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Abstract

The Lasso has become a benchmark data analysis procedure, and numerous variants
have been proposed in the literature. Although the Lasso formulations are stated so
that overall prediction error is optimized, no full control over the accuracy prediction
on certain individuals of interest is allowed. In this work we propose a novel version
of the Lasso in which quadratic performance constraints are added to Lasso-based
objective functions, in such a way that threshold values are set to bound the prediction
errors in the different groups of interest (not necessarily disjoint). As a result, a con-
strained sparse regression model is defined by a nonlinear optimization problem. This
cost-sensitive constrained Lasso has a direct application in heterogeneous samples
where data are collected from distinct sources, as it is standard in many biomedical
contexts. Both theoretical properties and empirical studies concerning the new method
are explored in this paper. In addition, two illustrations of the method on biomedical
and sociological contexts are considered.

Keywords Performance constraints - Cost-sensitive learning - Sparse solutions -
Sample average approximation - Heterogeneity - Lasso
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1 Introduction

Let (Y, X) be a random vector, where X = (Xy,..., X)) is a vector of p pre-
dictors and Y identifies the response variable. Given the observed response vector
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Y= (1,...,yn),n > p,and the related observed predictors, X; = (X1, ..., X;),
j =1,..., p, the linear regression model predicts y by

5’230+B1X1+"'+Bpx1)'

Consider the well-known prostate database (Stamey et al. 1989), which consists
of the measurements of p = 8 predictors and one response variable (clinical measures)
onn = 97 men who were about to receive a radical prostatectomy. Further, assume that
the dataset is divided into two groups: Group I, corresponding to young individuals
(aged less than 65) and Group 2, related to the population older than 65. If the goal
is to minimize the overall mean squared error (MSE), the parameter vector § =
(Bo, B1s - .., Bp) can be estimated by a fitting procedure as ordinary least squares

(OLS), yielding ;§ 0“. The results obtained under the OLS are shown in the first two
rows of Table 1, where 3/4 of the total set has been used to fit the model (training
set) and the remaining samples for the assessment of the generalization error of the
resulting model (test set). The overall MSE, the prediction errors over the two groups
as well as the number of coefficients involved in the model are presented.

Once the model is fitted, there are two fundamental criteria for evaluating its perfor-
mance: the accuracy of prediction and the identification of significant predictors, which

provides a good interpretation of the solution. Itis well-known that ,@ o is not sparse, as
can be observed from Table 1 where the eight predictor variables have been used by the
model. This fact has entailed new penalization techniques as ridge regression (Hoerl
and Kennard 1970), which is a continuous shrinkage method that achieves its better
accuracy prediction through a bias-variance trade-off. Nevertheless, ridge regression is
known not to be able to render a parsimonious solution. In contrast, best-subset selec-
tion (Garside 1965) achieves more sparse solutions, but it suffers from high variability
and computational difficulties (Fan and Li 2001). To overcome those shortcomings,
Tibshirani (1996) proposed the Lasso regularization technique, which achieves both
estimation and selection of relevant predictors simultaneously by construction. Given
X =[1]xq|...]|xp]the predictor matrix; then, the Lasso solution can be defined as

~Lasso

1
B =argl;ninr—lIIY—Xﬁller?»ll(ﬁl,---,ﬁp)lll ey

Table 1 Results obtained using prostate dataset

Method Overall MSE Group 1 MSE Group 2 MSE Non-zero coef-
ficients
OLS Training set 0.344 0.355 0.333 8
Test set 0.373 0.380 0.367
Lasso Training set 0.365 0.397 0.335 5
Test set 0.408 0.414 0.403
CSCLasso Training set 0.355 0.357 0.352 6
Test set 0.393 0.399 0.388
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where A > 0 is a tuning parameter and ||.||; is the /; norm. To visualize the effect of
the penalty term in the Lasso formulation, consider the third and fourth rows in Table
1, which provide the results obtained under the Lasso for the prostate dataset. In
this case, in comparison with OLS results, a sparser, and therefore a more interpretable
solution, has been obtained at the expense of slightly worsening MSE values.

One of the advantages of the Lasso is that the entire path of solutions can be found
thanks to the LARS algorithm (Efron et al. 2004). In addition, it is well-known that,
under some conditions, the Lasso enjoys good theoretical and statistical properties
(Donoho et al. 1995; Friedman et al. 2001; Biihlmann and Van-De Geer 2011). How-
ever, the Lasso presents some limitations; in particular, the literature related to the
Lasso has not undertaken the problem of fully controlling the accuracy prediction
on certain individuals of interest. In the previous prostate database, assume for
instance that we are interested in fitting a sparse regression model to the dataset where,
apart from obtaining a small overall mean squared error, also the prediction error for
the young individuals should not exceed a given threshold. In this paper we propose
a Lasso-based model that allows for such aim, namely the cost-sensitive constrained
Lasso, denoted from now on as CSCLasso. The results obtained for the prostate
database under the CSCLasso, whose definition and main properties shall be discussed
in Sects. 2 and 3, are shown in the last two rows of Table 1. A threshold for the mean
squared error over Group 1 is set equal to 0.357, which represents an improvement
of 10% over the prediction error of the Lasso (0.397). Note that in the training set the
MSE satisfies the imposed constraint, as expected. Also note that the improvement
in Group 1 is at the expense of slightly increasing the prediction error over Group 2.
In terms of sparsity, the CSCLasso model has needed an additional predictor variable
comparing to Lasso in order to comply with the constraint.

As it will be seen in Sect. 2, the novel approach is set up by adding convex quadratic
constraints to the Lasso formulation. Other approaches have considered constrained
versions of the Lasso before, see for example (James et al. 2019; Gaines et al. 2018;
Torres-Barran et al. 2018; Hu et al. 2015 and references therein). In such works, equal-
ity or/and inequality linear constraints are considered for imposing prior knowledge
and structure onto the coefficient estimates. In our approach instead, quadratic con-
vex constraints are formulated and thus, our approach and results generalize those
previously obtained in the literature.

Not only constrained versions of the Lasso can be found in the literature. Indeed,
many different variants have been proposed. For example, in Zou (2006) adaptive
weights for penalizing different coefficients in the /; penalty are included as a way
for fitting sparser models under more general conditions. Moreover, in the presence
of highly correlated predictor variables (as is usual in microarray studies) or when
predictors are structurally grouped (e.g. dummy variables), the Lasso sometimes does
not perform well and, as a consequence, the elastic net (Zou and Hastie 2005) and the
group lasso (Yuan and Lin 2006; Simon et al. 2011) were proposed. They combine
> and [y penalties to try to select (or remove) the correlated or structured predictor
variables together. Other extension is to consider

~Lasso

1
B = arg;ninﬂy—X/8||2 + AlIAB: . 2)
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instead of (1), where A is a fixed matrix (see Tibshirani and Taylor 2011). If 4 =
(O|I pxp ), then the Lasso objective function is obtained; however, other forms of A
different from the identity can be found in the literature, see for example (Ollier and
Viallon 2017). In fact, various choices of A in (2) define problems that are already
well-known in the literature as the fused lasso (Tibshirani et al. 2005). See Hastie et al.
(2015) for an extensive review about Lasso problem and generalizations.

