
Computers & Operations Research 39 (2012) 2625–2633
Contents lists available at SciVerse ScienceDirect
Computers & Operations Research
0305-05

doi:10.1

n Corr

E-m

aushako
1 Th

06, FQM
journal homepage: www.elsevier.com/locate/caor
A computational study of a nonlinear minsum facility location problem
Emilio Carrizosa a,1, Anton Ushakov b, Igor Vasilyev b,n

a Instituto de Matemáticas de la Universidad de Sevilla, Universidad de Sevilla, Tarfia s/n, 41012 Sevilla, Spain
b Institute for System Dynamics and Control Theory, Siberian Branch of Russian Academy of Sciences, Lermontov Str., 134, 664033 Irkutsk, Russia
a r t i c l e i n f o

Available online 31 January 2012

Keywords:

p-median problem

Lagrangean relaxation

Core heuristic

Nonlinear integer programming
48/$ - see front matter & 2012 Elsevier Ltd. A

016/j.cor.2012.01.009

esponding author. Tel.: þ7 9148752836; fax:

ail addresses: ecarrizosa@us.es (E. Carrizosa),

v@icc.ru (A. Ushakov), vil@icc.ru (I. Vasilyev)

e research of E. Carrizosa is supported by pro

329.
a b s t r a c t

A discrete location problem with nonlinear objective is addressed. A set of p plants is to be open to

serve a given set of clients. Together with the locations, the number p of facilities is also a decision

variable. The objective is to minimize the total cost, represented as the transportation cost between

clients and plants, plus an increasing nonlinear function of p.

Two Lagrangean relaxations are considered to derive lower bounds. Dual information is also used to

design a core heuristic.

Computational results are given, showing that nearly optimal solutions are obtained in short

running times.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

In this paper we address a nonlinear variant of the well-known
p-median problem [1–3]. Let I¼ f1, . . . ,ng be a set of potential
facility sites, where facilities can be opened, let J¼ f1, . . . ,mg be a
set of clients, whose demands need to be satisfied by the facilities,
and let dijZ0 be the cost of satisfying the demand of client jA J

from the facility located at site iA I. In the p-median problem, the
location of p sites (medians) from I are sought in order to
minimize the overall total cost of satisfying the demands of all
clients. In other words, the p-median problem is the following
combinatorial optimization problem:

min
SD I

X
jA J

min
iA S

dij : 9S9¼ p

8<:
9=;:

Different exact and heuristic algorithms have been proposed in
the literature to address this NP-hard problem, see, e.g. [4–8] and
the references therein, and it has been successfully applied for
locating different types of facilities, both in the public and in the
private sectors [9]. Moreover, the fields of applications go beyond
location planning. Indeed, the p-median model has also been
suggested as a clustering method in Data Analysis, e.g. [10–12]. In
this context, the set I of clients is a set of entities (records in a data
base), J¼ I, dij is some distance measure between entities i and j,
and the goal is to find a set of p entities, so-called prototypes, so
that the sum of distances between entities and their closest
prototype is minimized. We also find p-median type models in
ll rights reserved.

þ7 3952511616.

.

jects MTM2009-14039-C06-
the so-called Optimal Diversity Management problem [13,14],
appearing in some industries: different configurations can be
produced; a given configuration can be replaced by a more
complete but more expensive one, and the set of p configurations
to be produced minimizing the total overcost is sought.

A key ingredient of the p-median problem is that the number p

of facilities is assumed to be fixed. This assumption may be rather
unrealistic in several contexts. Indeed, the number of facilities to
open may not be fixed when the facilities are relatively cheap
objects to be bought (think, for instance, of location problems in
which the facilities are garbage containers, post or phone boxes).
The same may happen in Clustering problems or Optimal Diver-
sity Management problems, in which a certain degree of arbi-
trariness exists with respect to the number of prototypes
(respectively configurations) to be chosen, e.g. [15]. In these
cases, it seems natural to address a minsum p-median type
problem, in which the number p of facilities to be open is
considered to be another decision variable, allowed to vary within
the set P9f1, . . . ,ng: The total cost to be minimized is then
modeled as the sum of the transportation cost, namely, the
p-median objective, plus a penalty fðpÞ. In other words, the problem
to be addressed, and analyzed in this paper, is written as follows:

min
SD I,pAP

X
jA J

min
iA S

dijþfðpÞ : 9S9¼ p

8<:
9=;: ð1Þ

The only assumption made on f is that it is increasing in p, so that
the number of facilities selected (or clusters designed, or configura-
tions produced) is as small as possible. If f is linear, then (1) is the
particular case of the well-known uncapacitated facility location
problem [16], with common fixed cost for all facilities. Moreover,
for particular choices of f one obtains that Problem (1) is reduced to
the classical p-median problem for fixed p¼ pn. Indeed, let ZðpnÞ

denote the optimal value of the p-median problem with pn facilities,

www.elsevier.com/locate/caor
www.elsevier.com/locate/caor
dx.doi.org/10.1016/j.cor.2012.01.009
mailto:ecarrizosa@us.es
mailto:aushakov@icc.ru
mailto:vil@icc.ru
dx.doi.org/10.1016/j.cor.2012.01.009
dx.doi.org/10.1016/j.cor.2012.01.009

E. Carrizosa et al. / Computers & Operations Research 39 (2012) 2625–26332626
and take any function f such that fðpÞ ¼ 0 for all prpn and
fðpÞ4ZðpnÞ for all p4pn. Since the distances dij are non-negative,
then it turns out that Problem (1) has an optimal solution with
exactly pn facilities, and it is also a p-median solution of p¼ pn.

Problem (1) with a nonlinear penalty function f has been
introduced in [17] to conveniently model distribution problems
with (dis)economies of scale. Nonlinear penalty functions are also
more reasonable in Cluster problems, in which a penalty function
of type fðpÞ ¼ Cp2, ðC40Þ or fðpÞ ¼ p log p may be more adequate
to prevent the number of clusters to exploit. Similarly, in the
Optimal Diversity Management context, the cost of producing,
storing and handling different configurations may increase very
rapidly with the number of configurations.

Despite being a very natural variant of the p-median problem,
this problem has received little attention in the literature. As far as
the authors know, the model has been introduced in [17], where the
case of convex f is addressed. A heuristic algorithm is designed
which, by bisection in p, reduces the problem to a series of
uncapacitated facility location or p-median problems. Limited com-
putational experience is given, as it is also given in [18], where the
convexity assumption on f is relaxed. The reader is referred to, e.g.
[19–25] and the references therein for other nonlinear optimization
problems arising in discrete facility location.

In this paper we describe a very sharp heuristic for the integer
nonlinear program (1) with two main elements: Lagrangean
relaxation is used to obtain lower bounds, and in a second stage,
a core selection approach [26,4,5,27], is derived to obtain very
good upper bounds. The remainder of the paper is structured as
follows. The problem is stated in Section 2. In Section 3 two
different Lagrangean relaxations are proposed, and details on how
to optimize them via a subgradient algorithm are given. The dual
information provided by the Lagrange multipliers is used to
design a core heuristic. Combining lagrangian relaxation with
the core heuristic yields our algorithm, as described in Section 4.

