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Abstract

In this paper, we address the problem of locating a series of facilities on a network maximizing the average distance
to population centers (assumed to be distributed in the plane) per unit transportation cost (a function of the network
distances to users). A finite dominating set is constructed, allowing the resolution of the problem by standard integer
programming techniques. We also discuss some extensions of the model (including, in particular, the Weber problem
with attraction and repulsion in networks), for which (e-) dominating sets are derived. © 2002 Elsevier Science B.V. All
rights reserved.
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1. The model

Locational analysis studies were to locate one or several facilities which will interact with some indi-
viduals. The classical models assume that interactions are positive, in that all affected individuals want the
facility as close as possible, and then the transportation cost minimization is the main concern. Trans-
portation is associated with a network, thus the feasible region is usually modeled as a (planar) network,
and transportation costs are assumed to be proportional to network distances, e.g., [13,14,31].

In the last decade, there has been an increasing interest in considering, together with these transportation
costs, the environmental impact caused by the facilities over individuals such as population centers, landfill,
waters and the like. These individuals, also interacting with the facilities, see such interactions as negative,
and want the facilities as far as possible. Since these negative effects usually spread throughout the plane,
most papers assume the feasible region to be a (non-degenerate) subset of the plane, and consider the
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negative effects to be a function of the planar distance from the facility to the affected individuals
[12,15,19,25].

When both transportation costs and environmental impact are present, the facilities, called then semi-
desirable or semi-obnoxious [26] should be located at points optimizing a certain compromise measure
between the two above-mentioned criteria (see [4] for a review on semi-desirable facility location models).
Most existing papers address fully planar-based models (both transportation costs and environmental
impact are functions of planar distances) [5,10,22] or fully network-based models (both transportation costs
and environmental impact are functions of network distances) [§], and only recently both network and
planar models are being combined, e.g., [30].

The model addressed in this paper, described in what follows, is of this latter type. A set of p semi-
desirable facilities, £y, F, ..., F,, is to be located at points #, k € K = {1,...,p} within a given network
G := (N, E) embedded in the plane, whose edges are straight-line segments, and equipped with a metric dg
defined in the usual way, e.g., [18].

Such facilities must cover the demand of a set 4 of users, identified with a subset of nodes of the network

(thus points of the Euclidean plane). The total transportation cost TC(%!, ..., %) incurred, if the facilities
are located at £',... %, is given by the optimal value of a linear program, namely,
TC ()el, . ,)Ep> —min Y oude (a,fck) P
acd kek
st. Y Ju=1 Vaed,
ek (1)
Y ogu<a VEeEK,
acA

Ju=0 Vacd, kek,

where ®, is the demand (which must be fulfilled) of user at a € 4; y,, is the allocation variable giving the
fraction of demand w, shipped from Fj to user at a; ¢, is the capacity of plant F;, assumed to be big enough
to make the problem feasible, i.e., Y, , 0, < >k Ck-

It is assumed hereafter that the cardinality of A is strictly greater than p so that TC is positive at any
feasible solution.

Since the facilities are assumed to be semi-desirable, they also negatively affect some individuals. We
model the set of negatively affected individuals (also called in what follows as repelling points) by a finite
subset R of points in the plane. These points want the facilities as far as possible, then we aggregate the
individual utilities into an environmental utility EU as follows:

u(s...) - Sud Taf-#]) | ®

kek
where £!',...,%? are the locations of the facilities; u, is the weight (fraction of population or strength) of
affected individual » € R; we assume without loss of generality that ) _,u, = 1; || - ||, is an arbitrary finite
gauge [11,24], such as the Euclidean norm || - ||,, or any skewed gauge ||x|| = ||x||, — a'x, as introduced by

[23]; @ :[0,400) — [0,400), is assumed to be upper-semi-continuous and non-decreasing, and
@ (||r — %*||,) gives the utility for individuals r in R if facility F; is located at x*.