The motivation of this paper (controlling the performance measure on certain groups
of interest) is not novel in the Data Analysis literature, and indeed, it has been exploited
in classification contexts with the term cost-sensitive learning (Prati et al. 2015; He
and Ma 2013). Many realworld problems, such as those found in medical diagno-
sis or credit card fraud detection, have asymmetric misclassification costs associated,
since the consequences of wrong predictions across the classes may be very different.
Therefore, for these problems, it is more important to achieve better classification
rates for the individuals of interest (ill people, defaulting customers). See Carrizosa
et al. (2008), Sun et al. (2009), Datta and Das (2015), Lee et al. (2017), Bradford
et al. (1998) and Freitas et al. (2007) for more details and applications. Those methods
are based on adapting the classifier construction or adding parameters, among others.
As some examples, consider (Datta and Das 2015; Carrizosa et al. 2008) and Lee
et al. (2017), which adapt the support vector machine (SVM) classifier. In Datta and
Das (2015) the decision boundary shift is combined with unequal misclassification
penalties. A biobjective problem is introduced in Carrizosa et al. (2008), which simul-
taneous minimizes the misclassification rates. In Lee et al. (2017), the authors propose
a new weight adjustment factor that is applied to a weighted SVM.

This paper is structured as follows. In Sect. 2, the cost-sensitive constrained Lasso
(CSCLasso) is introduced and some key issues are discussed. Section 3 considers
theoretical properties of the CSCLasso, as the existence and uniqueness of solution,
limit behaviour (in terms of the penalty parameter) and consistency. Section 4 presents
a detailed numerical analysis with both simulated and real datasets, and finally, some
conclusions and extensions are provided in Sect. 5. Technical proofs are relegated to
the Appendix.

2 The cost-sensitive constrained Lasso: definition and key aspects
This section presents the cost-sensitive constrained Lasso, which, as will be seen, is
defined through an optimization problem with constraints related to prediction errors

for individuals of interest. In addition, some computational details, as well as different
key aspects concerning the tuning parameters of our proposal, are presented.

2.1 Definition

The proposed CSCLasso is a novel variant of the Lasso where we shall demand that
the prediction errors for the groups of interest are below certain threshold values,
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. 1
min -~ llyo — XoBII> + AIABI

1
st. —ly1 = XiBII> — fi <0,
i 3)

1
—llyL — XiB1% - fr < 0.
ng

In the previous formulation, (yo, Xo) is the set of observations used to build the sparse
model with overall minimum MSE, which can be the complete dataset (y, X), or a
subset of smaller size. Additionally, let (y;, X;),/ = 1, ..., L, define groups of interest
(not necessarily disjoint), where the MSE predictions are to be controlled. Then, n;
is the number of instances related to group /. Finally, f = (f1,..., fr) contains

the different threshold values for the MSE on the different groups. The solution of
~CSCL
optimization problem (3) will be denoted by amo()\). From the formulation

(3) it is natural to wonder whether running a Lasso on just the groups of interest
is more advantageous. However, if a single Lasso is run on the groups of interest,
dramatically bad predictions can be obtained when the resulting model is applied to
new observations outside those groups, which is not the case for our approach. The
same issue arises when a different Lasso model is built on each group of interest, but,
in addition, new observations are not given with their group of origin. Contrary to
what happens with our novel approach (3), the L predictions obtained through the L
different estimated Lasso models may not be suitable to give a final prediction for
such new samples.

The proposed method can be formulated as a Lasso with weighted quadratic penal-
ties in the objective function associated with the different groups, but finding real
meaning to their parameters (one per group) to be chosen is not an easy task (see
Carrizosa and Romero-Morales (2001) and the references therein) and the full con-
trol over the accuracy prediction on certain individuals of interest would disappear.
However, the parameters f = (fi, ..., fr) involved in our model have a clear inter-
pretation and, in addition, this formulation enables us to bound the prediction errors
in the different groups of interest.

As an example, in the illustration of the method in Sect. 1 related to the prostate
dataset, whereas the training set was used in the objective function with A4 = (O| 13 8) ,
the prediction error over the young population of the training set, (y1, X1), is controlled
through a performance constraint ( f; = 0.357). In areal application, once the L groups
of interest are selected by the user, threshold values fi, ..., fr have to be fixed. Note
that these thresholds will depend directly on the dataset in question and the considered
groups of interest. As a first option, they could be fixed by the user according to her
demand, but therefore unfeasibility problems may appear when solving the CSCLasso
problem (3). For that reason, in Sect. 2.3 two procedures for determining such threshold
values so that (3) is feasible are given.

Next, some other aspects related to the formulation of the CSCLasso and its reso-
lution will be discussed.

@ Springer



R. Blanquero et al.

2.2 Computational details

The CSCLasso problem as defined by (3) is a non-differentiable convex optimization
problem with quadratic and convex constraints. However, if we rewrite the non-
differentiable term in (3) as

AB=u" —u",

where ut = (uf“, R u;) andu™ = (u,..., u;) are new vectors of positive
auxiliary variables, a differentiable version for the CSCLasso problem (3) is obtained
in a straightforward manner as

1 p P
min —llyo —XoBIZ+A) ul +21) u;
pmin_—=lyo — XoBl ; ; Z‘: ;

1
st —lyi - XiBII* — f1 <0,
1

1
—lyL — X1BII> — fr <0,
ng

AB=u" —u",

ut

,u > 0.

This previous smooth formulation for the CSCLasso eases its resolution notably,
since efficient solvers for quadratically constrained programming problems, such as
Gurobi Optimization (2018), are available. In particular, the Gurobi R interface will
be used in this work to obtain all numerical results.

Another remark concerning the formulation of the CSCLasso is that, instead of using
the sum of squared deviations, least absolute deviations could have been considered.
Then, (3) would be reduced to a regression problem under linear inequality constraints,
as those described in James et al. (2019), Gaines et al. (2018) and Hu et al. (2015).
Nevertheless, to cope the non-differentiability of the absolute value function, a huge
number of constraints and new auxiliary variables, which would depend on 7, should
have been added. Consequently, these constrained approaches are likely to face severe
numerical difficulties in practice for large datasets.

2.3 The choice of threshold values

As commented in Sect. 2.1, threshold values fi, ..., f1 could be fixed by the user. If
the user is too demanding, imposing very low MSE threshold values for (some of) the
different groups, the optimization problem may become unfeasible. Although a try-
and-error procedure may be used, it would be very helpful to have strategies yielding
feasible solutions. Here we propose two procedures for determining fi, ..., fr in
such a way that (3) is feasible.