Computational experience on data sets taken from the OR and
from the data analysis literature is reported in Section 5. Finally,
some conclusions and future perspectives are discussed in Section 6.
2. Problem statement

Problem (1) is formulated as a nonlinear problem in integer
variables by modifying the usual IP formulation for the p-median
problem. For each iA I, let us consider a binary variable yi, which
takes the value 1 if the facility at i is open, and takes the value
0 otherwise, and, for each pair iA I,jA J, let xij be the binary
variable which is equal to 1 if client j is served by facility at i. With
this notation, Problem (1) is written as the following nonlinear
integer problem:

Zn
¼min
ðx,y,pÞ

X
iA I

X
jA J

dijxijþfðpÞ, ð2Þ

X
iA I

xij ¼ 1, jA J, ð3Þ

xijryi, iA I, jA J, ð4ÞX
iA I

yi ¼ p, ð5Þ

yiAf0;1g, iA I, ð6Þ

xijAf0;1g, iA I,jA J, ð7Þ

pAP: ð8Þ

Constraints (3) ensure that each client j is served by exactly one
facility. Constraints (4) impose that a client can only be served by
open facilities. Constraint (5) enforces the number of facilities to
be pAP¼ fpAZ : 1rprng.

Since p takes only a finite set of values, an equivalent linear
integer programming formulation for (1) is obtained by lineariz-
ing the function f. Indeed, for each kAP, let fk ¼fðkÞ, and let zk

be the binary variable which takes the value 1 if exactly k

facilities are open and 0 otherwise. With this notation, we obtain
the equivalent IP problem:

Zn
¼min
ðx,y,zÞ

X
iA I

X
jA J

dijxijþ
Xn

k ¼ 1

fkzk, ð9Þ

X
iA I

xij ¼ 1, jA J, ð10Þ

xijryi, iA I, jA J, ð11Þ

X
iA I

yi ¼
Xn

k ¼ 1

kzk, ð12Þ

Xn

k ¼ 1

zk ¼ 1, ð13Þ

yiAf0;1g, xijAf0;1g, iA I, jA J, ð14Þ

zkAf0;1g, k¼ 1, . . . ,n: ð15Þ

Observe that constraint (12) ensures the number of open
facilities is equal to k, whereas constraint (13) enforces only one
value k¼ 1, . . . ,n to be chosen for the number of open facilities.

We are interested in solving problems of large size. Hence, exact
methods guaranteeing that an optimal solution have been obtained
are not applicable. Instead, we develop a heuristic which, as shown in
the computational results presented in Section 5, performs very well
in practice. First, a Lagrangean relaxation scheme is used to Problem
(2)–(8). This way, a lower bound of the optimal value Zn, as well as an
upper bound (given by the objective evaluated at a heuristic solution)
are obtained. The gap between the lower and upper bounds is later
reduced by using a so-called core heuristic: the information provided
by the Lagrange multipliers is used to select a subset of ‘‘promising’’
variables; then a reduced p-median problem, i.e. the p-median
problem for just the subset of selected variables, is solved with
commercial software using the formulation (9)–(15). We explain in
Sections 3.1–3.4 how Lagrangean functions are computed and
optimized. Then, we devote Section 3.5 to show how this dual
information can be used in the core heuristic to obtain heuristic
solutions with smaller gap.
3. Lagrangean relaxation and the core heuristic

Methods based on the Lagrangean relaxation have been widely
used for solving location problems [6,28,26,11].

In this section we define two different Lagrangean relaxations of
Problems (2)–(8), extending well-known relaxations of the p-median
problem to the case in which p is also a decision variable. These relax-
ations, called hereafter L1 and L2, correspond to the case in which
constraints (3) and (5) (respectively constraints (3)) are relaxed.

Relaxing constraints (3) and (5) with Lagrange multipliers
lARm and pAR respectively we obtain the Lagrangean dual
function L1ðl,pÞ:

L1ðl,pÞ ¼min
ðx,y,pÞ

X
iA I

X
jA J

dijxijþ
X
jA J

lj 1�
X
iA I

xij

 !
þp p�

X
iA I

yi

 !
þfðpÞ :

8<: xijryi

)

¼min
ðx,y,pÞ

X
iA I

X
jA J

ðdij�ljÞxijþpp�p
X
iA I

yiþfðpÞ :

8<: xijryi

)
þ
X
jA J

lj:

E. Carrizosa et al. / Computers & Operations Research 39 (2012) 2625–2633 2627
All variables xij,yi are binary and pAP. For simplicity in the
notation we skip such constraints.

In the same way, if only constraints (3) are relaxed, we obtain
the Lagrangean dual function L2ðlÞ:

L2ðlÞ ¼min
ðx,y,pÞ

X
iA I

X
jA J

dijxijþ
X
jA J

lj 1�
X
iA J

xij

0@ 1AþfðpÞ :
8<: xijryi, :

X
iA I

yi ¼ p

)

¼min
ðx,y,pÞ

X
iA I

X
jA J

ðdij�ljÞxijþfðpÞ :

8<: xijryi, :
X
iA I

yi ¼ p

)
þ
X
jA J

lj:

Implementation details on how to optimize L1ðl,pÞ and L2ðlÞ
will be given in Section 3.4. Before, we will analyze in Sections
3.1 and 3.2 how to compute L1ðl,pÞ and L2ðlÞ when local
convexity properties of the function fð�Þ can be exploited. We
recall that function fð�Þ is said to be convex (respectively concave)
on a grid K ¼ fk1,k1þ1, . . . ,k2�1,k2g if fð�Þ has nondecreasing
(respectively nonincreasing) increments. In other words, fð�Þ is
said to be convex (respectively concave) on the grid K if Dfð�Þ is a
nondecreasing (respectively nonincreasing) function, where
DfðkÞ9fðkþ1Þ�fðkÞ. It is easily seen that fð�Þ is convex (respec-
tively concave) in fk1,k1þ1, . . . ,k2�1,k2g iff the piecewise linear
function with knots in K and interpolating f in K is convex
(respectively concave) in the interval ½k1,k2�.