Remark 1.1. Oldest models assumed each &, to be affine [10], whereas in more recent papers, non-linear
decay effects are modeled through, e.g., exponential functions, @, (¢) = 1 —exp(—p,¢) [7,32]. Above, the
functions @; are not even obliged to be continuous, thus our model also accommodates coverage problems,
e.g., [30], in which a reward =; exists if (and only if) the distance from facility F; to a user is greater than a
threshold value J,: Just define @, as the lower-semi-continuous non-increasing function (see Fig. 1)
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Fig. 1. Coverage function @(¢).

O i< Oy,
Pi() = {nk otherwise.

TC (to be minimized) and EU (to be maximized) are conflicting objectives, aggregated into a
single objective by means of an aggregating function AF (to be maximized), which should be non-
increasing in its first argument and non-decreasing in the second. This gives rise to the optimization
problem

max AF(TC()EI, o xk) EU()El, o xp)) (3)

In the existing literature, AF is considered to be linear, AF(TC, EU) = EU — TC [4,7,10,32]. However,
this is not the only possible choice as detailed in Section 3.

The remaining of the paper is structured as follows. In Section 2, we derive a localization result for
problem (3) for a quite general AF and piecewise linear function @,. In Section 3, we particularize AF to
represent the environmental utility per unit transportation cost. The localization result of the preceding
section will enable us to solve (3) by means of integer programming techniques. An illustrative example is
presented in Section 4. The paper concludes discussing some extensions to models with non-affine &; or
non-fractional utilities in Section 5.

2. The general case — localization results

In this section, we address problem (3) under the extra assumption that each function @, is piecewise
linear. In practice, this should be considered as almost the general case, since arbitrary @, functions can be
approximated with arbitrary accuracy by piecewise linear (even piecewise constant) functions, see also
Section 5. This class of functions may also be especially useful in the (realistic) case in which the functional
form of @, is not known, but obtained by interpolating a finite set of values. This is the case of the well-
known procedure called the midpoint method, which, in words of Chankong and Haimes, is probably most
commonly used for continuous attributes, see [6, p. 186].

To solve (3) global optimization techniques are required due to the fact that functions @ (||r — x*||.) are
in general neither concave nor convex on each rectilinear edge of G.

Since its origins with the seminal work of Hakimi [13,14], a standard strategy in coping with location
problems on networks has consisted of reducing the set of candidate locations to a finite set, called in [16] a
finite dominating set, see also [21,31] and the references therein.
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For each edge e € E, r € R and s, ¢, with 0 <s <¢, the set
{xeR: s<|r—x|,<t}NE

is either empty or consists of at most two (eventually degenerate) closed segments. Let B(r, e; s, ) denote the
(eventually empty) class of endpoints of such segments.

We state the result for a problem more general than (9) since utility functions other than the fractional
AF given in (8) are allowed.

Proposition 2.1. Let AF: (0,400) x (0,400) — R be non-increasing in its first argument and non-
decreasing in the second, and quasiconvex function. Suppose that, for each k, 1 <k < p, the function ®; in (2) is
also piecewise linear with breakpoints at ty, < ty, < --- <, . Then there exists an optimal solution for (3) with
each facility F; at By,

Bk =NU U B(I", €; tkj7tkj+])' (4)
ecE reR
1<j<m—1
Proof. Let £ = (&!,...,%") be a feasible solution. If ' € B;, we are done. Else, let ¥ ¢ B;. Then there exist

two points in B;, endpoints of a closed subedge / of E, such that x' (but no point in B;) is in the relative
interior of /.

Parameterize / by the interval [0, 1], in such a way that x(¢) represents the point in / at distance fraction ¢
of one of its endpoints.

Since @; is upper semi-continuous and non-decreasing, it follows that

lim (|l — x(0)]},) < @.(lr = x(0)]]). ©)
lim @,(|lr — x(0)[],) < @,(|r — x(1)]],)- )

t—1-

Moreover, the function ¢ € [0, 1] — &;(||r —x(¢)]||,) is convex on (0, 1), thus by Egs. (5) and (6), it is also
convex on the closed interval [0, 1]. Hence, for &', ... ,#~1 ! ... # fixed, the function

tef0,1] — EU()€]7...,)Ei’l,x(t)7)fi+],...,)€p>
is convex on [0, 1]. On the other hand, the function

teo, 1]HTC(#, L E (), # L ,;ep)

is known to be concave and continuous on [0, 1], thus due to the quasiconvexity of AF and its monotonic
character, the function

t—>AF(TC()EI,...,ff-l,x(z),ffﬂ,...,)zp), EU()zl,...,;ef—l,x(z),)zf“,...,)ep))
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is quasiconvex on [0, 1] [2], thus attains its maximum at an endpoint of [0, 1]. Hence, we have found another
feasible solution with better or equal objective value and its ith component in B;. By iteration, the results
hold. O