@ Springer
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First, we propose a choice of the threshold values so that they are close to the OLS
results,

f=0+0MSEE™), 1=1,....L, 4)

1
where MSE;(B) = —|ly; — XiBlI%> 1 =1,...,L and T > 0 is a small parameter
nj

whose meaning is the percentage of worsening with respect to the OLS prediction
error. For the numerical example in Sect. 1, we could have imposed the threshold
for the MSE over Group I equal to 0.352, which is a 10% (r = 0.1) more than

MSE; (ﬁdé) = 0.319. The choice (4) deals with the heterogeneity coming from the
variability of the different groups (M SE; is different across groups). Nevertheless,
when heterogeneity related to the importance of each group is also considered, the
parameter t can be replaced in (4) by t7, [ =1, ..., L.

Next, we shall compute the minimum value of 7, 7,,;,, S0 as to (3) is feasible. That
is, the minimum t so that there exists 8* satisfying

MSE;(B")
mlax—mls —-1<r,
MSE|(B )
and, therefore, 7,,;, Will be given as
MSE;(B*)
Tnin = mlax—mls —1.
MSE; (B )

Such t,,i, can be found as the optimal value of the following linear problem with
convex and quadratic constraints

rlrglin Z
4

MSE ©)
s.t. zz—’fﬁ—l, Vi=1,...,L.

MSE; (B )

The feasible version of the CSCLasso optimization problem can be formulated as

. 1
min iy - XoBII> + AIABI

1 2 ~ols
st. —lly1 =XiBI" = (A +0)MSEi(B ) <0,
" (6)

1 2 ~ols
n_||YL =X BlIF—(A+)MSEL(B ) <0,
L
where T > T,i5.
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Finally, note that if 7 is big enough, then solving (6) is equivalent to solve the
unconstrained problem. Indeed, it is possible to find the value of 7, 7,45 (1), such that
both the constrained and unconstrained problems are equivalent

~Lasso

MSEB "0y

~ols I (7)
1efl,.., L} MSE/(B )

Tnax(A) =

A second possible choice for the threshold values follows an analogous approach
but, instead of considering the results of the OLS, we shall consider the mean squared
error of the Lasso, as in the numerical example introduced in Sect. 1. For each [ =
1,...,L,

s

~Lasso
fi=0—y)MSE(B ), l=1,...,L, ®)
where y > 0 is related to the desired percentage of improvement over the Lasso
solution (y = 0.1 in the numerical example of Sect. 1). In this case, we will compute
the maximum value of ¥, Vuax, in such a way that (3) is feasible under (8), and the
linear problem associated with Y,y 1S

max Z
B.z
MSE 9
st 1— 1B vi=1L
~AL.asso

MSEB )

Thus, another possible feasible version of the CSCLasso optimization problem can be
formulated as

. 1
min o - XoBII* + AIABII
1 2 ALasso
st Iy =XiBIP — (1= yIMSE(B™ (1) <0,

(10)

1 ~Lasso
o X.BI? — (1 —y)MSEL(B~ () <0,

where ¥ < Vimax-

Note that the two choices previously described for selecting the threshold values
are not unique. Indeed, instead of using the MSE, another statistical measure as the
R-squared can be considered. Further details about how they perform in numerical
applications are described in Sects. 2.4 and 4.
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2.4 The role of the tuning parameters

The CSCLasso, as defined by (6) or (10), is stated in terms of two tuning parameters,
A and T or A and y, respectively. The first one, A, is related to the sparsity of the
solution, and the second one is linked to the user’s demanding level, since the degree
of requirement increases as T — Tjin (Or ¥ — Vmax)- In this section we investigate
how the solution of the CSCLasso changes when A and t jointly vary (analogous
results are obtained if A and y are analyzed instead). With this purpose, consider again
the experimental setting as in the example of Sect. 1 related to prostate dataset
with A = (O|I pxp ) (Lasso objective function), but in this occasion assume that the
prediction errors of both groups (the young and the elderly people) shall be controlled.

The interval of variation of the parameter A is set to I, = [0, 30]. Moreover,
according to (5), the smallest value of t such that the CSCLasso optimization prob-
lem (6) is feasible is 7,,;, = 0.055. On the other hand, following (7), Tjax =

Arr[l(%(o] Tmax(A) = 2.355, although we will enlarge the interval of variation of
€0,

T to also visualize the unconstrained solution; such interval will be finally set as
I = [Tin, Tmax + 2] = [0.055, 4.355]. Figure 1 represents, via a heat map, the
solution for BICSCL“SSO(A) for the different values of (A, 7) in a grid contained in
I A X Ir~

Some conclusions can be drawn from the figure. Consider first the cases where
T and XA are big enough. Since, in this case, T > T,x, then, as commented at the

end of the previous section, solving (6) is equivalent to solving the Lasso. Therefore,
~CSCLasso ~Lasso

B NN =8 (&) = 0 will be the optimal solution, provided that X is big
. . ~CSCLasso ~Lasso
enough. Analogously, if T > T4, but A is small, then a =8 A,

which will be equal to zero or not depending on the importance of the variable. When
T is small, the constraints are demanding and, even for large values of A, it might
happen that /§1CSCL””"(A) + ,31“‘””()0 =0, as it is the case.

Figure 7 (see Appendix for further results) represents the analogous heat maps con-
cerning ,32CSCL“””(A), e Bgcscm‘””(k). A similar discussion as with BlcSCL‘”‘"’(A)
is applicable to these figures. An interesting remark to be made concerns the impor-
tance of each variable: while variable 1 is the only one selected for the Lasso, the
CSClLasso returns a less sparse solution in this case, since predictor variables 1, 2, 4
and 5 turn out to be significant. However, this is not the rule, since there are examples
where the level of sparsity is higher for the CSCLasso, as will be shown in Sect. 4.

3 Theoretical properties

In this section we discuss some theoretical results concerning the CSCLasso model.
In Sect. 3.1, the existence of a unique optimal solution to Problem (3) is proven for a
fixed value of A > 0. Section 3.2 deals with the limit behavior of the solution when
A approaches infinity. Finally, some consistency properties of the CSCLasso solution
are derived in Sect. 3.3 from the Sample Average Approximation theory (see Shapiro
et al. 2009).
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Fig. 1 Heat map of ﬁfSCLa”” () using prostate dataset
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3.1 Existence and uniqueness of solution

For constrained versions of the Lasso in the literature, as in James et al. (2019), it is not
possible to obtain the path of solutions and therefore approximations are made with

the use of numerical algorithms. For the CSCLasso problem, a closed form solution

. ~CSCLasso . . . .. . .
of expression 8 () is not available. However, an implicit characterization of

the CSCLasso solution (with only one constraint) can be found as the following result
states.

Proposition 1 Consider the CSCLasso problem with one constraint,

. 1
min  — [lyo — XoBI> + A ABII
B no

1 ~ol 11
st Z”Yl—Xlﬂ”z_(l"‘f)MSEl(ﬂos)SO, an

where A = (O|I pxp ) and assume that Xy and X1 are maximum rank matrices. Then

~CSCL 1 1 -1/ 1
B0 = (—X6X0 + —n()»)Xin) <—X6YO + —n(A)Xiyl)
no ni no ni
1/1, 1 o\ !
—— [ —X\Xo+ —n(X(X:) bR (12)
2 \ng ni
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where n(A) is the Lagrange multiplier of the constraint and the component s, s =
0,1,..., p, of the vector b(A) is given by

A, i]('IéSCSCLaSSU()\') >0,
bs(A) = X, lfﬂAS,CSCLaSSO()\) <0,
0 else.