3.1. Evaluating the Lagrangean function L1

Let us compute the value of the Lagrangean dual function L1ðl,pÞ
for a given set of multipliers ðl,pÞ. Using the notation a� ¼minf0,ag,
it follows that L1ðl,pÞ is written as the sum of one linear term in the
multipliers l, one concave piecewise linear term in the multiplier p
and the coupling term

P
iA I ½

P
jA Jðdij�ljÞ

�p��:

Proposition 1. One has

L1ðl,pÞ ¼
X
iA I

X
jA J

ðdij�ljÞ
�p

24 35�þmin
p
fppþfðpÞgþ

X
jA J

lj:

Moreover, a Lagrangean solution ðxðl,pÞ,yðl,pÞ,pðpÞÞ is obtained as

yiðl,pÞ ¼
1, ðdij�ljÞ

�po0,

0, ðdij�ljÞ
�pZ0,

(

xijðl,pÞ ¼
1, yiðl,pÞ ¼ 1 and dij�ljo0

0 otherwise,

(

pðpÞAArgmin
qAP

fpqþfðqÞg:

Proof. One has

L1ðl,pÞ ¼min
y

min
x

X
iA I

X
jA J

ðdij�ljÞxij : xijryi

8<:
9=;�pX

iA I

yi

8<:
9=;

þmin
p
fppþfðpÞgþ

X
jA J

lj:

For fixed y, an optimal solution of

min
x

X
iA I

X
jA J

ðdij�ljÞxij : xijryi

8<:
9=;

is given by

xn

ij ¼
yi, dij�ljo0,

0, dij�ljZ0,

(

In this case the Lagrangean dual function becomes

L1ðl,pÞ ¼min
y

X
iA I

X
jA J

ðdij�ljÞ
�p

24 35yi

8<:
9=;þmin

p
fppþfðpÞgþ

X
jA J

lj

¼
X
iA I

X
jA J

ðdij�ljÞ
�p

24 35�þmin
p
fppþfðpÞgþ

X
jA J

lj:

This implies that, for l,p fixed, an optimal solution ðxðl,pÞ,yðl,pÞ,
pðpÞÞ is obtained as

yiðl,pÞ ¼
1, ðdij�ljÞ

�po0

0, ðdij�ljÞ
�pZ0;

(

xijðl,pÞ ¼
1, yiðl,pÞ ¼ 1 and dij�ljo0

0 otherwise;

(

pðpÞAArgmin
qAP

fpqþfðqÞg: &

Proposition 1 shows how to obtain, for fixed multipliers l,p, opti-

mal xðl,pÞ, yðl,pÞ. Note that in order to find pðpÞ, one needs to solve

min
pAP
fppþfðpÞg: ð16Þ

Problem (16) can be solved by full inspection of the set P. The
following property, with straightforward proof, may be of help to
avoid complete enumeration.

Proposition 2. For a given pAR, define the function fp : P/R as

fpðpÞ ¼fðpÞþpp. One has
1.
 If pZmaxkon�DfðkÞ, then fpð�Þ is nondecreasing in P, and thus

an optimal solution of (16) is pðpÞ ¼ 1.

2.
 If prminkon�DfðkÞ, then fpð�Þ is nonincreasing in P, and thus

an optimal solution of (16) is pðpÞ ¼ n.

3.
 A necessary condition for k0AP to be optimal for (16) is that

Dfðk0�1Þr�prDfðk0Þ: ð17Þ
4.
 If fð�Þ is concave in P, then fpð�Þ is also concave, and thus an

optimal solution of (16) is an endpoint, i.e. pðpÞAf1,ng.

5.
 If fð�Þ is convex in P, then condition (17) is also necessary for

optimality, and it can be checked by doing a binary search in P.

3.2. Evaluating the Lagrangean function L2

Let us now consider the second relaxation, in which only
constraints 3 are relaxed to obtain the Lagrangean L2ðlÞ.

For each iA I, define riðlÞ as the Lagrangean reduced cost of the
corresponding variable yi,

riðlÞ9
X
jA J

ðdij�ljÞ
�:

Moreover, let vðlÞ ¼ ðv1ðlÞ,v2ðlÞ, . . . ,vnðlÞÞ be a permutation of the
sites increasingly ordering their reduced costs, i.e.

rv1ðlÞðlÞrrv2ðlÞðlÞr � � �rrvnðlÞðlÞ:

Define cðp,lÞ as

cðp,lÞ9
Xp

k ¼ 1

rvkðlÞðlÞ:

The following properties are useful to evaluate L2ðlÞ.

Proposition 3. One has
1.
 L2ðlÞ ¼minpAPfcðp,lÞþfðpÞgþ
P

jA Jlj.

2.
 cð�,lÞ is nonincreasing and convex.

E. Carrizosa et al. / Computers & Operations Research 39 (2012) 2625–26332628
3.
 cðp,lÞþfðpÞ can be computed recursively as follows:
cð1,lÞþfð1Þ ¼ rv1ðlÞðlÞþfð1Þ,

cðp,lÞþfðpÞ ¼cðp�1,lÞþrvpðlÞðlÞþfðpÞ 8p¼ 2, . . . ,n:

Proof. Using the same reasoning than for L1ðl,pÞ, L2ðlÞ can be
expressed for a given l as follows:

L2ðlÞ ¼min
ðy,pÞ

min
x

X
iA I

X
jA J

ðdij�ljÞxij : xijryi

8<:
9=;þfðpÞ : X

iA I

yi ¼ p

8<:
9=;

þ
X
jA J

lj ¼min
ðy,pÞ

X
iA I

X
jA J

ðdij�ljÞ
�

24 35yiþfðpÞ :
X
iA I

yi ¼ p

8<:
9=;þX

jA J

lj:

Hence,

L2ðlÞ ¼min
p

Xp

k ¼ 1

rvkðlÞðlÞþfðpÞ

()
þ
X
jA J

lj

¼min
pAP
fcðp,lÞþfðpÞgþ

X
jA J

lj:

Convexity of cð�,lÞ directly follows from the fact that
Dcðp,lÞ9cðpþ1,lÞ�cðp,lÞ ¼ rvpþ 1ðlÞðlÞr0. This also shows that
cð�,lÞ is nonincreasing.

Part 3 is straightforward from the definition of cðp,lÞ. &

Proposition 3 shows that the value of L2ðlÞ can be computed
by full inspection of the values cðp,lÞþfðpÞ, which can be
recursively computed. In order to efficiently evaluate L2ðlÞ, we
have adapted to our problem the technique of ‘‘delayed column
generation’’ in Avella et al. [4]. As a preprocessing step, the
distance matrix is computed, and each column jA J is sorted in a
nondecreasing way, i.e. one has for each jA J a permutation u(j)
such that

dðu1ðjÞ,jÞrdðu2ðjÞ,jÞr � � �rdðunðjÞ,jÞ:

Having done this, L2ðlÞ and the associated reduced costs can
be efficiently computed by the Scheme 1.

Note that a similar scheme can be designed for computing
L1ðl,pÞ.

The computation of Ln

2 in the algorithm above can be done by
complete enumeration. However, as for L1ðl,pÞ, if fð�Þ has some
structure, complete enumeration in P may be avoided. This issue
is addressed in the following propositions.

Proposition 4. If rv1ðlÞðlÞ ¼ 0, then

L2ðlÞ ¼ rv1ðlÞðlÞþfð1Þþ
X
jA J

lj:

Otherwise, the set P0ðlÞ9fkAP : rvkðlÞðlÞo0ga+, and then

L2ðlÞ ¼min
pAP0

fcðp,lÞþfðpÞgþ
X
jA J

lj:
Scheme 1. Computing L2ðlÞ and reduced costs.
Proof. If rv1ðlÞðlÞ ¼ 0, then cðp,lÞ ¼ 0, pAP. Since fðpÞ is a non-
decreasing function on P, it turns out that the function
pxmap;cðp,lÞþfðpÞ is nondecreasing in p, and thus the result is
proved.