Remark 2.1. The assumption that edges are straight-line segments has been used in Proposition 2.1 to show
the (piecewise) quasiconvexity of the objective function of our model on each edge.

If the real-world transportation network does not have rectilinear edges, they should be approximated
by an open polygonal curve, thus adding its breakpoints to the set of nodes.

In particular, when each @, is linear, ®;(s) = oy — f;s, with ff;, = 0, no breakpoints exist, thus each set By
in (4) reduces to the set N of nodes of the network.

This yields:

Corollary 2.1. Under the assumptions of Proposition 2.1, if each & is affine and non-decreasing, then there
exists an optimal solution for (3) with all the facilities located at nodes of G.

Setting AF as
AF(TC,EU) = EU — TC, (7)

problem (3) becomes the (generalized) p-median problem with attraction and repulsion, extensively con-
sidered in the planar case (i.e., when transportation distances are induced also by metrics in the plane
instead of network distances) for p =1 [10]. Since such function AF also satisfies the assumptions of
Proposition 2.1, one obtains the following:

Corollary 2.2. For the p-median problem with attraction and repulsion and affine functions @, an optimal
solution exists with its p facilities located at nodes of the network.

3. The fractional case

Citing [28], the efficiency of a system is sometimes characterized by a ratio of technical and/or
economical terms, such as maximization of productivity, of return of investment, of return/risk, of
reward per unit time or maximization of the output per input unit, see, e.g., [28,29] and references
therein.

In this section, we propose to take AF as the environmental utility per unit transportation cost, i.e.,

EU

AF(TC,EU) = == (8)
that is
AF(TC(}EI,...,)EP>, EU(xlxp))
S e o [r =)

min {Zaeﬁl?kel{ wﬂdG (a7)2k>)>ak: Zkekﬁak = 17 ZaeA wa.);ak < Chy .);ak = 0 VCLk}
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The resulting problem (3) is, in this case, a bilevel program equivalent to

ZreR,keK u, Oy (Hr -3 )
ZaeA,keK (Uad(; <a7£k>?ak
st Y Ju=1 Vacd,
kek (9)
Y ogu<a VEEK,

acA

0<y, Vaed, kek,

max

.G,

where the average environmental utility per unit transportation cost is maximized.

Proposition 2.1 proves the existence of a finite set B, = {vy,...,v,} of candidate points containing an
optimal solution for facility F, according to problem (9). In this section, problem (9) is reformulated as an
integer linear program using the following notation:

e For each k € K and v € By, let x,;, be the Boolean variable defined as

= 1 if plant F; is located at v,
ok 0 in other case.

e Foreacha € 4and v € V = |J,x Bs, let y,, represent the fraction of demand of consumer at a € 4 served
by some plant located at v € V.
e For each v € V and k € K define the constant ¢, as

Gvk = Zur©k(||}’ — UHV).
reR
Then (9) can be rewritten as the following capacitated p-facility discrete location model with a fractional
objective
ZkGK, vEBy qviX vk

ZQGA‘L‘EV (UadG((l, U)yau
s.t. vak -1 VkeKk,

max

VEBy

S yw=1 Vaed, (P)
velV

Z DgYav < Z CrXok Vv e V7

acAd kek

0<yw Yaed, veV,
xi €{0,1} YveB, kek.

The non-linecar mixed integer program (P) will be transformed into an equivalent linear mixed in-
teger problem by means of a change of variables similar to that proposed in [20]. This allows us to
solve exactly at least small instances of (P) with standard optimization packages like spreadsheet
solvers.
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Define
. 1
ZaeA,veV wadG(a7 U)yau ’ (10)
Xk =1t Xy, UE By, kGK,

Voo =t Yav, aEA, vevr.