From the previous proposition, it is clear that a closed form solution is hard to be
obtained, even in the simplest scenario.

Nevertheless, given a fixed value of A, the CSCLasso problem can be solved using
quadratic programming via any of the standard solvers available in the literature. As an
example, Fig. 2 depicts the path of solutions for the prostate example introduced

in Sect. 1, for an assortment of values of A in a grid (see Sect. 3.2 for details). Each
. ~CSCLasso 5CSCLasso . X
line represents a component of 8 ), B i A) with j =1,...,8. It

can be observed from the figure that, contrary to what happens in the Lasso path of
solutions (top panel of Fig. 2), the CSCLasso path of solutions is not piecewise linear
(bottom panel of Fig. 2). Such non-linearity (due to the quadratic constraints) hinders
the application of an iterative algorithm to obtain the path of solutions as those given
in papers James et al. (2019) and Gaines et al. (2018).

Also note from Fig. 3 that as a consequence of the performance constraints, the
solution is stabilized when A increases, but does not shrink to 0, as with Lasso. This
is detailed in Sect. 3.2.

Even without having the expression of the general solution of (3), we next prove
that, under full rank assumptions, the solution is unique. First, in order to simplify the
formulation of (3), henceforth its feasible set will be denoted by B, which is convex
and closed. This is also true (and the results which follow remain valid) if, on top
of the performance constraints, one adds linear constraints modeling other aspects of
interest (for example, the sign of a certain coefficient can be fixed to be positive or
negative depending on the known relation between the corresponding predictors with
the response variable). In the same vein, henceforth, (yo, Xo) = (y, X) is used to
minimize the overall MSE. In this way, the CSCLasso problem (3) is rewritten as

. 1
min  ~ly = XB|* + [ AB[. (13)
BeB n

The following result guarantees that the solution of problem (13) is unique.

Theorem 1 Consider Problem (13) where X is assumed to be a maximum rank matrix
and its feasible region B is a convex and closed set in RP*!. Then, Problem (13) has
a unique optimal solution.

3.2 Asymptotic behaviour
One of the key points when dealing with Lasso-type problems is the choice of the

regularization parameter . In the case of the Lasso, such choice is straightforward
since the entire path of solutions is known to be piecewise linear, shrinking to 0.
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Fig. 2 Path of solutions under Lasso (top) and CSCLasso (bottom) for prostate dataset

In particular, it is known that there exists a value of A, A*, such that the solution
~Lasso

B (1) = 0 is optimal for all values A > 1*.
The following result provides explicitly the value of such A*.
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Fig.3 Path of solutions under Lasso (top) and CSCLasso (bottom) for prostate dataset when X increases

Proposition 2 Consider the Lasso model (2). Define A* as the optimal value of the
linear programming problem

min z
z,t

2
st =Xy = A\,
n

—z<My<z, s=0,1,...,p.
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~Lasso

Then, B (A) = 0 for all » > A*. In particular, for A = (0|1P*P),

2
2= H—X/y
n

‘ o0

Some works dealing with (linear) constrained versions of the Lasso (as Gaines et al.
2018; James et al. 2019) have developed efficient algorithms to build the associated

solutions path. Consider now the general problem (13). As commented in Sect. 3.1, the
expression of ﬁ C5Chasso (1) isnot available in closed form and, consequently, the entire
path cannot be computed. In this case, when A tends to +o0, the solution /§ C8CLasso Q)
stabilizes around ﬁ C5Chasse (+00) = argmin||.AB]|;. This idea is also used in Gaines

BeB
et al. (2018) and James et al. (2019), where, in order to find an initialization for the

algorithms, the proposed constrained problems are solved by only considering the
penalty term in the objective function. Such a limit solution is obtained by solving an
optimization problem with a linear objective function and convex quadratic constraints,
namely

p
min Z:(u;r +uy)
s=0

But u~
st. BeB
AB=u" —u~
ut,um > 0.

A grid search is carried out in the general CSCLasso problem (13) to obtain suitable
values of A. In order to fix the grid, we propose the following dynamic approach to
find an approximate maximum value of A, A* (see Algorithm 1).

Algorithm 1: Dynamic approach for selecting A* in the CSCLasso

~CSCLasso

1.Fixe > 0and ¢ = (2_5). Fix i = 1 and compute B (c[i]).
~CSCL
2. Compute 8 asso(—i—oo) = arg min||AB|.
BeB
ACSCLas:s ACSCLas:

3. While [ — 77T (400 |l > e, repeat
a) i=i+1

b) ¢ = (c,2cli — 1))

~CSCL

¢) compute 8 asm(c[i])
4. 0% = cli]
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Once the maximum value A* is found, then the grid ranges from 0 to A* with the
desired step. Note that the previous algorithm already provides an initial grid of the
form (275,274, ..., 20, ... %),

3.3 Consistency properties in the CSCLasso

The purpose of this section is to prove some results related to the consistency of
both the solution and the objective value for CSCLasso problem (13). To do that, the
theory of Sample Average Approximation (SAA) (Shapiro et al. 2009) will be applied.
Consider the following stochastic programming problem

ﬂg f(B) = E[F(B, (Y, X))], (14)

where B is a nonempty closed subset of RP*!, (¥, X) is an absolutely continuous
random vector whose probability distribution P is supported on a set & C RP*! and
F : B x 2 — R. In Shapiro et al. (2009), under some conditions, the true problem
(14) can be estimated by the SAA:

. WA R .
min fu(8) .—HEF(ﬂ,(y,,xl», (15)

where x; = (1, x;1, ..., xip)’, and {(y;, x;)}i=1,...n is a realization of the n random
vectors {(Y;, X;)}i=1,...n, Which are independent and identically distributed (i.i.d.) as
the random vector (Y, X). Note that the CSCLasso problem as in (13) takes the form
of (15) as

g " an2
ggg;;(y,—xiﬂ) + AlIABI (16)

and the true CSCLasso problem equivalent to (14) is

min E[(Y — X'B)* + Al ABII. (17)

Before proving the main result on the consistency of the CSCLasso, we first show
the uniqueness of the solution of such a problem.

Proposition 3 The optimal solution of the true CSCLasso problem (17) is unique.

Denote by vCSCLasso 3y and BESCLAsS0()) respectively, the optimal value and the
~CSCLass
optimal solution of problem (17). Analogously, let D¢SCL4550()) and B mm(k)

be the optimal value and the optimal solution, respectively, of the SAA CSCLasso
problem (16). The following result shows the consistency of the SAA values to the
true values.
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Theorem 2 Assume that E[|X||*)] < oo, E[Y?] < oo, E[|YX|] < oo.
ACSCL
Then, PCSCLasso()y converges to vESCLeso )y and B asw()») converges to

BESCLasso 3y with probability one (w.p. 1).