Suppose now rv1ðlÞðlÞo0, and thus P0ðlÞa|. The result is

straightforward for P0ðlÞ ¼ P, and we now show the proof for

the case P0ðlÞaP. By definition of the permutation vðlÞ and the

assumptions, (pAP such that

rvkðlÞðlÞo0 8k¼ 1, . . . ,p;

rvkðlÞðlÞ ¼ 0 8k¼ pþ1, . . . ,n:

Let us show that

cðp,lÞþfðpÞrcðp,lÞþfðpÞ, 8pAP\P0:

It is clear that

cðp,lÞ ¼
Xp

k ¼ 1

rvkðlÞðlÞþ
Xp

k ¼ pþ1

rvkðlÞðlÞ ¼cðp,lÞ

þ
Xp

k ¼ pþ1

rvkðlÞðlÞ ¼cðp,lÞ:

Since fð�Þ is an increasing function on P the proposition is

proved. &

The convexity of the function cð�,lÞ yields the following result.

Proposition 5. For k0Af2;3, . . . ,ng, if k0AArgminpAPfcðp,lÞþ
fðpÞg, then

rvk0
ðlÞðlÞþDfðk0�1Þr0rrvk0 þ 1ðlðlÞþDfðk0Þ:

Moreover, if fð�Þ is a convex function, this condition is also sufficient

to be k0 in ArgminpAPfcðp,lÞþfðpÞg.

Once pðlÞAArgminpAPfcðpÞþfðpÞg is found, ðxðlÞ,yðlÞÞ is
obtained as

yiðlÞ ¼
1, iAfv1ðlÞ, . . . ,vpðlÞðlÞg
0 otherwise;

(

xijðlÞ ¼
1, yiðlÞ ¼ 1 and dij�ljo0

0 otherwise:

(

3.3. Comparing L1 and L2

Both L1ðl,pÞ and L2ðlÞ give lower bounds on the optimal value
Zn of Problem (2)–(8). Such bounds are related by the following
property.

Proposition 6. For lARm and pAR

L1ðl,pÞrL2ðlÞrZn: ð18Þ

Proof. For l,p fixed, let (LD1) and (LD2) denote the optimization
problems associated with L1ðl,pÞ and L2ðlÞ,

L1ðl,pÞ ¼min
ðx,y,pÞ

X
iA I

X
jA J

dijxijþ
X
jA J

lj 1�
X
iA I

xij

 !8<:
þp p�

X
iA I

yi

 !
þfðpÞ : xijryi

)
ðLD1Þ

L2ðlÞ ¼min
ðx,y,pÞ

X
iA I

X
jA J

dijxijþ
X
jA J

lj 1�
X
iA J

xij

0@ 1A8<:
þfðpÞ : xijryi, :

X
iA I

yi ¼ p

)
ðLD2Þ

E. Carrizosa et al. / Computers & Operations Research 39 (2012) 2625–2633 2629
The right-hand side inequality is true by definition of relaxation.
Let us show that L1ðl,pÞ is a relaxation of L2ðlÞ, whence validity
of left-hand side inequality follows. For this we need to show that
1.
 The feasible region of (LD2) is at most as large as the feasible
region of (LD1). This holds because

ðx,y,pÞ : xijryi,
X
iA I

yi ¼ p

()
Dfðx,y,pÞ : xijryig:
2.
 For any feasible solution of (LD2) the objective function of
(LD1) is smaller than or equal to the objective function of
(LD2). Indeed, let ðx0,y0,p0Þ be a feasible solution in (LD2), then
ðp0�

P
iA Iy

0
iÞ ¼ 0. Since ðx0,y0,p0Þ is also feasible in (LD1), we haveX

iA I

X
jA J

dijx
0
ijþ
X
jA J

lj 1�
X
iA I

x0ij

 !
þfðp0Þ

¼
X
iA I

X
jA J

dijx
0
ijþ
X
jA J

lj 1�
X
iA I

x0ij

 !
þp p0�

X
iA I

y0i

 !
þfðp0ÞZL1ðl,pÞ:

Since it holds for all ðx,y,pÞ feasible for (LD2),

L1ðl,pÞrL2ðlÞ 8lARm, 8pAR:

3.4. Subgradient optimization

The Lagrangean relaxation is known to provide a lower bound
for the optimal value of relaxed problem. For simplicity we only
analyze here the Lagrangean dual function L2ðlÞ, obtained by
relaxing constraints (3). To get the best lower bound, the
Lagrangean dual function is maximized with respect to l, i.e.
the optimization problem maxlARm fL2ðlÞg is to be solved. A
possible way to optimize the nonsmooth function L2ðlÞ is via
the subgradient method, which is based on the iterative formula:

lkþ1
¼ lk
þakgðlk

Þ: ð19Þ

In (19), gðlk
Þ is the subgradient at the iteration k, computed as

gjðl
k
Þ ¼ 1�

X
iA I

xijðl
k
Þ 8jA J,

and ak is the stepsize, computed as

ak ¼
bkð1:05 � BUB�L2ðl

k
ÞÞ

Jgðlk
ÞJ2

2

,

where BUB is a current upper bound, provided for example by
some upper bound heuristics; J � J2 is the euclidean metric; L2ðl

k
Þ

is a value of the Lagrangean dual function; bk is a parameter.
Let us present a scheme for computing a subgradient vector for

a given Lagrange multipliers l. Before the beginning of the main
cycle one needs to compute vector yðlÞ and variable pðlÞ, on
which the minimum in step 7 of (1) is reached. Then a sub-
gradient vector can be computed according Scheme 2.

The delayed column generation and the scheme above can be
easily implemented. As pointed out by Avella et al. [4], their main
Scheme 2. Computing a subgradient vector for L2.
disadvantage is the high memory consumption, since we need to
store into the memory the whole distance matrix. However, for
computing the Lagrangean dual function L2 and a subgradient, for
each column jA J we need to consider only the first elements which
are less than lj. Therefore for each jA J we keep into the memory
only the first n0ðjÞon elements. If, on any iteration of subgradient
algorithm, the Lagrange multiplier lk

j exceeds dðn0ðjÞ,jÞ, then the
j-th column is expanded in the RAM, adding n1 elements, i.e.
n0ðjÞ :¼ n0ðjÞþn1, and the subgradient algorithm continues.

To prevent the oscillation of Lagrange multipliers, we have
used the stabilization method suggested by Hansen et al. [11].
Initially multipliers are set at the smallest distance in the
corresponding column, i.e. l0

j ¼ dðv1ðjÞ,jÞ. Further, on each itera-
tion we set upper bounds on the multipliers lk

j rubk
j , where

ubk
j ¼min

kA I
fdðukðjÞ,jÞ : dðukðjÞ,jÞ4lk�1

j g:

In other words, the multiplier cannot ‘‘jump’’ more than one value
in the corresponding column of the distance matrix. In this way
we prevent the explosion of the number of matrix elements
(unnecessarily) stored in memory.