Define also the positive constant L as
1
L= . , 11
(|4] — p) min{w,dg(a,v) : a€ A4, ve V \ A} (1

where |4| denotes the cardinality of the set A.

Remark 3.1. Constant 1/L is a lower bound of the denominator of the objective function of (P) in its
feasible set. Indeed, since by assumption the number |4| of attracting points is greater than p, there exist at
least (J4| — p) points that must fulfill their demand at strictly positive cost. Hence, the transportation cost is
bounded by (]4]| — p) times the smallest positive transportation cost.

We now introduce a mixed integer linear problem (Py), solvable by standard packages, which turns out
to be equivalent to (P), as stated in the following result:

max E qvk)? vk

keK, veBy,
s.L. Z wadG(a’ U).)jav = 1a
acA eV
Z)_Cvk =t Vke 1{7
vel
Zy‘w =1 Va € A7
velV
Z wafav < Z CrXok Yv € V, (PI)
acAd kekK

X <L—1Lzy YveB;, keK,
X =t—Lzy, YveEB;, keK,
zZy €{0,1} Vv e B, keK,
Xk =20 YveB,, keKk,
V=0 Yaecd, veV,

= 0.

Proposition 3.1. Problems (P) and (Py) are equivalent.

Proof. It is immediate to see that if (x,y) is feasible to (P), then (X, 7,2,¢) = (tx, 1y, 1 — x, ¢) is feasible to (Py)
with the same objective-function value, where 1 is a vector of 1’s and ¢ is given by (10).
To show the converse note that the blocks of constraints

Yu <L — Lz Yo,k (12)

and
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ka =1— LGk VU, k (13)

force every feasible solution of (Py) to have x,; € {0,¢} according to z,; = 0 or Z; = 1. Indeed, we distin-
guish two cases:
o If Z, =0, then (12) and (13) imply that 7 <X, <L, thus, since >, _, X = ¢ Vk, then X,y = 1t.
o Ifz,, = 1, then (12) implies X, = 0, and (13) is redundant by definition of L.

On the other hand 7 > 0 because ¢ = 0 implies ) ,_,, y,, = 0 for all a € 4 and then y,, = 0 for all @ and v,
which is not compatible with the first constraint of (Py). Hence, taking x = %)‘c, y= })7 one has a feasible point
of (P) with the same objective value. [

Remark 3.2. Problem (P;) contains ), . |Bi| Boolean variables z,. Hence, the larger the number of
breakpoints of the environmental utilities, the larger the size of the problem.

This means that, from a computational viewpoint, whereas for very complex models, heuristic methods
will be the only options [1,9], the exact method described in this section applies for the case in which linear
environmental utilities are generalized to the (much more realistic) case of functions with a few breakpoints.

4. A numerical example

Let us consider a numerical example, in which two plants will be located at the coordinates x' and x> on
the graph of Fig. 2. The new services must satisfy the demand of the nodes V' =4 = {vy,...,vs}, and si-
multaneously will have to minimize the negative effects caused over the population, concentrated at the
points inR= {1)2, U3, U4, Us, 1)6}.

For the sake of simplicity, we measure this environmental impact through the same utility and gauge
functions for the whole set of repelling points.

In Fig. 3, the (non-continuous) piecewise linear environmental utility is depicted. The balls of the gauge
determined by points at 0.5, 1, and 2 distance units from the origin are shown in Fig. 4. Their appearance
seems to indicate that this function would be suitable (as suggested in [23]) to model situations with steady
wind conditions.

Once these elements of the problem have been defined, we can determine the finite dominating set B. The
points obtained by intersecting the nested balls of Fig. 4 (centered at every repelling point) with the edges of
G are collected in Table 1 (see also Fig. 5).