Finally, note that the theoretical results that have been studied in this work are also
applicable to other versions of constrained Lasso as long as the feasible set is convex
and closed, as is the case with the above-mentioned works (James et al. 2019; Gaines
et al. 2018; Hu et al. 2015).

4 Numerical experiments

In this section, the behaviour and performance of our approach is illustrated throughout
an extensive empirical study. In particular, using both simulated and real datasets, the
aim of the experiments shall be to improve the prediction errors of the Lasso in one or
more groups of interest. Or in other words, threshold values shall be fixed as in (10).
Since our proposal is a novel extension of the Lasso, we will also show the results under
the Lasso, not only for those groups that are controlled (for which obviously, the Lasso
performs worse) but also for the non-controlled groups. In this way the CSCLasso can
be better inspected in comparison to the Lasso. Other aspects as the overall MSE and
the percentage of non-zero coefficients in the regression model, among others, will
be explored. Such measures will be estimated through median values using a fivefold
cross validation approach. To this end, the dataset will be split at each fold into three
sets: the so-called training, validation and test sets. The training set is used to fit the
model, the validation set is used to estimate prediction error for model selection and
the test set is used for assessment of the generalization error of the final chosen model.

4.1 A simulation study

The generation of the synthetic datasets in this section follows that of Ollier and
Viallon (2017), where an overparameterized regression model is considered to cope
with stratified data. A number of groups K = 20 is set and two different sample
sizes per group are considered, n;y = {150, 500}, for k = 1, ..., K. The number
of predictors p will be chosen from {20, 100, 500}. The matrix of predictor values
X is generated according to a multivariate normal distribution with zero mean and
covariance matrix ¥ being a Toeplitz matrix with element (i, j) equal to 0.5/,
Regarding the response vector, a set of 20 predictors are randomly selected (with
indexes included in a set Py), while the rest of predictors are noise (that is, 8; = 0
for j ¢ Pp). The coefficients of the significant 20 predictors are chosen as follows.
First, consider 10 random predictors out of the 20 selected. For such predictors, if the

group k > 6 then 8; = 1 and, otherwise, 8; =1+ K % For the other 10 predictors,

Bj=1ifk <6and B; =1+ K 7 otherwise. In this way, the predictors behave
differently depending on the group. Finally, the response vector for each group is
generated according to the standard linear regression model with normal error.
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Once the synthetic dataset is built and its response and predictor variables have
been standardized, the CSCLasso with A = (0]77*?) is run with constraints imposed
over the first six groups. The choice of A will change at each fold. A grid in X is built as
in Sect. 3.2, and, the value of A which leads to the lower overall MSE in the validation
set is selected. Table 2 shows the median prediction errors per group k (M SEy),
k = 1,...,6, obtained by the Lasso (rows in bold values) and the corresponding
values obtained under the CSCLasso for different threshold values f.

In particular, the values of f have been set as improvement percentages over the
Lasso values, where the improvement levels are 3%, 5%, 7%, 10%, 15% and 20%
(y equal to 0.03, 0.05, 0.07, 0.15 and 0.20, respectively). The results are obtained for
different combinations (p, n), where, as commented before, p is chosen from the
set {20, 100, 500} and nj from {150, 500}. For example, if ny = 150 and p = 20,
the median of the mean squared error for the Lasso in Group I was equal to 1.084. If
the goal is to achieve an improvement of 3%, f must be chosen equal to 1.052. The
median of the mean squared errors for the CSCLasso is equal to 0.933 in this case
(results obtained on the test sample). It is important to remark that, for some levels of
improvement, the CSCLasso problem is unfeasible due to the fact that y,,,, for such
datasets is smaller than the required y, and, therefore, those cases are represented as
empty spaces in the table. It must be noted that y;,,, will also depend on each fold
in the cross-validation because it is associated with the partition of the data, since the
MSE; in (9) depends on such partition (/ = 1, ..., L). It is also worth mentioning
that the constraints will always be satisfied on the training set but not necessarily on
the test set, see, for example, the case k = 3, ny = 150, p = 100 with improvement
level equal to 15%. This phenomenon is particularly common as p increases and ny
decreases (see for example the values corresponding to p = 500 and ny = 150 in
Table 2).

We next investigate how the improvement in the prediction errors of the groups of
interest affects the prediction errors in the rest of the groups, the overall prediction
error and the sparsity level. Figure 4 represents the percentage of non-zero (NZ)
coefficients and the overall prediction error for different sample sizes, different levels
of improvement and for p = 100. Lasso results are also included. For instance,
when n; = 300 (black squares in Fig. 4), the NZ percentage for Lasso is 39.60 with
an associated overall MSE of 0.734; whereas running the CSCLasso demanding a
3% of improvement over the first six groups, we achieve a NZ percentage of 38.61,
and an overall MSE of 0.735. In general terms, it can be seen that the sparsity of
the solution decreases with the improvement level: smaller squares, which represent
smaller imposed improvement percentages, are on the left of bigger squares (which
are associated with demanding percentage of improvement). Then, if the user is very
demanding in predicting a specific group, this implies, in the majority of the cases,
a less sparse solution. Notwhitstanding, when no level of improvement is imposed
(Lasso problem), the solution can be less sparse than in the CSCLasso, as in the case
of ny = 300. This also occurs when p = 500 and n;, = 150 (see the bottom graphic of
Fig. 10 in Appendix: further results). Furthermore, the overall prediction error slightly
worsens with the improvement level, due to the worsening of the predictions in the
uncontrolled groups.
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Fig.4 Median overall MSE over the test sets and NZ percentage under the choice p = 100

Figure 5 represents the prediction errors over the groups that are not controlled as
well as the overall mean squared error, for different improvement levels, ny = 150
(top figure) and n; = 300 (bottom) when p = 100. In the figure, Lasso values are
also shown. From the figure, it can be concluded that the Lasso performs better in the
uncontrolled groups, since the prediction errors worsen under our proposal. However,
the overall mean squared error remains almost constant (since the improved errors
compensate the more deteriorated ones). Similar conclusions can be drawn under the
choices p = 20 and p = 500 (see Figs. 8, 9 in Appendix: further results, respectively).