3.5. The core heuristic

To obtain an upper bound for the optimal value, we use the
well-known core selection approach, based on choosing a subset
of ‘‘promising’ variables and then solving a reduced IP problem
over them. Core selection is proved to be effective in solving Set
Covering [27], Capacitated Facility Location [26] and p-median
[5,4] problems. Let l be the vector of Lagrange multipliers
returned by the subgradient optimization and let riðlÞ and
qijðlÞ ¼ dij�lj be the reduced costs associated with variables yi

and xij respectively. The core problem is defined by the number
pðlÞ of open facilities returned by the subgradient algorithm and
by the subset of variables whose reduced cost is less than the
given thresholds (n for variables y and m for variables x).

Let us remind that we use the formulation (9)–(15) for
constructing a reduced IP problem, since there no further proper-
ties of fð�Þ are used. In other words, we solve the IP problem
(9)–(15) containing only those variables yi and xij satisfying

iA IðlÞ9fiA I : riðlÞrng,

ijAWðlÞ9fij : iA IðlÞ,jA J,qijrmg:

Needless to say, the higher the values of the threshold
parameters n,m, the larger the size of the sets IðlÞ,WðlÞ, and thus
the larger the size of the IPs to be solved exactly in the core
problem with a commercial solver. Finding values for such
parameters yielding a good compromise between accuracy of
the solution obtained and overall running times is pursued in our
iterative algorithm, as discussed in the following.
4. The algorithm

As was shown (e.g. [4]) there are two main difficulties in the
approach:
�
 Knowing a good upper bound is crucial to get a good conver-
gence of the subgradient procedure,

�
 The core heuristic provides a good upper bound on a base of a

good solution of subgradient optimization.

Avella et al. [4] suggested to sequentially repeat the subgra-
dient optimization and solving the core problem. This approach is
followed for our problem: we repeat the calls to the subgradient
optimization routine and to the core procedure. The procedure

E. Carrizosa et al. / Computers & Operations Research 39 (2012) 2625–26332630
stops after sufficiently many calls are made or when the error Err,
defined as the relative difference between the best lower bounds
and upper bounds, i.e. Err ¼ ðBUB�BLBÞ=BUB � 100%, becomes
sufficiently small.

Let Zðx,y,pÞ be a value of objective function (2) on a solution
ðx,y,pÞ.

The overall procedure is summarized as follows:
1.
 Initialization: generate a random feasible solution ðx,y,pÞ, set
the best upper bound BUB :¼ Zðx,y,pÞ, the best lower bound
BLB :¼ �1 and h :¼ 1.
2.
 Find l by the subgradient algorithm, set BLB :¼ L2ðlÞ.

3.
 Construct IðlÞ, WðlÞ and find a solution ðbx,by,bpÞ of the core

problem. If Zðbx,by,bpÞoBUB, then set BUB :¼ Zðbx,by,bpÞ and
ðx,y,pÞ :¼ ðbx,by,bpÞ.
4.
 Continue the subgradient algorithm (i.e. starting from the
multipliers obtained after previous run) finding updated l,
and set BLB :¼ L2ðlÞ.
5.
 If ho2, then set h :¼ hþ1 and go to step 3, else go to step 6.

6.
 If Err4e, then enlarge the core (i.e. increase the thresholds n

and m), else go to step 12.

7.
 Construct IðlÞ, WðlÞ and find a solution ðbx,by,bpÞ of the core

problem. If Zðbx,by,bpÞoBUB, then set BUB :¼ Zðbx,by,bpÞ and
ðx,y,pÞ :¼ ðbx,by,bpÞ.
8.
 Continue the subgradient algorithm (i.e. starting from the
multipliers obtained after previous run), finding updated l
and set BLB :¼ L2ðlÞ.
9.
 If Err4e, then go to step 10, else go to step 12.

10.
 Construct IðlÞ, WðlÞ and find a solution ðbx,by,bpÞ of the core

problem. If Zðbx,by,bpÞoBUB, then set BUB :¼ Zðbx,by,bpÞ and
ðx,y,pÞ :¼ ðbx,by,bpÞ.
11.
 Continue the subgradient algorithm (i.e. starting from the
multipliers from Step 8), finding updated l and set
BLB :¼ L2ðlÞ.
12.
 Return BLB, BUB and ðx,y,pÞ.
The main feature of our core heuristic implementation is a
dynamic selection of the size of the core. If after three runs of the
subgradient algorithm and two runs of the core problem solving
procedure a small relative difference between computed best
upper (BUB) and best lower (BLB) bounds is not obtained, we
increase the thresholds n, m, and we find new values of BLB, BUB

and ðx,y,pÞ. Then if a small relative difference between BUB and
BLB is still high, we again run the subgradient optimization and
the core problem solving procedure with the same enlarged
thresholds (the steps 10 and 11).
5. Computational results

The algorithm has been written in Cþþ, and experiments were
carried out on a PC with Intel Core 2 Duo CPU 2.20 GHz and 3 Gb
of RAM, o.s. Windows Vista 32-bit. The commercial IP solver used
to solve the core problem was CPLEX Optimizer 12.1.0. Our
algorithm is not parallel, while CPLEX Optimizer to solve the core
problem uses up all two threads. Our test bed consists of two
types of instances taken from the literature:
�
 Synthetic dataset generator: The first type of data sets repre-
sented here is generated as suggested in Zhang et al. [29,30]
and was used by Hansen et al. [11] for testing their approach
to solving large p-median clustering problems. Each data
instance consists of p clusters of 2-d data points. A cluster is
characterized by the number of data points in it, its radius and
its center. There are three pattern parameters determining the
location of the center of each cluster, namely grid, sine and
random. When the grid pattern is used, the cluster centers are
located on

ffiffiffi
p
p
�

ffiffiffi
p
p

grid. The random pattern places the cluster
centers randomly. Here we report results for instances gener-
ated with grid (type I) and randomly (type III) patterns.
All generated problem instances contain from 1000 to
10 000 points in the plane of each type. In total we have
generated 8 instances of each dimension (i.e. each problem
instance was generated with 9, 16, 25, 36, 49, 64, 81, 100
clusters). Note that data set of type I is easier to solve, while
data set III is harder.

�
 TSP library instances: These instances are taken from the TSP

library (http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/). The
numbers attached to each problem title indicate the number of
points in that problem. Note, that we consider instances with a
number of points which is not more than 10000, except
usa13509 and rl11849.

Note that for the considered instances, we have I¼ J and dii ¼ 0,
so we pose yi ¼ xii and we take into account in our code.

These data sets are of much bigger size than those reported so
far in the literature on the problem [18,17]. In fact, our sets are so
big that the distance matrix cannot be properly handled. Hence,
as discussed in Section 3.4 we limit the number of active elements
of the ordered distance matrix, namely, all active elements take
800 MB of RAM.