6.5 T T T T T T T T

6k _
551 v .
3 fUg o
45 ]

4+ V5
Us

3'51.5 2 25 3 35 4 45 5 55 6

Fig. 2. The graph G = (N,E), 4 = {v\,...,vs} and R = {v,, ..., v6}.
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Fig. 3. Environmental utility ®(z): &(¢)

Fig. 4. Level sets of || - || at 0.5, 1, 2: ||x|| = \/x? +x3 — 0.3x; — 0.4x,.
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Table 1
Coordinates of the finite dominating set of points
X1 X2 X1 X2 X1 X2
vy 2.00000 5.40000 Uy4 3.26992 5.96441 vy 4.98152 5.49034
vy 3.80000 6.20000 vys 3.54556 6.08691 U2g 5.09076 5.57017
v3 2.60000 3.75000 413 3.67278 6.14345 U39 2.89357 3.76467
o 5.20000 5.65000 V17 2.77289 4.10300 V30 3.18715 3.77935
s 5.60000 3.90000 Uig 2.94579 4.45600 v3) 4.06789 3.82339
s 1.70000 4.90000 19 3.46449 5.51500 U3 4.84314 3.86215
v7 2.12967 5.04340 20 3.50502 5.59775 U33 5.29725 3.88486
vg 2.21276 4.81488 (23] 3.68200 5.95910 V34 5.44862 3.89243
vy 2.41186 4.26736 22 3.74100 6.07955 U35 5.23368 5.50263
V1o 2.41428 4.26072 U3 2.90947 3.97615 36 5.26736 5.35527
vy 2.50593 4.00868 U4 3.21895 4.20231 v37 5.27081 5.34017
U2 2.22546 5.50020 25 4.14739 4.88078 v3g 5.36841 491319
vy3 3.16390 591729 203 4.65381 5.25086 U39 5.46832 4.47606
V4o 5.53416 4.18803

Taking the set of points in B as the candidate solutions (which does not depend on the rest of parameters
to be fixed in the model) we have solved some instances of (Py). The transportation costs were set, in each

instance, to be proportional to the Euclidean length of the shortest path on G. Different distributions of

demands and populations are collected in Table 2, showing the sensitivity of the optimal locations with
respect to these changes (see Fig. 6).
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6»5 T T T T T T T T

ot

Fig. 5. Finite dominating set B.

5. e-dominating sets

Proposition 2.1 shows the existence of a dominating set for the particular case of each &; piecewise
affine. For arbitrary non-decreasing upper-semi-continuous @, (not necessarily piecewise linear), it is shown
in the following how to construct, for any ¢ > 0, a set which always contains an ¢-optimal solution.

To do this, we propose a procedure which, though perhaps inefficient in case the functions @, have a rich
structure to be exploited, is general enough to cope with arbitrary non-decreasing upper-semi-continuous
functions: We approximate each @, by a piecewise constant (thus piecewise linear) non-decreasing function
@, in such a way that the total error is bounded by some ¢ given in advance.

Define the constant D as

D = max ||r —x|,.
reR, xeE

Table 2
Four numerical examples with their optimal solutions
Uy %) U3 U4 Us Vg 4] C
w 100 100 100 100 100 - 383 217
u 0 1/5 1/5 1/5 1/5 1/5
Ya,vy 1 1 1 0 0 —
Ya,, 0 0 0 1 1 —
w 100 100 600 100 100 - 433 767
u 0 1/12 8/12 1/12 1/12 1/12
Vawrs 1 1 0.055 0 0 -
Ya,vay 0 0 0.945 1 1 —
w 200 200 200 100 100 - 347 653
u 0 517 517 1/17 1/17 5117
Ya,v39 0 0 0 1 1 _
Yau 1 1 1 0 0 _
w 1000 300 300 300 1000 - 1257 2223
u 0 1/39 1/39 1/39 21/39 15/39
Yazg 1 1 1 0.173 0 —

Yan, 1 1 1 0.857 1 -
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6.5 —r—————— 6.5 ————————
6 v2 1 6t 1
55F % 1 551 v ]
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45} 1 a5t ]
4t 1 a4t ]
3959 25

6.5 —
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45}
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395 3 25 3 35 4 45 5 55 6515 2 25 3 35 4 45 5 5.5 6

Fig. 6. Solutions for the four data-set of Table 2.