Next, we test how the solution of the CSCLasso behaves with respect to other global
performance measures as the /5 distance, false positive and negative rates, which are
defined not in terms of prediction errors, but on the correct fitting of the generator
process (see Yu and Liu 2016). In particular, the /> distance is defined as ||ﬁ — Bll2,
where B is the vector of coefficients that generated the datasets (described at the
beginning of this section), and ﬁ(k) are the estimators. In addition, the false positive
rate (FPR) and false negative rate (FNR) are calculated as follows:

1 j:Bj=0&Bj()=0]

FPR = - ,
[j:B;=0]
B £0& Bi(AM)=0
R o LB EO& BBy =0
[j:B; #0|
where j = 1,..., p. The median of these three measures as well as the median of

the overall MSE (already shown in Figs. 4, 5 and 8, 9 and 10 in Appendix: further
results), are presented in Table 3. For the choices where p = 20, the FPR values
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Synthetic dataset n, =150 and p=100

Strat. 7 Strat. 8 Strat. 9 Strat. 10

20% -
15% -
10% -
7%~
5% -
3%~
Lasso-

Strat. 11 Strat. 12 Strat. 13 Strat. 14

20% -
15% -
10% -
796 T T Y B
5%~
3% -
Lasso-

Strat. 15 Strat. 16 Strat. 17 Strat. 18

20% -
15% -
10% -
7%~
5% -
3%-
Lasso-

Improvement levels

Strat. 19 Strat. 20 Overall MSE 00 02 04 06 08 10

20% -
15% -
10% -
7%~
5%~
3% -
Lasso- T y y I . ) y T I ! 1 e !
00 02 04 06 08 1000 02 04 06 08 1000 02 04 06 08 10

MSE,

Synthetic dataset n, =300 and p=100

Strat. 7 Strat. 8 Strat. 9 Strat. 10

Strat. 11 Strat. 12 Strat. 13 Strat. 14

Strat. 15 Strat. 16 Strat. 17 Strat. 18

Improvement levels

Strat 19 Strat 20 Overall MSE 00 02 04 06 08 10

20% -
15% -
10%-
704 - e D O CTTTTTTT

5% -

3%-
Lasso- T T T 1 r r I T T ! I I T T T T T I
00 02 04 06 08 1000 02 04 06 08 1000 02 04 06 08 10

MSE,

Fig.5 Median M SE}, over the test sets for k = 7, ..., 20 under p = 100 features and, ny = 150 (top) and
ny = 300 (bottom). Each subgraph represents one group and the Y-axis shows the different percentages of
improvement
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Fig.6 A two-dimensional graph of the logarithm of the user times in seconds for n; = 300 as p increases

are not given since all the predictors have associated non-zero coefficients when the
datasets were created. From this table it can be deduced that similar or even better
results, comparing with those of the Lasso, are obtained in the majority of the cases
across the four different measures.

A final remark concerning the computational cost of the CSCLasso when comparing
with Lasso is as follows. The median user time required to solve the problem with the
largest dataset considered in this study (n; = 300 and p = 500) is 0.85 s when the
Lasso is run on Intel(R) Core(TM) i7-7500U CPU at 2.70 GHz 2.90 GHz with 8.0 GB
of RAM; whereas the CSCLasso requires 6.60 s. Nevertheless, to better understand
how the computation time behaves depending on p value, a grid in this parameter has
been inspected, while ny is set to 300. Figure 6 depicts the logarithm of the user times in
seconds obtained under Lasso and CSCLasso models when ny = 300 and p changes.
Then, under a reasonable computational cost, the desired results are achieved. Further
analyses regarding the computational times are shown in the Appendix (Fig. 11).

4.2 Leukemia dataset: a gene expression dataset

The real stratified dataset described in Kouno et al. (2013) is explored here. The
data contain information related to myeloid monocytic leukemia cells undergoing
differentiation to macrophages. In particular, the dataset is formed by expression levels
of 45 transcription factors (response and predictor variables) measured at 8 distinct
times (groups) of the differentiation process. As in Ollier and Viallon (2017), the aim
is to predict the EGR2 transcription factor in terms of the other p = 44 factors. The
sample size per group is equal to 120. Similarly as in Sect. 4.1, the Lasso was run and
the overall prediction errors, individual prediction errors per group and percentage
of non-zero coefficients are recorded. The records in Group I yield the best MSE
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using Lasso model. Therefore, we may be interested in obtaining an even better fitting
for such data. The CSCLasso problem is solved with threshold values smaller than
the Lasso error, which turns out to be 0.370. Table 4 shows the obtained median
results for an assortment of improvement levels, namely, 5%, 7%, 10% and 15% or,
equivalently, y is equal to 0.05, 0.05, 0.07 and 0.15, respectively. From that table, it
can be seen how the prediction error of interest (corresponding to Group 1) decreases
with the improvement level, as expected. Similarly as in Sect. 4.1, the overall mean
squared error does not exhibit significant changes, while the prediction errors in the
uncontrolled groups do not exhibit the same behaviour. Some of them slightly improve
(Group 6), others slightly worsen (as the Group 5 and Group 8) and others remain
constant (as Group 2). Finally, in regards to the sparsity of the solution, for this dataset,
less sparse solutions are obtained by CSCLasso in comparison with the Lasso ones.

4.3 Communities and crime dataset

In this section, a real dataset from the UCI Machine Learning Repository (Lichman
2013) will be analyzed. In particular, the so-called Communities and Crime Unnormal-
ized Data Set shall be considered. The dataset is about communities within the United
States and has already been inspected in the literature (see Redmond and Baveja 2002).
This dataset combines crime information from the FBI databases (U.S. Department
1995) as well as socio-economic and law enforcement data from U.S. Department
(1992) and U.S. Department (1992), respectively. The dataset is formed by p = 124
predictors, 23 of which present missing values, and n = 2215 instances, where the
response variable measures the number of murders per 100K population. The predictor
variables with missing values are not consider for the next experiments. As such, we
finally consider p = 101 predictors. Additionally, for each instance (community), the
region from which it comes is known. Thus, if we were interested in obtaining a good
prediction in a certain region, say Midwest, we could control these communities by
including a performance constraint. Table 5 shows the median errors over the test set
for Group 1, formed by the communities of Midwest, and over the rest of communities
(Group 2). In terms of overall MSE and MSE over the two groups, similar conclusions
as in Sect. 4.2 are drawn. Whereas different improvement levels are imposed, the
MSE of interest (M SE1) is getting smaller but the overall prediction error is almost
not affected by the constraint. Lastly, regarding the sparsity of the solution, an analo-
gous behaviour as that observed in the case of simulated data is obtained: the solution
becomes less sparse with the improvement level.

As previously commented, the groups of interest may overlap. As an illustration,
assume that the interest is in controlling the prediction error in communities of Midwest
or communities with a population density larger than or equal to the 75th percentile.
Let Group 1 denote the communities from Midwest, while Group 2 represents the
communities where the density of population is higher than the 75th percentile. For
instance, if we aim to improve in a 7% the errors obtained by the Lasso model (equal
to 0.513 and 0.442), then the CSCLasso results become 0.475 and 0.441, respectively.
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Table5 Median errors over test set for communities and crime dataset. Constraints imposed over Group 1

N Overall MSE MSE\ MSE, NZ
Lasso - 0.488 0.433 0.453 21.57
Improv. 5% 0.411 0.488 0.422 0.453 25.49
Improv. 1% 0.403 0.487 0.420 0.453 28.43
Improv. 10% 0.390 0.488 0.416 0.453 26.47
Improv. 15% 0.368 0.486 0.403 0.459 34.31

5 Conclusions and extensions

In this paper a new version of the Lasso regression model that strives to control the
performance rates associated with individuals of interest is proposed. The method has
a significant application in the context of heterogeneous data, where it is common
that certain sources are more reliable than others, or simply the prediction on some
groups of data are of higher interest, and thus a better fit is sought for some data. In
order to control the individuals of interest, performance constraints are included in the
regression model. This approach leads to a novel method (CSCLasso) which is not
reported in the literature previously, up to our knowledge. Theoretical results concern-
ing this novel methodology have been discussed and, in addition, the CSCLasso has
been tested on six synthetic datasets with different properties, on a well-referenced
real stratified biomedical dataset and on a real social sciences dataset. The numerical
section shows that, with a low computational cost, the accuracy prediction errors for
the groups of interest are controlled. This is done at the expense of reducing sparsity
(if the regularization parameter is kept fixed) or the overall accuracy.