The core heuristic parameters on the initial steps are the same
as in Avella et al. [4]:
�
 On step 3 and 4, parameters n and m are chosen in order to limit
the size of the core problem with IðlÞ ¼ 3pðlÞ, WðlÞ ¼ 5n. The
running time limit for the core problem is set to 300 s.

�
 On steps 7, 8 and 10, 11 the sets IðlÞ and WðlÞ are enlarged so

that IðlÞ ¼ 6pðlÞ, WðlÞ ¼ 10n. The running time limit for the
core problem is set to 400 s on steps 7, 8 and to 600 seconds on
steps 10 and 11.

�
 Parameter e is set to 1.

�
 On step 2, parameter b is set to 1.5 and divided by 1.01 on each

iteration where the lower bound is not improved.

�
 On step 4 (h¼1), b is set to 0.1 and updated as in the

previous way.

�
 Finally on step 4 (h¼2), b is set to 0.005 and divided by 1.01 if

the lower bound has not improved after 2 iterations.
5.1. Convex penalty

Computational results are reported in Tables 1–3, where
columns Err (%) contain the relative difference between the best
lower bounds and upper bounds (Err¼ ðBUB�BLBÞ=BUB � 100%),
and columns Time contain the total computation time in seconds.
This also includes the running time of the procedure for solving
the core problem.

Note that for synthetic generated instances, columns Err (%)
and Time contain average values for the eight problem instances
of each dimension with different number of open facilities.

The first type of penalty we use for testing the algorithm is a
convex function. We consider convex functions of the form
fðpÞ ¼ cp2 with different values of c, namely fðpÞ ¼ p2, fðpÞ ¼ 5p2

and fðpÞ ¼ 10p2.
Tables 1–3 provide results for both types of considered

instances using such type of penalty function. Results for syn-
thetic generated instances are presented in Table 1, while
Tables 2 and 3 contain results on TSP problems, obtained with
relaxations L1 and L2 respectively.

http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/

Table 1
Results on synthetic generated instances with convex penalty function.

Ln

2 Ln

1

Err (%) Time Err (%) Time (s)

fðpÞ p2 5p2 10p2 p2 5p2 10p2 p2 5p2 10p2 p2 5p2 10p2

n Type I

1000 0.007 0.056 0.005 4.02 7.13 5.66 0.009 0.382 1.132 5.00 7.98 11.18

2000 0.004 0.063 0.111 12.30 27.27 29.20 0.049 1.191 3.145 13.64 36.54 54.01

3000 0.128 0.291 0.069 26.56 40.64 58.41 0.139 1.767 4.162 29.95 69.41 91.76

4000 0.109 0.127 0.162 60.41 135.81 107.32 0.448 2.723 6.723 63.51 114.74 159.31

5000 0.024 0.078 0.047 82.55 118.86 159.58 0.853 5.242 21.254 100.70 193.21 228.50

6000 0.017 0.033 0.056 175.09 210.50 216.95 1.070 7.284 17.268 157.75 248.04 371.95

7000 0.103 0.012 0.015 167.65 243.61 239.18 1.802 16.545 17.186 362.65 350.74 497.09

8000 0.068 0.034 0.182 259.44 225.98 327.11 2.313 16.300 25.310 485.61 353.16 558.47

9000 0.107 0.057 0.067 391.52 351.75 368.07 4.222 17.382 24.753 432.46 466.22 633.04

10 000 0.112 0.003 0.281 445.77 350.74 442.09 3.202 18.214 22.574 563.49 544.92 717.20

Type III

1000 0.001 0.000 0.000 3.74 4.72 5.16 0.005 0.240 10.799 4.31 5.99 9.26

2000 0.004 0.001 0.002 13.60 15.51 18.37 0.155 0.844 12.429 17.16 22.76 28.85

3000 0.040 0.001 0.001 31.11 31.79 37.07 0.342 1.586 4.178 38.83 44.68 61.70

4000 0.106 0.001 0.001 51.16 59.32 64.91 0.547 4.460 5.347 69.98 80.72 115.69

5000 0.029 0.017 0.014 109.67 109.55 101.90 1.428 6.462 7.859 114.12 138.59 165.97

6000 0.099 0.001 0.001 138.95 135.85 157.23 1.554 8.854 10.973 227.88 188.76 232.34

7000 0.154 0.002 0.100 252.22 195.20 196.17 1.739 7.722 11.765 303.14 286.07 301.95

8000 0.240 0.009 0.002 221.32 248.42 275.46 3.107 9.168 17.278 396.71 370.84 351.51

9000 0.113 0.017 0.001 410.50 329.41 329.48 8.039 12.040 18.453 552.69 375.27 449.92

10 000 0.144 0.271 0.029 470.84 342.38 414.66 5.594 18.094 25.842 736.62 486.75 499.22

Table 2
Results on TSP instances using L1 and convex penalty function.

Instance Err (%) Time (s)

fðpÞ p2 5p2 10p2 p2 5p2 10p2

d1291 9.640 10.124 0.035 86.14 8.74 6.21

d1655 0.249 24.150 13.112 6.56 18.06 19.25

d2103 4.316 28.576 3.530 54.29 827.87 1064.16

dsj1000 11.300 0.013 1.769 5.62 2.27 5.17

fl417 0.029 0.001 0.002 0.85 1.05 1.05

fl1400 18.647 17.472 8.995 22.86 18.31 14.24

fl1577 28.744 24.552 2.665 13.57 11.89 14.12

fl3795 15.182 72.579 88.516 53.01 51.27 50.34

fnl4461 2.303 8.314 9.043 1050.77 791.87 1068.66

nrw1379 9.311 2.796 2.277 31.72 49.84 190.16

pcb1173 0.356 0.040 0.193 3.32 11.09 6.29

pr1002 4.628 0.131 0.746 7.16 6.83 2.58

pr2392 0.737 7.190 23.298 10.39 55.26 21.17

rl1889 0.800 2.243 10.060 9.17 36.47 14.88

rl5915 8.696 8.763 59.895 135.77 299.38 193.91

rl5934 0.905 7.777 5.657 141.05 1082.89 349.98

rl11849 3.557 54.951 18.055 1215.72 1321.63 1270.33

u1060 0.783 0.001 7.177 6.69 2.40 13.66

u1432 4.143 5.622 6.510 28.69 15.33 32.15

u1817 4.536 6.125 7.144 114.42 17.24 15.08

u2152 0.125 1.776 3.422 29.16 30.31 35.10

u2319 22.225 18.681 9.387 1118.55 1027.03 1019.65

vm1084 2.167 6.959 1.204 7.75 7.11 8.17

vm1748 1.426 3.580 2.077 13.76 14.87 13.63

pcb3038 2.672 10.226 7.756 91.96 86.55 51.19

usa13509 4.520 2.654 18.881 515.35 1247.71 1567.86

Table 3
Results on TSP instances using L2 and convex penalty function.

