclusion function for f. Moreover, since all norms are equivalent, it turns out that
F exhibits first-order convergence in the domain of (13). Hence, a branch and bound
algorithm using y ((a(Xi/Xj, Aj)! = 1) as lower bound of f on intervals is convergent.

3 Numerical experiments

A series of tests has been performed to check the feasibility of interval branch-
and-bound methods to solve (8) and to explore how perturbations in model (1) affect
accuracies and computing times. For a fixed dimension n, we generate a weight vector
x = (x1,...,x,) randomly, with components independently and identically distrib-
uted as a uniform variable in the set {1,2,...,9}; for each pair i,j,i < j, a perturbation
factor &; is then randomly generated following a uniform distribution in an interval
[1 —c,14 c] with ¢ € Ry, and the interval pairwise comparison matrix in model (4) is
defined with

[a- r)j%;&j,(l +r)j‘7;s,»,-], ifi <j,
Ajj = 1y, ifi=j, (15)
1/Aji7 ifi >j,

where r is a fixed positive real number which denotes the wished radius for the inter-
vals Ajj, i < j:ie. 2ris the width of the intervals A;; for i < j.

For each size n and constant ¢ delimiting the perturbations &; in the interval
[1 — ¢, 1+ c], 50 interval pairwise matrices with different widths (defined by their
radius r) were generated according to (15). The analysis has been performed using as
y the Euclidean norm; exactly the same methodology can be used for other norms or
other objective functions. Mean, best and worst-case results are shown in Tables 1-3.

The used algorithm derives from a standard interval branch-and-bound algorithm
of Moore-Skelboe type, where the midpoint test is added (this generates the current
solution named fin Algorithm 1), [15]. These kinds of exact global optimization meth-
ods work by bisecting the initial domain into smaller and smaller subboxes. Thus, a
list of boxes (named £ in Algorithm 1) is generated; boxes are discarded as soon as it
is shown that they cannot contain a global optimum (computing a lower bound of a
function over a box using interval analysis [13] it can be proved that the best solution in
the box cannot be superior to the current one f). The stopping criterion for a standard
interval branch-and-bound algorithm is generally the accuracy reached between the
current minimum f and the lowest lower bound remaining in £ (f — ming zyeg 2 < e,
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where e is the wished precision). The bounds are computed by using the inclusion
function defined by Eq. (14) and using the definition of interval arithmetic, [13]. For
all our numerical tests (2,250), it was not possible to fix the same accuracy for all of
them, because the values of the objective functions vary from 0 up to 100 depending
on the size and of the perturbation of the problem (parameters n, r, ¢). Thus, the algo-
rithm was modified in order to compute the efficient accuracy which can be reached
by the optimal solutions (within a fixed number of iterations NBy,,x). The parameter
co represents the step by which the precision e is decreased during the iterations of
the algorithm (it could be fixed to 0.0001). The maximal number of iterations NBax
is fixed to 200,000 in Algorithm 1 in order to solve quickly all the numerical tests
presented in Tables 1-3. Therefore one has to discuss about the precision reached
during this imposed time. This method is detailed as follows:

Algorithm 1

e Set X := the initial domain in which the global minimum
is searched, X CR".
Set f:=4o00 (the current minimum) .

[ )

e Set L:=(400,X) (the lower bound, the box).
e Set e¢:=10 (the wished accuracy) .

e Set co:=1.

e Set NBpnax := 200000.

e Set k:=1.

[ ]

While k < NBmax and e > 1074 Do

(1) Extract from £ the box which has the lowest lower
bound.

(2) Bisect the considered box by the middle of its edge
which has the maximal length, yielding Vi, Va.

(3) For m:=1 to 2 do

V .
* Compute vy, = vy O{(M,Ai]‘) the lower bound of f

on V,,, by using (14).
*1f vy <f (only one global solution is sought) then
. Insert (v, Vm) in L.
. Set f:: min(f,f(mid(Vm))), where mid(V,,) is the
midpoint of V.
. If f has changed then remove from £ all (z,72)
where z>f, and set y:=mid(V,,).
(4) if f—ming zerz <e then
* 1f co > e then co:=co/10.
* e:=e— co.
* Compute the CPU-time in seconds until this
instruction.
5) ki=k+1.
End Do
e Results: f,f,e,k,time.

The results given at the end of the algorithm, are the global minimum value f, only
one solution y and the reached accuracy e, the CPU-time time, the number of iterations
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k needed to find this solution. Hence, this algorithm allows us to determine a global
solution, up to accuracy e, within an imposed limited number of iterations NBx.

In order to compare the results in the following tables, one must first compare the
accuracy e and then, for a same accuracy, the CPU-time needed.

All the results are performed on a classical modern PC-computer (AMD Athlon
1.1 GHz processor with 256 MB of RAM) using a Fortran 90 language.

In the following tables of numerical results Table 1-3, one can notice that the three
parameters 7, r and c induce different effects. For the parameter n, it is well known that
when the dimension of a global optimization problem increases, the performance of
exact algorithms often deteriorates extremely quickly; this phenomenon is observed
in every line of Table 1.

The particular problems addressed in this paper have another technical drawback
relatively common in interval arithmetic methods, [13]: each variable appears many
times in the objective function, affecting the quality of the lower bounds (14).

For parameter ¢, when it grows, the perturbation of the weight matrix A increases
and then, the corresponding global optimization problem becomes more difficult to
be solved. Considering the last parameter r, its growth introduces a simplification
of the resolution of the associated global optimization problem. This positive effect
seems to come from the fact that very good solutions are quickly obtained and then
a lot of sub-boxes are directly discarded.

Admitting that 1072 is a sufficient accuracy for solving these problems (in fact this
depends on the values of the global optima, which increase with the perturbation of
the problems), one can remark in Table 1 that the most important part of the consid-
ered problems with 5,6, .. .,10 variables can be solved with efficiency even when the
size of the problem is n = 10. This result is emphasized by considering the worst case
(see Table 3, which is not so far from the mean case). Table 2 shows that for every
parameters n < 10, c, r, there exists a possibility that the resolution of the considered
problem can be performed in a very efficient way. Remarking that when one considers
problems with an interval matrix (» > 0) and not a degenerated one (r = 0), the cor-
responding global optimization problem is more efficiently solved. This means that it
will be more interesting to formulate problems with a real degenerated matrix A, by
a corresponding one with a little radius-perturbation » = 0.05 for example, yielding
an interval matrix.

Nevertheless, some problems are not solved with a efficient precision (102 for this
function) (see Table 3 when r = 0,¢ = 0.3 and n = 6 until 10). That is due to the fact
that the values of the corresponding functions are not close to 0. Therefore, a precision
10~*1is easy to reach if the solution is close to 0, but very hard to perform in other cases.

4 Conclusion

In this article, one shows that standard interval branch-and-bound algorithms can be
directly used to solve successfully the optimization problems appearing when one
faces the problem of inferring weights from a pairwise comparison matrix, in which
coefficients may also be intervals. A general formulation of this problem is proposed,
and a global optimization algorithm is proposed.

Some particular instances of this problem (not including interval elements in the
pairwise comparison matrices) were simply considered to be “difficult to solve”, [5],
or heuristically solved without measuring the possible gap.
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The numerical experiments show that some problems can efficiently be solved even
if the size is rather important (10 for example) by considering the classical stopping
criterion and with a precision about 1 or 2%.

Hence, as soon as one decides to infer weights by (8), interval analysis methods
provide an effective tool to find the weight vector globally optimal for such cirterion
for problems of moderate size.
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