A number of extensions to this work are possible. Regarding the selection of the
threshold values f1, ..., fL, as commented in Sect. 2.4, a more flexible choice would
be to consider a different fine-tuning parameter T (or y) for each group of interest
1, say 17; (y;). However, this generalization implies tuning (many) more parameters,
making the model less usable by users. In addition, for the sake of dealing with strongly
correlated predictors, it may be of interest to change the objective function by that of
the elastic net (Zou and Hastie 2005). Another non-straightforward extension could
be to address classification problems (via the logistic regression) instead of regression
problems. In this case, we would not adress a quadratic problem. Work in these issues
is underway.
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Appendix: Proofs
Proof of Proposition 1
Given A > 0, consider problem (11).If 8 = B — B~ with B+ > 0and B~ > 0 and

A =(0,,...,1),avector whose length is p + 1, then the differentiable version of
that problem turns out to be

. 1 _ _
min ~ —|yo — Xo(B" — B)I* + 1T +1/B
Bt,p~ No

1 + —2 ~ols
sty =Xi(BT = BOIP — 1+ IMSE (B ) <0,

B >0s —pt <0,
B >0 B <o

From the Karush—Kuhn—Tucker conditions,
1 / 'p— /7 —\/ p—
LBT.B.07.67. )= %HYO —Xo(BT = BOIP+NBT+ABT — 0BT —(07)B

1 . 2 ~ols
. (a“yl—xl(ﬁ —BOIP— (1 +0)MSE (B ))

9 2, _ 2, _

Z)ﬁi : _ITOXO(yO —XoBT =B ) +A—0" — ninXl(yl -Xi(BT =B =0
9 2, " _ _ 2 i _

— X0 —XoBT =B N +A—-0" + —nX|(y1 —X4(BT-B87)) =0

ap no ni

07,6",1>0

0Bt =0

0B~ =0

1 + 2 ~ols
n nflllh—xl(ﬂ =BIIT—Ad+MSEi(B ) ) =0

Thus,
2
—iff>0= Bt >0 =0=0"=0=——X)(yo— XoB) +1—
no
2
—nXj(y1 —XiB) =0
ny

2 2
—iff<0=B"=0,">0=20" =0= n—Xé(yo—Xoﬁ)—H»—i-n—nX’l(yl—
0 1
XiB)=0

Therefore,
2 ! 2 !
%Xo(YO - XoB) + n—ln(/\)Xl()ﬂ —XiB) =b®), (13)
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where n(A) is the Lagrange multiplier associated with the first constraint and b(})
is a (p + 1)-dimensional vector whose s-th component, s = 0, 1, ..., p, takes the
following value

A, if B > 0,
bs(A) = 3 —A, if B <0,
0, else.

Then, since Xp and X; are maximum rank matrices, one obtains from (18) the
~CSCLasso

following implicit expression for the solution 8 (%) of Problem (11)
~CSCLasso 1 , 1 , -1 1 , 1 ’
B ) = —XoXo + —n(MX(X| —Xpyo + —n(M)Xjyi
no ni no ni

1/1_, 1 o\t
—— [ —X{Xo + —nW)X[X1 ) b®).
2 \ np ni

Proof of Theorem 1

1 1
Consider the function 1 : B — —|ly — X8> = —(y — XB)'(y — XB), where X is a
n n
maximum rank matrix by hypothesis. The matrix X is of maximum rank and therefore
the Hessian matrix Hj,(B) = —X'X is positive definite, from where we conclude that
n

h(p) is strictly convex, and hence, 1(B) + A||.AB]|1 is also a strictly convex function.
We next prove that h(B) is a coercive function. Since X'X is positive definite,

its eigenvalues are all positive. In particular, the smallest eigenvalue, say y,, will be

nonzero. Moreover, using the spectral decomposition of a symmetric matrix,

1 1 1 2 1
—ly—XBlI* = —(y—XB)(y —XB) = —B'X'XB — “y'XB + —yy
n n n n n

1 2 1
—B'O'DOB — =yXB+ —y'y
n n n

v

1 2 1 Y, 2 1
-B'Q'DOB - ’*y/Xﬂ‘ + =¥y > Zl0BI? - H*y’XH 1B+ —y'y
n n n n n n

Vr 2 1
= |BI* - nyXH I1BIl+ =Yy,

n n n

where, in the second-to-last step, the Cauchy-Schwarz inequality has been used. As
Bl = o0, then h(B) — 400 too, and thus 4(f) is a coercive function.

Now we show that (13) has optimal solution. Let 8* € B. As h(B) is coercive, then
there exists R > 0 such that

1 1
~lly = XgI* > ~ly - XB* 112 + AIlAB* 1,
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for all B such that || 8| > R.For that reason, the problem can be reduced to the feasible
compactregion BN{B : ||B]| < R}, whichimplies that the optimal solution is reached.
Finally, the uniqueness of the solution follows from the fact that 2(8) + A|AB]|; is
strictly convex.

Proof of Proposition 2

~Lasso
Let us consider the optimization problem (2) and let (1) denotes its optimal
solution. The necessary and sufficient optimality condition is:

1 ~Lasso 2 ~Lasso
V;IIy - XB M=+ 2r0]AB Ml > 0. (19)

From the properties of subdifferential (see Theorem 23.9 of Rockafellar (1972)) it
follows that

~Lasso ,
alIAB M1h =A3II~I|1‘A

ELMS”()L) 4

which implies that (19) becomes

s

2 ~Lasso
- ;X’(y - XB (M) + 1A ”‘”1\,4 50. (20)

ﬁLasso(M

s

~Lass
Consequently, the necessary and sufficient condition (20) in ¢ M)(/\) =0is
2 ! /
——Xy+A{At: too <1} 20,
n
since 8]|0]| is the unit ball of the ||.||o. Equivalently,

2
X'y € {(A'rt: |It]oo < 1}.
n

Therefore, the solution of the problem

2 4 /
s.t. ;X y = A'At, Q1)

[tlloo < 1,
)\' 207
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AL
will provide the minimum A from which 8 e (&) = 0 is the optimal solution. If

q = At, then Problem (21) becomes

min A
A,q

2
st. =X'y=UAq,
n

lqlloo < A.

The constraint ||q||c is equivalent to |gs| < A, s =0, 1, ..., p and the result follows.