Instance Err (%) Time (s)

fðpÞ p2 5p2 10p2 p2 5p2 10p2

d1291 0.030 0.020 0.034 5.09 6.04 5.76

d1655 0.062 0.015 0.004 28.30 8.13 7.64

d2103 0.015 0.077 0.355 379.23 413.29 413.88

dsj1000 0.001 0.001 0.009 2.79 2.65 3.01

fl417 0.001 0.002 0.001 1.04 1.00 1.09

fl1400 0.010 0.001 0.001 6.06 5.97 7.05

fl1577 0.012 0.002 0.004 6.44 5.79 8.28

fl3795 0.755 0.005 0.005 30.58 40.31 45.54

fnl4461 0.050 0.760 0.070 362.37 58.98 447.52

nrw1379 0.017 0.020 0.087 5.59 6.43 11.98

pcb1173 0.008 0.013 0.064 4.24 4.34 8.33

pr1002 0.010 0.000 0.000 3.77 3.13 2.61

pr2392 0.001 0.020 0.000 13.77 11.81 11.59

rl1889 0.006 0.018 0.008 9.48 8.06 9.27

rl5915 0.007 0.019 0.018 70.60 70.12 73.87

rl5934 0.012 0.011 0.030 159.62 61.34 405.07

rl11849 0.020 0.043 0.971 506.90 523.82 394.69

u1060 0.013 0.001 0.003 4.58 3.40 2.96

u1432 0.039 0.023 0.041 9.32 6.32 7.74

u1817 0.049 0.005 0.001 22.95 8.69 10.83

u2152 0.033 0.019 0.012 12.09 12.98 15.26

u2319 0.219 0.891 0.811 50.61 415.52 817.46

vm1084 0.001 0.001 0.001 3.42 2.81 3.04

vm1748 0.001 0.002 0.001 6.44 6.19 7.52

pcb3038 0.021 0.018 0.042 31.22 19.91 28.31

usa13509 0.015 0.013 0.024 260.05 292.97 560.59

E. Carrizosa et al. / Computers & Operations Research 39 (2012) 2625–2633 2631
As one can see for the synthetic generated instances we get
good quality solutions in all cases, using L2 as Lagrangean
relaxation. With L1, acceptable results have been obtained
only on instances with small number of points and with the
penalty functions fðpÞ ¼ p2 and fðpÞ ¼ 5p2. With regard
to the running time, it is slightly more in the case when we use
the first type of Lagrangean relaxation L1. For TSP problem
instances we observe the same situation in the case of using L2

relaxation. With L1 good results have been obtained only for
some problems with relatively small number of points (see
Table 2).

After this analysis for the simplest case of convex penalty
functions, we conclude that L2 systematically outperforms L1.
For harder problems, as those analyzed in Section 5.2, we

Table 5
Results on TSP instances using L2 and concave piecewise linear penalty function.

Instance Err (%) Time (s)

k s¼4 s¼6 s¼4 s¼6

d1291 0.380 1.265 6.69 143.40

d1655 0.074 0.008 40.06 134.55

d2103 0.548 0.620 519.52 1221.68

dsj1000 0.000 0.000 6.18 26.71

fl417 0.001 0.002 1.50 7.86

fl1400 0.001 0.002 7.48 38.44

fl1577 0.521 0.050 12.86 344.45

fl3795 0.529 0.085 79.95 717.35

fnl4461 0.086 0.524 432.93 2417.17

nrw1379 0.019 0.560 10.27 44.91

pcb1173 0.020 0.012 7.72 50.45

pr1002 0.082 0.000 14.74 36.49

pr2392 0.008 0.001 20.54 110.11

rl1889 0.004 0.001 18.33 76.11

rl5915 0.002 0.073 122.23 2127.14

rl5934 0.004 0.014 192.76 1739.04

rl11849 0.611 0.023 622.83 5418.43

u1060 0.068 0.000 6.98 32.31

u1432 0.609 0.000 12.24 368.13

u1817 0.170 0.818 33.27 73.04

u2152 0.014 0.034 26.89 76.27

u2319 1.097 0.000 4700.02 4786.08

vm1084 0.683 0.058 8.42 36.41

vm1748 0.176 0.001 16.20 69.09

pcb3038 0.008 0.031 71.11 714.17

usa13509 0.001 0.007 769.51 4140.02

E. Carrizosa et al. / Computers & Operations Research 39 (2012) 2625–26332632
only present the discussion when using the most competitive
Lagrangean relaxation, namely L2.

5.2. Piecewise linear concave penalty

As shown in Section 5.1, our procedure yields very tight
relaxations if the penalty function f is convex. On the other
hand, our preliminary computational experiments with arbitrary
concave penalty functions did not give the same good results,
since the duality gap was much bigger. Hence, if this big gap was
to be closed, we should have increased the sizes of the IPs to be
solved exactly within the core procedure.

However, as detailed below, our approach can be successfully
applied for a particular yet very important class of concave
penalty functions, namely the class of concave piecewise linear
functions. Indeed, in this case the problem can be split into a
series of problems with a smaller range of possible values for p,
within which f is linear, thus convex, and hence the good results
for the sharp bounds are also obtained within each subproblem.

Let as consider a concave piecewise linear function fð�Þ,
fðpÞ ¼min1r ir skipþbi. Such a function can be rewritten in the
form

fðpÞ ¼

k1pþb1, pA ½l0,l1�,

k2pþb2, pA ½l1,l2�,

� � �

kspþbs, pA ½ls�1,ls�,

8>>>><>>>>: ð20Þ

with k14k24 � � �4ks, and l0 ¼ 1, ls ¼ n.
To solve Problem (1) with fð�Þ given by (20), we sequentially

run the algorithm restricting p to be in the corresponding interval
½lj�1,lj�, and considering as lower and upper bounds for (1) the
lowest ones of those returned by the algorithm in the different
pieces.

In our experiments we consider a piecewise linear function
with s¼4 and s¼6 pieces. The coefficients bi were chosen so that
b0 ¼ 0 and fð�Þ is continuous, and the knots li in (20) satisfy the
relation 2ðli�li�1Þ ¼ liþ1�ll. As a set of slopes Ks ¼ fkiAR,i¼
1, . . . ,sg we take in the synthetic instances K4 ¼ f25;15,8;1g and
Table 4
Results on synthetic generated instances using L2 and concave piecewise linear

penalty function.

k Err (%) Time (s)

s¼4 s¼6 s¼4 s¼6

n Type I

1000 0.001 0.000 3.20 10.03

2000 0.008 0.004 8.30 17.33

3000 0.082 0.102 17.32 29.06

4000 0.099 0.161 31.96 36.50

5000 0.093 0.057 64.67 121.33

6000 0.490 0.705 93.29 133.88

7000 0.461 0.454 293.65 194.24

8000 0.921 0.052 230.44 198.59

9000 0.871 0.859 426.12 448.25

10 000 2.035 1.406 439.14 559.90

Type III

1000 0.114 0.085 3.29 5.69

2000 0.004 0.161 10.30 15.98

3000 0.014 0.018 44.62 36.33

4000 0.070 0.202 69.92 77.52

5000 0.122 0.211 91.89 142.08

6000 0.571 0.587 205.16 124.38

7000 0.893 0.323 338.12 185.75

8000 0.412 1.366 276.46 416.15

9000 2.396 0.651 421.77 570.32

10 000 1.583 0.497 630.57 558.83
K6 ¼ f30;25,18;11,6;1g. Since the costs dij in the TSP instances are
much bigger, we enlarge the slopes, taking K4 ¼ f300;250,
225;200g and K6 ¼ f170;140,120;100,75;50g. Note that for this
type of penalty function fð�Þ we only use the second Lagrangean
relaxation L2, which in our preliminary numerical experience
reported the best results.