Let ¢ > 0; for each k € K define n, as the lowest integer greater than or equal to (@;(D) — ®;(0))/(2¢).
Define also the scalars:

to =0,
iy = min{z: (1) = D,(0) + 2e},
tro = min{zt: Ou(t) = D(0) + 4e},

l‘k7nk,1 = mll’l{t : (pk(t> = <I>k(0) + 2(nk — 1)8},
tk,nk - Da

which, since @, is upper-semi-continuous, are well defined.
Define the upper-semi-continuous piecewise constant function

(~D;C : [07tk,nk] - R

as
&,(0) + ¢ if o<t <1,
D,(0) + 3¢ if t1 <t < ty2,
é; _ ¢k(0) + 5S¢ if l‘k72 <t < .3, (14)

@k(O) + (Zi’lk — 1)? if tenp—1 <t< Yy -
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Moreover, since @; is non-decreasing, one immediately obtains:

Proposition 5.1. For any k € K,

| (1) — ®:(2)| <& Ve [0,D). (15)

The following result shows that, under Lipschitz-continuity of the aggregating function AF, once a
piecewise linear uniform approximation @, for each @, such as @Z, is known, the problem of finding an &-
optimal solution for problem (3) is reduced to finding an optimal solution for the problem with functions
@, replacing @, and hence, by Proposition 2.1, reduced to inspecting a finite number of points.

Proposition 5.2. Suppose there exists a positive constant L such that, for any s > 0, the function AF(s,-) is
Lipschitz-continuous with Lipschitz constant L. Then, any optimal solution for

,min_ AF <TC<}217 o ® )y a ([ )) (16)

reRr kek

is an Lpe-optimal solution for problem (3).

Proof. Define EU as

(s ) - S T -#]))

reR

Then, by assumption, for any (x',...,%"),

’EU(}EI,...,JF’) - Eﬁ(x‘xp)

Zu,Z@k(Hr—fk

reR kek

) Sl
ey in(e

)=+
<> uy e=pe (17)

reR kek

)

where (17) follows from (15) and the assumption S"_, u, = 1. Hence, for any ', ...,
’AF(TC(xl,...,)ep), EU(x‘xP)) —AF(TC()%‘,...,)EP), Eﬁ(xlxp))‘
gL‘EU(;El,...,)EP> - ENU(xlx”)
<Lpe.

Hence, if (x!,... x*) denotes an optimal solution for (16), one has for any (%', ..., %) that
AF(TC(;El,...,xP), EU<x1xP)) > —Lps—l—AF(TC()El,...,yEp), Eﬁ(xlxp))
> —Lps+AF(TC(;ei,...,x'j), E\Ij(xlxp)>

thus any optimal solution for (16) is Lpe-optimal for (3). O
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Remark 5.1. In order to avoid an astronomical increase in the cardinality of the sets B, in (4), it is con-
venient to approximate each @; by some @, satisfying (15) with as few breakpoints as possible.

The construction above is applicable to any upper-semi-continuous non-decreasing @y, yielding O(1/¢)
breakpoints. If further assumptions are made, smaller dominating sets may be obtained. For instance, if @,
is assumed to be convex, as suggested, among others, in [12,25], one could use, e.g., the sandwich algorithm
described in [3,27], to obtain piecewise linear approximations with O(1/4/¢) breakpoints.

Even if case @, is already piecewise constant, it may be convenient to replace it by an approximation (152
with a (much) smaller number of pieces. The algorithm given in [17] could be used to perform efficiently
such approximation.

6. Conclusions

In this paper, we have addressed a p-facility location problem for semi-desirable facilities whose location
is restricted to the edges of a planar network with rectilinear edges. When the aggregating function AF is
assumed to be quasiconvex, the search of (¢-) optimal solutions can be reduced to inspecting a finite set of
candidates.

Hence, solving the problem amounts to solving an integer problem, which becomes linear when AF is
linear, namely, for the classical Weber problem with attraction and repulsion. For the case of rational AF,
the problem can also be transformed into a mixed integer linear problem. For broader classes of functions
AF or a large number of facilities to locate metaheuristic procedures might be the unique realistic option.
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