Proof of Proposition 3

The proof follows very closely that of Theorem 1. First of all, it shall be proven that
h: B+ E[(Y—X'B)?]is coercive. It is strictly convex on 8 since its Hessian matrix,
2E[XX'], is positive definite due to X is an absolutely continuous p-dimensional
random variable:

W E[XX'Tu = E[u' XX'u] = E[(X'u)*] > 0,

since P(X'u = 0) = 0. Moreover, A||AB||1 is a convex function on B and, therefore,
E[(Y — X'B)* + A||AB|I1] is also a strictly convex function on .

On the one hand, the eigenvalues of the Hessian matrix are all positive and, in
particular, the smallest eigenvalue, say y;, will be non-zero. On the other hand, using
the spectral decomposition of a symmetric matrix,

E[(Y — X'B)*] = B'E[XX'IB —2E[YX1B + E[Y*] = B'Q'DOB — 2E[YX1B + E[Y?]
> B'Q'DOB— | 2E[YX1B | +E[Y?] = v 1 QBII> — IE[Y XTIIIBI + E[Y?]
=y IBI> = IE[YX1|lIBIl + E[Y?],

where, in the second-to-last step, the Cauchy-Schwarz inequality was used. As || || —
+o00, then E[(Y — X'B)%] — 00, that is, the quadratic function A(8) = E[(Y —
X'B)?] is coercive. The next step in the proof is to transform the original true problem
(17) into an equivalent one with a feasible compact region B*. Given B* € B, since
h(B) = E[(Y — X'B)?] is coercive, there exists R such that

E[(Y = X'B)*] > E[(Y — X'B*)* + Al AB*|I1],

for all B with ||| > R. For that reason, the problem (17) can be reduced to the
feasible compact region B* = BN {B : ||B|l < R}, which implies that the optimal
solution is reached.

Finally, the uniqueness of solution is a consequence of the strict convexity of the
objective function.
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Proof of Theorem 2

~CSCLass
For the sake of simplicity, B5¢£45°(1) and B e (1) will be denoted henceforth

by B and B, respectively. In addition, let us consider the nonempty compact set C =
BN {B: ||B]l < R}, where R is chosen according to the proof of Theorem 3.1.

Theorem 2 is a direct consequence of Theorem 5.3 in Shapiro et al. (2009) under
some technical conditions, namely:

Cl. The expected value function E[(Y — X'B)> + A|l.AB|1] is finite valued and
continuous on C.

1 ,
C2. 371 (i = x;B) + A ABI1) converges to E[(Y — X'B)” + Al ABlI1] w.p.
1, as n — oo, uniformly in B8 € C.

Let us denote F (B, (Y, X)) = (Y — X'B)*> + 1|l AB||1. Then, the previous conditions
C1 and C2 are consequences of Theorem 7.48 in Shapiro et al. (2009) provided that

Al. for any 8 € C, the function F(-, (Y, X)) is continuous at  for almost every
(¥, X),

A2. the function F (B, (Y, X)), with B € C, is dominated by an integrable function,

A3. the sample is i.i.d.

Given (Y, X), the function (Y — X’B)%+ 1| AB || is continuous at B forany g € C,
and therefore Al is fulfilled. The sample is i.i.d. by hypothesis, and thus A3 holds too.
Finally, in order to prove A2, it is necessary to find a measurable function g(¥, X) > 0
such that E[g(Y, X)] < oo and, forevery B € C, | F(B, (Y, X)) |[< g(Y, X) wp. 1.
Using the Cauchy-Schwarz inequality, one has,

| FB. (Y. X)) | =] (Y — XB)* + AllABI: |
=|Y>—2YX'B+B'XX'B+1|AB|1 |
<Y+ (X'B?+2|YX'B | +1IABI:
=Y+ | X'BIP+2|YX'B|+AIA4BII
< Y2+ IXIPUBI* + 21Y X8I + AlIABI: .

Let My and M; be given by

M| = max M> = max | A
I = max 8l 2 ﬂecl Bl

which are well defined due to the compactness of C. Therefore, g can be chosen as
g(¥. X) = Y? + MY|X|* +2M1 | Y X|| + 1Mo,

which is positive and, since E(||X||*) < oo, E(Y?) < oo, E(|]YX]|) < oo, its
expected value is finite. In consequence, A2 holds and the proof is concluded.
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Appendix: Further results

See Figs. 7, 8,9 and 10.

To fully understand how the computation time behaves depending on n; and p
values, a grid in both parameters have been inspected. Figure 11 displays the logarithm
of the user times in seconds obtained under Lasso and CSCLasso models when n;, and
p change. The perspective drawn in the top left figure shows that Lasso model (bottom
surface) is solved faster and in a smoother way. Besides, whereas smaller times are
obtained for both methods when n; and p are small, the biggest times are associated
to nx = 300 and p = 500.

Heat Map 3CSCLasso(\) Heat Map {}g'ﬁ'(/[m«\‘o()\) Heat Map 3305(,'14(.”0()\)
05 0 05 05 0 05 05 0 05
43 4.355 4355
21 2177 2177 &
b " g°'° . . 3uoss R . aooss
A A A
Heat Map 3§ SCLas52()) Heat Map 35 5CLas50 () Heat Map 35 SCLasso(\)
05 0 05 05 0 05 05 0 05
a3 43 a3ss
210 21 2177 &
0.0! 0.0 0.055
° 9 8 o vg B o ‘g 2
A A A
Heat Map 3C'SCLass0( )
05 0 o5 o5 & o5
43 4355
21 2177 &
0.0 0.055
- P 2 o P 2
A A
. ~CSCLasso ~ ~ .
Fig.7 Heat maps of 8 ) = (ﬂijCLaJSO ), ..., ﬂSCSCLa”” (1)) using prostate dataset
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Synthetic dataset n, =150 and p=20

Strat. 7 Strat. 8 Strat. 9 Strat. 10
5% - EE——— ——
3% -~ I I
Lasso - e—— I I I
Strat. 11 Strat. 12 Strat. 13 Strat. 14
5% - I
® 3%- E—
2
o Lasso -~ I I
=
[
g Strat. 15 Strat. 16 Strat. 17 Strat. 18
>
o 50 - —
o
£
- 304 - E—
Lasso - e— I I I
strat 19 Strat 20 Overall MSE 00 02 04 06 08 10
5% - ——
30, - EE—
Lasso - e— I I

00 02 04 06 08 1000 02 04 06 08 1000 02 04 06 08 10
MSE,

Synthetic dataset n, =300 and p=20
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Fig.8 Median M SEj over the test sets for k = 7, ..., 20 under p = 20 features and the two ny options.
Each subgraph represents one group and the Y-axis shows the different percentages of improvement
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Fig.9 Median M SE}, over the test sets for k = 7, ..., 20 under p = 500 features and the two ny options.
Each subgraph represents one group and the Y-axis shows the different percentages of improvement
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Fig. 11 Four perspectives of the logarithm of the user times in seconds for Lasso (bottom surface in the
four graphics) and CSCLasso (top surfaces) models across a grid in ny and p
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