Table 4 presents the results for synthetic generated instances.
Columns 4 and 6 contain the average relative difference and the
average computational time with a piecewise linear function with
4 and 6 pieces respectively. Results for TSP problem instances are
given in Table 5.

As one can see for the synthetic generated instances a very
small relative difference, less than one percent, between the best
upper and lower bounds is obtained for all instances with small
number of points (for problem instances of Type III, with up to
8000 points and for problem instances of Type I with up to 10 000
points). For the TSP instances, the relative difference is small in
most cases (except d1291 and u2319), but the running time is
much higher in the event that a piecewise linear function with
6 pieces is used.
6. Conclusions

In this paper, a nonlinear variant of the minsum facility
location problem has been addressed, in which the number of
facilities to be placed is a decision variable. Two Lagrangean
relaxations have been introduced, and a core heuristic is proposed
to obtain upper bounds. Computational experience is reported for
several classical problems in facility location, and also a class of
data sets from Data Analysis. Different penalty functions have
been considered, showing that, in all instances with convex
penalty functions, the combination of lagrangian relaxation and
core heuristics provides in very reasonable time very good
heuristic solutions. Moreover, one lagrangian relaxation system-
atically outperforms the other. When the penalty function is not
convex, the duality gap is much bigger. Although the problem is

E. Carrizosa et al. / Computers & Operations Research 39 (2012) 2625–2633 2633
still tractable when the penalty function is piecewise linear with a
small set of pieces, it remains an open question how to obtain so
competitive results in the general case.

References

[1] Daskin M. Network and discrete location: models, algorithms, and applica-
tions. New York: John Wiley & Sons, Inc.; 1995.

[2] Kariv O, Hakimi S. An algorithmic approach to network location problems;
part 2. The p-medians. SIAM Journal on Applied Mathematics 1979;37(3):
539–60.

[3] Mirchandani P, Francis R, editors. Discrete location theory. New York: John
Wiley & Sons, Inc.; 1990.

[4] Avella P, Boccia M, Salerno S, Vasilyev I. An aggregation heuristic for large
scale p-median problem. Computers and Operations Research 2012;39(7):
1625–32.

[5] Avella P, Sassano A, Vasilev I. Computational study of large-scale p-median
problems. Mathematical Programming 2007;109(1):89–114.

[6] Beasley J. Lagrangean heuristics for location problems. European Journal of
Operational Research 1993;65(3):383–99.

[7] Mladenović N, Brimberg J, Hansen P, Moreno-Pérez J. The p-median problem:
a survey of metaheuristic approaches. European Journal of Operational
Research 2007;179(3):927–39.

[8] Reese J. Solution methods for the p-median problem: an annotated biblio-
graphy. Networks 2006;28(3):125–42.

[9] Marianov V, Serra D. Location problems in the public sector.Facility location:
applications and theory. New York: Springer; 2002 pp. 119–44.

[10] Brusco M, Köhn H. Optimal partitioning of a data set based on the p-median
model. Psychometrika 2008;73(1):89–105.

[11] Hansen P, Brimberg J, Urosević D, Mladenović N. Solving large p-median
clustering problems by primal-dual variable neighborhood search. Data
Mining and Knowledge Discovery 2009;19(3):351–75.

[12] Klastorin T. The p-median problem for cluster analysis: a comparative test
using the mixture model approach. Management Science 1985;31(1):84–95.

[13] Avella P, Boccia M, Martino CD, Oliviero G, Sforza A, Vasilev I. A decomposi-
tion approach for a very large scale optimal diversity management problem.
4OR 2005;3(1):23–37.
[14] Briant O, Naddef D. The optimal diversity management problem. Operations
Research 2004;52(4):515–26.

[15] Sugar C, James G. Finding the number of clusters in a dataset: an information-
theoretic approach. Journal of the American Statistical Association 2003;
98(463):750–63.

[16] Krarup J, Pruzan P. The simple plant location problem: survey and synthesis.
European Journal of Operational Research 1983;12(1):36–81.

[17] Mirchandani P, Jagannathan R. Discrete facility location with nonlinear
diseconomies in fixed costs. Annals of Operations Research 1989;18(1):
213–24.

[18] Körkel M. Discrete facility location with nonlinear facility costs. RAIRO
Recherche Opérationnelle 1991;25(1):31–43.

[19] Carrizosa E, Conde E. A fractional model for locating semi-desirable facilities
on networks. European Journal of Operational Research 2002;136(1):67–80.

[20] Feldman E, Lehrer F, Ray T. Warehouse location under continuous economies
of scale. Management Science 1966;12(3):670–84.

[21] Hajiaghayi M, Mahdian M, Mirrokni V. The facility location problem with
general cost functions. Networks 2003;42(1):42–7.

[22] Harkness J, ReVelle C. Facility location with increasing production costs.
European Journal of Operational Research 2003;145(1):1–13.

[23] Murray W, Shanbhag U. A local relaxation method for nonlinear facility
location problems. In: Multiscale optimization and applications (nonconvex
optimization and its applications). New York: Springer; 2006. p. 173–204.

[24] Soland R. Facility location with concave costs. Operations Research 1974;
23(2):373–82.

[25] Wu L, Zhang X, Zhang J. Capacitated facility location problem with general
setup cost. Computers and Operations Research 2006;33(5):1226–41.

[26] Avella P, Boccia M, Sforza A, Vasilyev I. An effective heuristic for large-scale
capacitated facility location problems. Journal of Heuristics 2008;15(6):
597–615.

[27] Caprara A, Fischetti M, Toth P. A heuristic method for the set covering
problem. Operations Research 1999;47(5):730–43.

[28] Mulvey J, Crowder H. Cluster analysis: an application of Lagrangean relaxa-
tion. Management Science 1979;25(4):329–40.

[29] Zhang T, Ramakrishnan R, Livny M. Birch: an efficient data clustering method
for very large databases. Journal of the American Statistical Association
1996;98(463):103–14.

[30] Zhang T, Ramakrishnan R, Livny M. Birch: a new data clustering algorithm and
its applications. Data Mining and Knowledge Discovery 1997;1(2):141–82.

	A computational study of a nonlinear minsum facility location problem
	Introduction
	Problem statement
	Lagrangean relaxation and the core heuristic
	Evaluating the Lagrangean function L1
	Evaluating the Lagrangean function L2
	Comparing L1 and L2
	Subgradient optimization
	The core heuristic

	The algorithm
	Computational results
	Convex penalty
	Piecewise linear concave penalty

	Conclusions
	References

